
Alexander Tureczek

Institute of NeuroInformatics IMM – Informatics and Mathematical modelling
Uni Irchel Zurich Technical University of Denmark

Active shape models on Silicon retina

C O G A I N
Silicon retina project

Supervisor:

Tobi Delbruck

Bjarne K. Ersbøll

Project done by:
Alexander Martin Tureczek

Table of contents

1 Introduction and problem statement ..1

2 Theory ..2

2.1 Procrustean mean shape ...2
2.2 Active shape...3

3 Modeling the face...4

3.1 Detection of the face in the retina image: ..4
3.1.1 Identifying the face with 1 LED: ...4
3.1.2 Identifying the 2 LED: ...5
3.1.3 Computational effort regarding calculation of median ..7

3.2 Annotating faces from images: ..8
3.3 The Choice of faces: ..9
3.4 Creating the first meanshape:...9
3.5 Fitting the model to the face seen in the retina: ...11
3.6 Rotating the model to up-right position ...12
3.7 Rotating the model to follow the LED positions ...13
3.8 Deformation of the shape model. ...13

4 Modeling the mouth ...16

4.1 Calculating the median of the mouth. ..18
4.2 Mapping back to the tilted face..19
4.3 In action..19

5 Implementation into JAVA..21

5.1 Calculation of the median ..22
5.2 Other classes and methods. ..23

6 Computational Effort of filter ..26

7 Ideas for future work:...29

8 Conclusion ...30

9 Acknowledgement, in random order..31

10 Bibliography: ...32

11 Appendix A: Script for running the different MatLab codes...33

11.1 COGAINdemo.m ...33

12 Appendix B: Important MatLab code ..36

12.1 face_mund.m..36
12.2 meancent.m ..38
12.3 Rotation.m..41
12.4 LED2id.m (NOT USED, but works) ...42
12.5 movLED.m...43
12.6 Rotator.m..44
12.7 mupdate.m..46
12.8 mund_rotering.m..48

13 Appendix C: jAER java Filter code ...55

13.1 Descriptive ...55
13.2 FaceTrack...56
13.3 HorizontalFaceModel...62
13.4 Mund.java ..64
13.5 Sorting..73

1 Introduction and problem statement
Alexander Tureczek

1

1 Introduction and problem statement
This report contains the documentation of the work done in collaboration between DTU and Uni
Zürich in the fall of 07 and spring of 08.

Having seen active appearance models (AAM) being very successful on frame based images, this
report will look into the possibility to use them on event based data, such as coming from the silicon
retina camera.

The AAM will be build on a set of existing images of faces, through annotation of important
landmarks in a face shape we will create a mean shape of these different shapes. This shape will be
used as an initial estimate of the face.

We will use 2 LED lights mounted on a pair of glasses to identify where the face is situated in the
event stream. Then from a variable number of events we will see if it is possible to use the LED
plus the events to deform the face to fit the data better. Depending on the success of the deformation
AAM will also be used to model a mouth in the face.

It is the hope that this project will lead to a filter implementation useful in the jAER project on
sourceForge.com. Firstly a proof of concept will be made in MatLab to see if the data are useful,
and the idea is realizable. Then a large part of the project will be to gain the knowledge to
implement the MatLab code into JAVA.

Knowing that descriptive statistics, like the median will become an important part of estimating the
position of different landmark and LED, an implementation of the very efficient sorting algorithm
Heap Sort will be made. In a given java filter implementation, sorting of the events will be the most
expensive procedure, being able to do this efficiently is of prime importance. Thus an interesting
study will be the computational effect required by the filter will be made as well.

This gives three main focuses of this project; modeling a face, e.g. be able to detect it in an event
stream, and also model a mouth from this event stream. While thirdly implementing the proof of
concept into a JAVA filter. A side project will be to analyze the run time performance of the jAER
filter implementation.

2 Theory
Alexander Tureczek

2

2 Theory
The models are done using Procrustean shape analysis fitted to a shape, while the techniques from
T.F Cootes’ Statistical models of appearance is going to be the basis of our project.

2.1 Procrustean mean shape
The procrustean mean shape is used to calculate a mean shape of the objects in question. It is built
on known positions of landmarks from a training set. The trainings shapes are aligned to each other
see figure 2.1, and then calculating the average shape from the difference of corresponding
landmarks.

Figure 2.1 – (left) the original faces with their size difference and positional
difference. (Right) Faces aligned with mean and standardized to the mean shape
showing the difference in the shapes regardless of size. The fat red line is the mean
shape of all shapes used.

Procrustes is reducing the sum of squares between the points, this is done by the following:

n

i

n

i
iiiiii zzwwwwS

1 1

***)/((1)

Where; ||||/ ii wwz , i=1,…,n. This formula is calculating the complex sum of squares of the

shapes w. where w* is the conjugate. The shapes are converted to complex as this makes it easier to
compute in MatLab with a shape given in a vector a+ib rather than two vectors of x and y. The
matrix S is then complex sum of squares. The largest eigenvector in the matrix S is the mean shape
of the included shapes.

))(sup(ˆ Seig (2)

2 Theory
Alexander Tureczek

3

 This shape is unique except in rotation. As the mean shape vector is rotated with respect to the
original shapes we need to align the shapes to the mean shape to enable us to calculate the variation
in the shapes.

)/(ˆ **
iiii

p
i wwwww (3)

This provides the rotation from the initial shapes to the mean shape calculated in (1). The resulting
mean shape and alignment to this shape is shown figure 2.1 (right), while the initial condition is
shown to the left. When the shapes are aligned we are able to calculate the variance in the shapes
with respect to the mean shape.

Var =

s

i

T
ii xxxx

n 1

))((
1

1
 (4)

n is the number of shapes, i=1,…,n this gives us a matrix of dispersions where the diagonal is the
variance and other observations is the covariance between shapes. When calculating the variance
we stop using the complex notation and create a (x, y) vector looking like (5)

n

n

y

y

x

x

w

1

1

(5)

2.2 Active shape
The Procrustean means shape and dispersion matrix are used in active shape modeling to define the
model after which the objects are described. The idea is using; the mean shape and allowing for
deformation via the dispersion matrix, it is possible to fit the mean shape to an object with the same
features. E.g. a model of a face would then be deformed into a new face.

bxx (6)

(6) Shows the idea of the deformation. Having a mean shape x the adding some deformation to this
shape in . The deformation is controlled by the parameter vector b. is a matrix consisting of
eigenvectors found with PCA, and explaining more than some arbitrary threshold of the total
variation in the data.

This method uses expert knowledge of objects to detect new object of the same type, but it cannot
deform into a shape that wasn’t in the trainings set, e.g. it’s impossible to deform a square into a
circle if this link hasn’t been established already in our model.

This report will use as many eigenvectors as to describe approximately 95% of the total variation in
the data.

3 Modeling the face
Alexander Tureczek

4

3 Modeling the face
This section will be concerned with the modeling of a face using techniques from T. F. Cootes et al,
on face shapes. We will develop the shape model that is going to become the face. Firstly we will
identify where the face is situated in front of the camera.

3.1 Detection of the face in the retina image:
To make it easier to detect the face in the spiking image from the silicon retina, we mount 2 LED’s
on a par of glasses giving us a fix point all the time due to the flickering of the LED. This report
will only describe the frequency of 2 kHz, but the MatLab program was tested on various different
frequencies below 2 kHz, namely 1.5 kHz, 1 kHz 500 Hz, and 100 Hz..

3.1.1 Identifying the face with 1 LED:

Since the LED is set to a high frequency, it is hoped to be the dominant event in the event stream.
Therefore we can for each 100 or 1000 events calculate the median in the x and y coordinate and
get a very good indication of where the led was in that time interval. With modern sorting
algorithms this sorting processes it doable in))ln((nnO calculations.

Figure 3.1 below shows how the bar chart looks for a 100 event x-axis (Left) it is clearly seen that a
median approach would give a good approximation to the position on the axis of the LED. Also in
this way noise will have nothing to very little impact on the position of the LED. Figure 3.1 (Right)
shows the same for the y-axis.

3 Modeling the face
Alexander Tureczek

5

Figure 3.1 - Identifying the LED position using the median of the position on each
axis. The coordinate/position is plotted as a function of the event number, we see from left and
right, that there is one coordinate on both axis that is dominant. This coordinate is then used as our
initial guess on the position of the LED.

In small time steps it is very robust, but if the whole image is analyzed at once this will not work,
because then the median would include all information from the face moving around. Also using
1000 events defines sharply the median and hence the position of the LED. Ref. figure 3.3 to see the
estimated positions of the LED.

3.1.2 Identifying the 2 LED:
As mentioned earlier we are using LEDs to identify the position of the face. Using 2 LEDs also
gives us information of the angle/tilt of the face. To identify the two LEDs we use the median,
because of its robustness towards extreme observations, or spread in data. But since we use two
LEDs we are going to get an estimated median between the LEDs. To get an estimate on each of the
two LEDs actual positions we partition the sorted data in a left (LED 1) and a right (LED 2) part,
using the grand median as the dividing point. Now finding the median in each of the parts gives an
initial estimate on the position of an LED. Figure 3.2 shows how the partitioning of the data is done.

Figure 3.2 – the partitioning of the data via the grand median into smaller regions
LED 1 and LED 2, making it easier to get a good estimate on the position of the LEDs.

To prevent the LED moving too much between iterations, we constrain the LED median calculation
to only include a predefined number of pixels around the LED, making a box where the LED can
move freely inside. The centre of the box is always set to be the estimate of the LED from the
previous iteration.

The above mentioned technique for finding the LEDs is easy to use for the x axis where there is a
clear distinction between the two LEDs, for the y axis it becomes a problem because often the y-
coordinate of the LEDs will be very close but not identical.

We solve this by letting the LED wander around as described above, using just one estimate for
both y-coordinate of the LED and then let it find its median independently, also calculating the
median on each cell, LED1 and LED2.

3 Modeling the face
Alexander Tureczek

6

After having identified the coordinates for both LEDs we have estimates of the position of the face
and hence we have an idea of where to place our model. Figure 3.3 shows the LEDs (left) and the
fitted face (Right)

Figure 3.3 – left is seen how the LED are positioned in the data, no apparent face is
visible, the vertical lines are cables from the LEDs that unfortunately moved during
the making of the sequence. Right is imposed a scaled and rotated face making it
easier to see where to expect a face, also making it possible to identify the mouth
and nose of the face.

Experiments using LED with a frequency of 2 kHz showed that the LED does not make a big
enough cluster for the estimate to be stable when using 1000 observations. Exactly 1000
observations has been the default sample size of events during this project, though this is
configurable by the user, more data didn’t change this tendency. Figure 3.4 show a LED1 and a
LED2 estimates, it is clearly seen that the LED1 is not a stable estimate like the LED2. Also from
figure 3.10 it is seen that the LED may wander of.

3 Modeling the face
Alexander Tureczek

7

Figure 3.4 – the first 1000 observations of two LED with 2 kHz. It is seen that the left
LED is considerably harder to estimate than the right LED. Especially the left
histogram shows the tendency of either one of the LEDs, this spread of events makes
the LED more likable to wander of.

The phenomena shown in figure 3.4, was experienced often, meaning that the estimated LED would
jump around in the image, disregarding the LED. Though the LED is blinking with high frequency,
here 2 kHz, it did not provide an all too stabile estimate. We reduced the amount of instability by
restricting the movement of the LED at each iteration but as figure 3.11 shows movement in the
image, coming from a small cord was enough to get the LED to wander of even when the allowed
movement was small. To really overcome this problem a more stabile estimate of the LED has to be
devised, which has not been done in this project.

3.1.3 Computational effort regarding calculation of median

Since the LED is set to a high frequency, it will be the dominant event series in the event stream.
Therefore we can for each 100 or 1000 events calculate the median in the x and y coordinate and
get an indication of where the LED was in that time interval. With modern sorting algorithms this

0 20 40 60 80 100 120 140
0

50

100

150

200

250
Histogram over the distribution ofthe event in the x axis

X coordinate

Y c
oo

rdi
na

te

3 Modeling the face
Alexander Tureczek

8

sorting process for finding the median has a worst case running time in))ln((nnO , this is worst
case running time for the Heap Sort algorithm implemented in the Java filter.

3.2 Annotating faces from images:
Initially the focus was on getting the code working in MatLab with the annotation of points and
construction of the model of a face. The face was set to consist of 8 landmarks, the intention is to
make the code robust such that an annotated face with more landmarks can be used instead. When
annotating one has to taking into consideration the distance between the landmarks. Landmarks
cannot be situated to closely else it will be possible for data to be used to calculate updates for
different landmarks.

The annotation of points is shown in figure 3.4, only the outline of the face was annotated, while the
mouth is annotated in chap. 5 modeling the mouth. The intention of this model has been to keep it
simple and thus try to model a face with as few landmarks as possible to still get a reasonable model
of a face. This will keep the filter as cheap as possible.

As mentioned the face consists of 8 landmarks, and the mouth will be consisting of 6 landmarks,
also seen in figure 3.4.

Figure 3.4 – Landmarks on a face used to construct our model. The eyes and lips are
not included in the initial modeling process. On each cheek there is an additional
annotation placed right below the ear, the top annotation on the cheek is placed
where the ear ends

3 Modeling the face
Alexander Tureczek

9

3.3 The Choice of faces:
The annotation of the face, is done using MatLab and photos of people. Initially the model will be
built on faces looking into the camera. Both eyes and the mouth should be visible, putting a
constraint that the model only fits to faces from front plus some small angle to the left/right and
up/down. The images used were not standardized to look particular, they were taken from a series
of different portrait photos. This was done in the hope that these photos would bring in more
variation used for modeling different face shapes when a face is moving. This could also have the
draw back that there may be introduced variation that cannot be accounted for, and thus will bias
the model.

The preferable approach, would be to use two images of each person, one with closed mouth and
one with open (like when talking) as to be able to create some shape variation in the mouth making
it able to fit to a talking person. Ideally the model would be able to imitate a person during a
conversation/talk. This is however only in the very optimum case this would be reachable for this
project. Using two pictures of each person has not been tried in this project.

3.4 Creating the first meanshape:
To make sure the code works and that the theory has been applied correctly, we make an initial
rough model, making sure we get the expected results. We build a model from 14 images, with each
8 annotations in complex notation, (making it possible to express the shape coordinates in one
vector.)

Figure 3.5 shows two of the images chosen to generate the model. It is seen that both individuals are
looking directly into the camera, (left) has his head in a vertical, “normal” position, and his mouth
closed. While (right) has it tilted head position and open mouth. In this model we are not going to
try and model mouth variation, but we will capture some variation due to different head positions.
The images from figure 3.5 are representative of the 14 images used in this test. They all require
that the person is looking into the camera, and the head is up right or in a tilted position like in 3.5
(right).

Figure 3.5 – Annotating a face outline. (Left) Face pointing towards camera whole
face visible, mouth closed. (Right) Face pointing towards camera tilted and not all
face contours are visible, mouth open. These serve to illustrate the difference in the
trainings set, making the model more robust when people are moving.

3 Modeling the face
Alexander Tureczek

10

Also the annotations are only approximate, as they have been annotated by hand and hence there
will be induced some variation into the data from the person annotating the images. We will not try
to take into account the variation induced by the person annotation the images.

After having annotated the shapes in the 14 images, we mean center and calculate the largest Eigen
value. The results are shown in figure 3.6 (left) the fat red line in the model is the mean shape and it
is clearly seen how the other shapes are varying around this shape. We even see the tilting of the
different faces. Calculating the variation in the shapes, and decomposing the variation into
eigenvectors gives us a clear view of how this variation is distributed over the 14 dimensions.
Figure 3.6 (middle) shows in bars how much each principal component (PC) describes of the
variation, while the graph shows the cumulated variance. It is seen that the first three/four PC’s are
describing roughly the most of the total variation in the data. To retain approx 95% of the variation
we need three PC’s

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120
Variance contribution

P
er

ce
nt

Eigenvector nr.

% Explained

1 63.5187
2 87.9512
3 94.8498
4 97.0340
5 98.2690
6 99.0339
7 99.4223

Figure 3.6 – (Left) alignment to the mean shape. (middle, bars) The explained
variation for each eigenvector, (Right) the cumulated explained variance. This
variance plot shows how fast we are able to capture approx 95% of the total
variation in the data.

Plotting the first three eigenvectors and adding ±3 standard deviations () will show us what
variation the three largest components are explaining, and how this will influence the model
deformation. The plot is shown in figure 3.7

3 Modeling the face
Alexander Tureczek

11

Figure 3.7 – The influence of the three largest eigenvectors on the mean shape.

We see from figure 3.7, that eigenvector 1 influences the size of the shape, and even also some
deformation from a clearly rounded curve to almost being an open box with +3std. eigenvector 2
looks like it is controlling the rotation of the face, and a very small deformation of the jaw. Finally
vector 3, is doing significant deformation to the jaw, almost as if the subjects were not looking
directly into the camera.

3.5 Fitting the model to the face seen in the retina:
Using the LED as initial guess and to initialize the face model, setting the top of the model (highest
landmark) at the points where the LED is seen, and then pull the model to fit the face when
movement is detected. This means checking for each landmark in the mean shape if there is a
difference between the mean shape landmark and the closest event in the retina. If so then we pull
the shape by estimating the parameters from

bxx (7)

Using the knowledge of the difference between the model and the estimated landmarks from the
silicon retina we can rewrite (7) into:

3 Modeling the face
Alexander Tureczek

12

)(xxb T (8)

Making us able to estimate the parameters and finally giving us a face fit to the retina event data.

3.6 Rotating the model to up-right position

The mean shape is the largest eigenvector and as such unique till an arbitrary rotation. This means
every time the model is created the face is tilted with some angle. We want the initial guess of the
face to be at the normal position (up right). As we believe this is the most plausible position for an
initial guess, the problem is shown in figure 3.8 below

Figure 3.8 - Left is shown the original eigenvector shape, this is just an arbitrary
rotation from the eigenvector properties, and the goal is to rotate the shape into the
right figure. This will give us the initial estimate of the face before beginning to
deform it.

We start by doing a translation such the upper left landmark is centered in (0, 0). The rotation of the
face is determined from the angle between the upper left (UL) and upper right (UR) landmark, this
angle has to finally become zero, resulting in figure 3.8 right. We calculate the angle between UL
and UR using:

x

y
arctan (9)

We also calculate the angle to every other landmark and subtract (9) from them. Remembering that
there is 2 solutions for every result in (9). This does not pose a problem in the initial alignment
phase, but when updating the model it does, so this has to be taken care of.

During the rotation we also calculate the distance between the UL and UR this is later used to
calculate the scaling of the face. Though the model initial rotation and the later adaptation to the
LED positions could be done in one code the initial rotation is implemented in the rotation.m and
the later fit to the LED positions is done in the rotator.m file.

3 Modeling the face
Alexander Tureczek

13

3.7 Rotating the model to follow the LED positions
The principle is the same as when rotating the face to initial position. Only now we don’t have that
the angle between UL and UR (both LEDs) is 0. This means that we have to calculate the angle
again of every point using (9), where y/x gives us the tilt/slope of the present LED positions. This is
then compared with the slope of the previous LED positions (last iteration.). After we calculated the
difference in angle we easily calculate the new angle for the entire model. During the rotation of the
model to the LED, we can get problems with the two point solution, we circumvent this by
investigating the sign of the x and y coordinates, if both are negative we know that should be
added to the solution. We don’t investigate the case x is negative and y positive because we don’t
expect that kind of tilt that would result in this case. Figure 3.9 shows the interesting cases with
respect to rotation.

Figure 3.9 – showing the cases that are interesting for the tilting of the face. This is
used to pick the right solution after using sine and cosine.

The distance between the LED and the distance between the UL and UR is used to calculate the
scaling factor and then scale the model to fit. The MatLab code rotator.m shows the implementation
of this.

3.8 Deformation of the shape model.

The update of the model is done using the formula described in (7) and (8). The formula uses the
difference between the mean shape and the shape that is to be fitted. We know the mean shape from
our annotations, the unknown shape is found by using same technique as when allowing for
movement in the LED. That is; we investigate a small box around each landmark and calculates the
median x and y position in that box. This new median estimate is used as a landmark estimate of the
unknown shape. Calculating the difference and adding the dispersion in (8) we get the parameter
estimates and can easily deform the model afterwards. If the box around the landmark is empty the
best estimate of the landmark is the previously known landmark which is then used.

3 Modeling the face
Alexander Tureczek

14

The update has been tried with two different approaches: 1) letting the updated model be used as the
basis for the next update. 2) Letting the mean shape be used as the basis of the update at each
iteration, i.e. letting the model be reset at the beginning of every iteration. It is clear that 1) seems to
be the most dynamic approach but on the other hand this enables the model to deform into shapes
that are not really faces but yet inside the region of deformation, e.g. if one side is being pulled
away, there is nothing stopping it only delaying it due to the constraints in movement per iteration,
this is not a problem with 2). Both approaches are shown below in figure 3.10 and 3.11

Figure 3.10 –top Left is shown the initial estimate of the face with 100 events. Top
right is shown the deformation of the model after 100 iterations. The model
landmarks have drifted to far apart, even though restrictions on movement has been
applied. Bottom left is shown the initial model estimate with 1000 events. Bottom
right is shown the deformation of the model after 100 iterations. The black line is the
deformation, the red line is previous fit.

Deformed fitPrevious fit

3 Modeling the face
Alexander Tureczek

15

Figure 3.11 – Top left, initial estimate of the model, top right model deformation and
movement after 100 iterations. It is seen that the model still mimics a face because
of the reuse of the initial estimate at every iteration. Bottom left, initial estimate
with 1000 events. Bottom right, model movement after 100 iterations, the model still
captures a face shape, though it has been stretched due to some accidental noise,
showing the instability of the LED.

In the MatLab script we tried to use overlapping data, e.g. 1-1000, then 500-1500 and so on, not
only trying with overlapping 500 events but different sizes. Not one of them made any difference in
the result of the deformation of the model, or even influencing the movement of the LED it just
required more iteration before the same effect was seen.

deformed fitPrevious fit

4 Modeling the mouth
Alexander Tureczek

16

4 Modeling the mouth
This section uses an annotated model of a face including the annotation of an average mouth, giving
us an initial estimate of the placement of the mouth with respect to the face. The modeling of the
mouth to recognize if the mouth is open or closed is divided into 5 parts each concerned with a very
distinct feature of the mouth. 1) defines where the mouth is expected to be. 2-3) rotation of data and
area from 1, making it easier to find the data that belongs to the mouth. 4) Estimation of the median
in each cell. 5) Rotating back to the initial angle and scaling to fit the face.

The mouth is limited in its movement; this restriction is enforced by not letting it jump outside a
boundary box, shown in figure 4.1. Though it is possible for the mouth to jump outside the box, at
each iteration if there is not enough data to update a specific landmark from the mouth and hence no
update is done. This will correct it self when the landmark in question updates it self.

The boundary box is defined by four landmarks. The landmarks are defined by looking at the height
and width of the mouth. Finding the upper bound for the box is done by taking the mouth landmark
with the largest and smallest y-value and adding respectively subtracting a factor to this. The same
is done for the x-axis to give a left and right bound for the box. This gives us with respect to the
model an expected area where the mouth can move. The box is linked to the mean shape of the face.

The enclosure is located with an upper bound by the landmark just under the ears and lower bound
just below the landmark representing the cheek. This has been chosen since looking at photos and
mirrors, and a model of a face and mouth made it seem like a good size of the box with plausible
movement restrictions for the mouth. The box is rotated and scaled like the face model, and an
initial estimate of a mouth has been modeled inside of this box. Figure 4.1 shows the initial position
of the face, box and mouth.

Figure 4.1 – Inserted face model with mouth and boundary box for
the mouth, limiting the movements of the mouth. The stippled box

4 Modeling the mouth
Alexander Tureczek

17

around the mouth is the box used for finding relevant observations.

When trying to model the mouth only observation that lay on or inside the boundary box is to be
taken into consideration. Finding the relevant observations that are inside the boundary box could
be difficult when the boundary box is tilted. To avoid testing all observations op against a tilted
boundary e.g. an equation, the following 2 steps are done. First; defining an outer box around the
boundary box, this outer box is the smallest horizontal box that includes all four landmarks from the
boundary. Only observations inside the outer box are possibly relevant for the modeling of the
mouth (stippled box in figure 4.1). Second; instead of finding an equation on each boundary vertex
and check each observation against, to ensure it is inside the boundary, we rotate the information
inside the outer box such that the boundary box becomes horizontal and the data aligned to this.

Figure 4.2 – Rotation of the data in the boundary box. Left is shown how the data are
collected from the camera. Right, shows the rotation of the data to easily enforce the
constraints.

To find the possible relevant observation out of n events, we only accept observations that lay
inside the outer box, instead of doing it directly on the boundary box. This is done for simplicity
making it a cheap way to find the possible relevant events. Only the observations that are deemed
possible relevant (inside outer box) are being rotated. After rotation a logical statement investigates
each event to see if it is inside the boundary. This is easily done by knowing the upper, lower, left
and right boundaries. Figure 4.2 (left) shows the initial rotated boundary with the outer box, and the
possible events. Figure 4.2 (right) shows the boundary after rotation. It is clearly easier to look at
the rotated data and see which events are inside the box.

To rotate the box and data we first need to find the angle of rotation, this is easily found by finding
the difference in y between the two x-axis coordinates.

12

12

x

y-y
Slope

x
 (10)

This is the same as used to calculate the tilt of the face. The slope makes it possible to calculate the
angle of the tilt . Is then subtracted from all calculated angles of the boundary landmarks and

4 Modeling the mouth
Alexander Tureczek

18

the observation angles. All rotated observations and landmarks needs to be investigated for correct
solution due to the nature of angular-relations having two equal solutions, seen in section 3.7, figure
3.9. Using the upper left landmark as centre of rotation all solutions has to be checked if the are to
the left of this point. If they are we also need to know if the observation is above or below the
rotational centre.

 If the observation is to the left of the centre of rotation pi is added to the angle to ensure that
the observation is mapped to the correct side of the centre.

 If the observation is below the centre of rotation the angle is set to negative.

After the tilt the relevant events are easily and cheaply calculated.

4.1 Calculating the median of the mouth.

The modeling of the mouth has is being conducted inside the boundary box. The box is divided into
6 areas as shown in figure 4.3.

Figure 4.3 – The boundary box has been divided into smaller zones, where individual
updates for the mouth landmarks are done. The points represent observations.

From Figure 4.3 we see how the boundary is divided into smaller zones. These zones are used to
calculate the best estimate of the mouth landmark. A landmark cannot leave its zone. The zones
have been divided into 6 areas with the left and right area being biggest. This has been done in order

4 Modeling the mouth
Alexander Tureczek

19

to give each landmark an own zone, where it can be calculated independently from the other. The
landmark is calculated as the median of x and y. Some restrictions have been imposed on the
landmarks;

 The two landmarks composing the upper lip (2+3) are calculated independently, but an
average is calculated between them in order to restrict the mouth of getting an unnatural
shape. This is likewise done with the lower lips.

 Zone 1 is actually divided into an upper and lower zone, since there is only one landmark on
the left edge of the mouth the median of the lower and upper zone is calculated and then the
mean of the upper and lower is calculated and used as an estimate of the landmark.

Interchange of median and mean is done because the median gives us a good estimate that is robust
towards outliers, but when we try to find the median of two points this is just the same as taking the
mean between them. Observations lying directly on the line between two zones are always regarded
as belonging to the left and/or lower zone.

It was considered to let the user define the minimum threshold number of observations in each
zone, only updating the model if there was enough data in the zone to supersede this threshold.
Often there will not be enough data in each zone to provide just 5 observations, so this was not
implemented. The main reason was that the danger of the mouth lying outside the boundary will
increase significantly, and thus distort the image of the mouth; maybe even put the mouth outside
the face. Thus only if there is no observations in the zone will the previous estimate will be used.

Finally the mouth was not modeled using ASM, because the poor control of the movement of the
landmark due to small samples. Hence the mouth was annotated from the same 14 images as the
face model used, but the variance was not included into the model, instead the ad hoc approach
described above was used.

4.2 Mapping back to the tilted face

Only the estimated landmarks from the mouth are being mapped back to the original tilt. This is
done by calculating from the previous centre of rotation to each landmark and adding the tilt angle
that was previously subtracted; we get to the original tilt again.

4.3 In action

The mouth has been implemented in MatLab and the results are shown below in figure 4.4

4 Modeling the mouth
Alexander Tureczek

20

Figure 4.4 – left, the deformation of the mouth when there is no data is done from
the previous known estimate. Right, the mouth tilts, scales and deforms. On both
pictures is seen the boundary box.

It has been observed that the mouth can jump outside the boundary, this should only happen when
there are not enough events to update and an old estimate has to use. Unfortunately also a resetting
error has not been located in the MatLab code, making the mouth able to deform unnaturally. This
is seen in figure 4.5

Figure 4.5 – unnatural deformation of mouth, with break up of lips.

It is uncertain if these errors have been eliminated in the java Filter due to slight difference and
stricter syntax eliminating small bugs.

Again we have tried to use overlapping data and the result was the same, the only difference is its
smoother in it’s movements but the result is the same, just using more computations for it.

5 Implementation into JAVA
Alexander Tureczek

21

5 Implementation into JAVA
The project has been build in MatLab and then implemented JAVA as a filter for the jAERViewer.
Only the part of the MatLab code that is responsible for dynamic computation e.g. detection of the
face has been implemented, while the initial face-model calculations has been copied directly into
an array in JAVA, this means that a new face model with e.g. more landmarks has to be calculated
in MatLab and then hard coded into the JAVA HorizontalFaceModel file

The files that were implemented into JAVA from MatLab are:

Name Job
FaceTrack Initial filter, equivivalent to Face_track.m.
Descriptive Does descriptive statistics. Incl. Median

calculation.
FollowLED Maintains the LED position, rotation and

scaling.

sort Sorts a vector with either SelectionSort or
Heap_sort.

Mund
HorizontalFaceModel Contains the model

Table 5.1 – Overview of the different classes in the filter implementation.

The following will only describe the major differences between the MatLab code and the JAVA
implementation. The implementation in MatLab has focused on getting the techniques to work,
while the JAVA implementation has focused on efficient implementation, e.g. avoiding unnecessary
loops. Also a more strict approach to variable declaration, using short, and float where ever possible
instead of integers and double. This has an impact on resources used, refer to table 5.2

Type Storage Min value Max value
short 16-bit -32.768 32.767
integers 32-bit -2.147.483.648 2.147.483.647
float 32-bit 7 significant digits
double 64-bit 15 significant digits.

Table 5.2 – Resource difference between the variable types in JAVA. [6].

From table 5.2 it is clearly seen that the amount of resources used can be substantial reduced, using
short and float. It is possible in this implementation to use short and float, as short is used for the
pixel position, and float for the face and mouth landmarks, that doesn’t need more than 7 digits of
precision.

The techniques often runs through the complete vector of observations, this was easily done in
MatLab due to native commands that each implement efficient methods for e.g. the median.
Implementing into JAVA focused on running through the vector as few times as possible, and each
time do as many computation and logical statements as possible to avoid using more loops than
necessary.

The script for deforming the face shape has not been implemented due to the final effect on the face
shape; refer to “deformation of the shape model”, these results made it not worth while to
implement this feature.

5 Implementation into JAVA
Alexander Tureczek

22

5.1 Calculation of the median
MatLab uses the command median to calculate the median of a vector. JAVA has no equal
command; hence this method had to be implemented. Calculating the median is a two step
procedure, 1) sorting the vector, by far the more demanding of the two steps, 2) finding the middle
element of the vector. The reason for using median is due to its robustness towards extreme values.

To sort a vector or an array we implemented two efficient algorithms; SelectionSort [6] and Heap
Sort. SelectionSort contains two nested for-loops, which makes the worst case running time of an n-
sized vector equal to n*n = n2 when the vector is completely sorted in reverse order, e.g. increasing
instead of decreasing. The best case running time is n for the case when the vector is completely
sorted in the required way, then the inner loop is never executed. This sorting algorithm gives a
worst case running time of a vector of 1000 elements of 1.000.000 computations, until termination
of the algorithm. In order to keep the computations efficient we also implemented the highly
effective Heap Sort. This algorithm is comprised of three concepts;

1) Binomial trees and heaps; a tree has several nodes, one node is the root of the tree, and the
root is the parent to two other nodes that are called the children of the parent. These children
can be parents them selves with two children each, and so on. A tree is build from a vector
by running through the vector and defining the following [4]:

Parent(i) = return 2/i

Left child (i) = return 2i-1

Left child (i) = return 2i

Due to Java’s indexing starting at zero, the definition of the children has changed a bit.
Running through the vector with the above formulas gives a binary tree, in order to make
each element the largest parent, we make use of:

2) Max-Heapify, is a technique to ensure that the parent has the largest value of the three. This
method takes as input a vector and an index I (from the vector). It checks if the parent (i) is
larger than its children, if this is the case nothing changes. If one child is larger the larger
child and the parent swaps place and the child becomes the parent and vice versa. Are both
children larger than the parent the largest child becomes the parent. After exchange, the
previous parent is now a child, the method continuous to check if the new child is a parent
of the next set of nodes and the Max-Heapify is run again.

MAX-HEAPIFY(ARRAY,i)Error! Bookmark not defined.

1 L ← LEFT(i)
2 R ← RIGHT(i)
3 if L ≤ size[array] and array[L] > array[i]
4 then largest ← L
5 else largest ← i

5 Implementation into JAVA
Alexander Tureczek

23

6 if r ≤ size[array] and array[R] > array[largest]
7 then largest ← R
8 if largest ≠ i
9 then exchange array[i] ↔ array[largest]
10 MAX-HEAPIFY(A,largest)

After the execution of Max-Heapify one just needs to remove the root of the tree and run
max-heapify for the entire length of the vector.

3) Build-Max-Heap, is used to sort the vector. Using one half for loop to investigate the entire
vector placing the largest element in the root of the tree, removing it, and building the tree
again. This in turn sorts the entire vector.

Build-Max-Heap(array)Error! Bookmark not defined.
1 size(array) ← length(array)
2 for I ← ray]/2)length([ar downto 1

3 do MAX-HEAPIFY(ARRAY, i)

The Heap Sort algorithm uses one for-loop, which is only executed array.length/2 times. The
building of the binomial tree takes at most O(ln(n)) and happens when the last row in the tree is half
full, and hence there will be a complete recursion. In the worst case there are n calls to max-heapify
which gives an upper bound worst case running time of O()ln(nn). In comparison to SelectionSort
with 1000 observations in an array, Heap Sort will sort in 1000 * ln(1000) ≈ 6908 computations
instead of 1.000.000. Heap Sort gives a dramatic decrease in number of operations required to
calculate the median.

Finally we find the median of a sorted vector as one of two cases.

1) If the vector of n elements has an odd number of observations then (n+1)/2 gives the index
of the median.

2) If the vector of n elements has an even number of observations is the mean of n/2 + (n+2)/2.

The calculation of the median is used in many different aspects in this project. The sorting methods
are implemented in the JAVA class file called Sorting as two different methods taking as argument
an array. This method is not bound to the jAER filter and can be used to sort by just calling the
method.

5.2 Other classes and methods.
The JAVA implementation contains 5 further classes. These classes and there prime methods will
briefly be discussed.

The overall class in this filter is FaceTrack this class is an implementation of the MatLab script
face_mund, which controls the flow of the filter. In turn this class calls the other classes to get the

5 Implementation into JAVA
Alexander Tureczek

24

calculations. This class is also generating the array with x and y values for events. It includes
several small methods, the most important once being:

 resteFilter(); this resets the filter to the initial parameters, e.g. the face model is reset.

 Eventpacket <?> filterPacket(…); (generic) which is the method that generates the x and y
data arrays used for computation.

 processEvents (); this method is where the computation of the face and mouth is done,
calling other classes.

A very important class is FollowLED, this class is doing all computations regarding the LED
positions and tilt of the face. It uses 3 different methods:

 movLED(); is calculating the position of each LED and ensures this cannot move beyond as
specific number of pixels at each iteration. The method takes four parameters; LED x, y,
box_size. This method returns a float array with the new updated estimates of the position of
the LED, the precision of the variable has to be float as it includes a distance measure as
well.

 distance(); this method calculates the distance and is intended to be called from movLED. It
takes one parameter; LED, and returns a float.

 rotator(); is concerned with calculating the tilt of the face, from the LED estimates given in
movLED. It takes three parameters; LED, FACEdist, meanshape. It returns a float[][] array
with the updated landmarks for the face model.

To calculate the mouth the class Mund is used. This class only consists of one method which
calculates the entire mouth update, rotation and scaling

 RotateMouth(); is responsible for estimating the mouth. It takes five parameters; x, y, face
model, previous estimate of mouth, mouth boundary box. The method returns float[][] array
containing the x and y coordinates of the new mouth.

The initial model of the face and the mouth is contained in the class HorizontalFaceModel. It
consists of two methods:

 InitialFace(); which contains the face and mouth model in a float[][] array, which is returned
when called.

 FACEdist(); calculates the size of the face used for scaling to the LED, it takes as argument
a float[]][] array intentionally set to [8][2], the size of the face. It returns a float[][] array
with the distance between the first and last (8th) position.

To calculate the median of an array the filter uses the Descriptive class. It has one method;

5 Implementation into JAVA
Alexander Tureczek

25

Median(); which calculates the median of an array. It takes as input a float array, and returns a float
value. The deformation has not been implemented into java, since it did not make any significant
difference to the face.

Below is shown a graphic of the filter and the sequence of calls, the control flow seen in figure 5.1.

Figure 5.1 – Control flow in the jAER filter doing facetrack.

In figure 5.2 the GUI is seen, this is taken from the general jAER GUI

FaceTrack

Initialize

Getting data

Processing events

FollowLED

FollowLED

HorizontalFaceModel

Mund

MovLED

Rotator

FaceDist

mouthRotate

6 Computational Effort of filter
Alexander Tureczek

26

Figure 5.2 – The GUI of the filter, the filter is seen active, the read dots are
estimated landmarks of face and mouth. To the right is seen the toolbar with the
parameter the user can adjust, number of events before estimation, and size of LED
movement per iteration.

6 Computational Effort of filter
Most instructions done on a processing unit is done in discrete time. Initializing variables and
evaluating statements are fixed and dependent on the language used and the processor. The filter
that has been implemented in this project is no exception, but rather than evaluating every variable
declaration and statement we will focus on the computational expensive methods.

The filter is comprised of 6 different classes most of them include different methods, some are even
used several times. Below is shown a table with the different classes and what the expected running

6 Computational Effort of filter
Alexander Tureczek

27

time is. If stated “fixed” this means the running time is always the same and will be regarded as a
constant.

Class Running time
HorizontalFaceModel Fixed
Descriptive Fixed
FollowLED ---
Mund ---
Sorting n*ln(n)
FaceTrack Fixed

Table 6.1 – Running time of the different classes. “Fixed” means that the class is
always run the same number of times, and thus always runs a deterministic number
of operations.

What is really important is loops that are executed a random number of times, due to some
constraints. This is seen for instance in the Sorting class, where a list is sorted, is this list is already
sorted the sorting will be even faster than the stated worst case running time. We will look deeper
into the two classes from table 6.1 that has unknown running time.

FollowLED has one interesting method, which we will investigate:

 movLED, controls the movement of the LED. It takes as input the data array created in
FaceTrack that has the length n (defined by user). It has a for-loop running through the entire
array once to classify which observations are inside the LED boundary (maximum movement of
LED pr iteration). The loop takes time n, afterwards Sorting is called 4 times, to calculate two
sets (x, y) of medians. Each call to Sorting takes n*ln(n) time. Due to the nature of ln the
following is valid: ln(n) < 2*ln(n/2). Then the worst case happens when exactly half of the data

goes to each of the LED’s where it will be T =

2
ln

2
4

nn
. This method is clearly growing

faster than n, from the single loop in the method, and we just state that the running time for
movLED is upper bound to:

TmovLED =)(
2

ln
2

4 1cO
nn

 (1)

where O(c) is some constant containing the rest of the methods requirement. The assumption
about the data being concentrated around the 2 LEDs is not expected to happen that often, but
none the less is possible and when this constellation happens it cannot become slower to
calculate. The 2 last methods of FollowLED are done in fixed time.

 Mund only includes one method rotateMouth, calculating the entire mouth part of the model.
This method shares huge resemblance with the movLED and rotator combined. There are a
couple of loops in this method but the expensive part is when cell medians are calculated. This
operation is done 16 times (2 times for each cell), and with ref to movLED, this gives a worst
case scenario when all collected data fall inside the mouth region, and specifically so that each
cell gets exactly 1/8 of all data. This gives a running time of

TMund =)(
8

ln
8

16 2cO
nn

 (2)

6 Computational Effort of filter
Alexander Tureczek

28

Where O(c2) is a constant, including the loops. The filter makes in each iteration one call to each of
the methods movLED and rotateMouth giving a total worst case running time of:

Ttotal = TMund + TmovLED =)(
8

ln
8

16 2cO
nn

 +)(

2
ln

2
4 1cO

nn

Pulling 4 outside the parenthesis

 =)(
2

ln
28

ln
8

44 CO
nnnn

Multiplying 4 into the first parenthesis

=)(
2

ln
28

ln
2

4 CO
nnnn

Pulling n/2 outside the inner parenthesis

=)(
2

ln
8

ln
2

4 CO
nnn

Simplifying using ln(a) + ln(b) = ln(a*b)

=)(
16

ln
2

4
2

CO
nn

Multiplying 4 into the parenthesis

Ttotal =)(
16

ln
2

CO
n

n

 (3)

Which is the final upper bound running time for the worst case scenario, there is one problem
though, in this analysis we didn’t look into the fact that the data is either used for (1) or (2).
Meaning this upper bound will never be reached, but (1) or (2) is likely to be experienced.
This has shown that the filter has a worst case running time when the sorting algorithm is used on
the entire collected data. Also it underlines the importance of the implementation of HeapSort as
preference above the likewise implemented SelectionSort with running time of n2 each call, which
would have been much more expensive. The filter and the MatLab script was easily run on a
standard IBM T41, with Pentium M 1600 MHz, and 1 Gb of ram.

7 Ideas for future work:
Alexander Tureczek

29

7 Ideas for future work:

This project has just briefly looked into the nature of event based data used in a framework of
statistical image analysis. Though this report shows the thing I tried there are still some open
questions that I didn’t find the answer for:

Inward deformation:

The face has been implemented in MatLab to deform in any direction, this is probably not very
reasonable since the LEDs, used for positioning the model, is set on glasses, this would mean the
face is a bit smaller than the LED actually dictate and hence the face should be brought to deform
inward only. This was very briefly looked into but deemed to time consuming. Doing this would
probably give a better fit of the deformation and even allowing the model to be dynamically
updated, without drifting as shown in XX6.

More stable LED estimate, possibly using PDF:

I was unable to stabile detect the LED, and thus imposed constraints on how far it could per
iteration, this comes from the problem described in the section “identifying the LED”. It would
probably be possible to estimate the LED better, incorporating the PDF of the LED and thus
knowing more about the movement.

Value of each event (+/-)
Looking into the information of the value of each event (+/-) could probably improve the model, but
exactly how to weight the value from each event in the data vector was not something I could grasp.
And as previously stated, it didn’t immediately seem useful in for the model.

Use of inertia between events
Especially for the mouth it would be interesting to see if a better estimate on the movement could be
made using inertia of the pixels. This would enable the model to know where the lips are heading,
e.g. opening or closing the mouth, and thus leading to a better estimate of the mouth.

8 Conclusion
Alexander Tureczek

30

8 Conclusion
This project has been difficult because of its outer shell belonging to image analysis, but in fact it
has little to do with frame based analysis, even sequential frame based is not equal, this is images on
event basis and in a series. There is very little apparent similarity between these fields, thus has
much of my work been to grasp the new kind of data this was, and trying to work with them.

It was possible to identify an alternating LED light in an event stream from the camera via medians
and through this estimate the position of a face. Though the estimated position of the LED first
became stabile when setting constraints on the movement per iteration. Using an initial guess for the
LED it was then possible to track two LED and use them as waypoints for the face. This gave us a
reasonably good estimate and face track, that was usable to locate the face for/of the user.

Using ASM on the event based data to deform the face was not successfully achieved. When trying
to deform the model, it started drifting only bound to the two LEDs. Constraining the deformation
to be reset after each iteration over an event stream (e.g. n = 1000) it proved to be stable but with
little effect as the data were too scarce distributed over the entire sensor.

Using the LED and the face shape, it was possible to estimate the position of the mouth, using a
minimum boundary box (MBB) the mouth could be estimated and in MBB, a cell structure was
used to calculate each landmark independently. The mouth deformation was done using only
medians in each cell and not AAM due to the lack of success from the face. The result was very
successful and the mouth was able to reasonably deform into open and closed, though with some
errors. Especially when there is movement in the face the mouth will be deformed by accident due
to the nature of the implementation.

Even when using event streams of 1000 events, the data in small areas become very scarce, making
statistics very difficult. Finding an optimal length was not investigated and the implementation lets
the user define it.

The two models were implemented into JAVA to run approximately real time, using a buffer. The
implementation was focused on making the code more efficient that the draft from MatLab, this was
achieved through stricter declaration of variables, and fewer loops. To calculate the median of this
buffer an implementation of HeapSort was made, making the sorting of large arrays very efficient.

The analysis of the running time of the jAER filter showed that the most expensive part of the filter
is the frequent sorting of data, this in terms justifies the implementation of the Heap sort algorithm
making the sorting of n number go from n2 to n*ln(n). The filter and the MatLab scripts run without
any problems on a standard pc with a Pentium M 1600 MHz and 1 Gb of ram.

To try the demo supplied with this project, refer to appendix A, and the read me.txt in the COGAIN
folder of the supplied code.

9 Acknowledgement, in random order
Alexander Tureczek

31

9 Acknowledgement, in random order

I would like to thank Tobi Delbruck for his advice and good ideas. For his great patience trying to
teach me JAVA, and all the cool tricks, I’m sure some of it will stick, thanks

Also I would like to thank INI for letting me in and making me fell welcome, and for using their
equipment, all in all being a very friendly institute.

I would like to thank EU/COGAIN for grants regarding my stay in Zürich

Finally I’d like to thank Bjarne K. Ersbøll for directing my attention towards this project, contacts
with EU/COGAIN, and for good ideas and advice and believing in me. And finally for cheerful
mails, keeping my head up high when the project seemed to far out of reach, thanks

10 Bibliography:
Alexander Tureczek

32

10 Bibliography:

Statistical shape models/Active appearance models:

[1] T.F Cootes and C.J. taylor; Statistical Models of Appearance for Computer Vision,
University of Manchester, March 8, 2004.

[2] Ian L. Dryden and Kanti V. Mardia; Statistical Shape Analysis; Wiley

MatLab programming:

[3] Amos Gilat; MatLab, An Introduction with applications, 2nd ed. Wiley,
ISBN 0-471-69420-7

JAVA implementation and algorithms:

[4] T. H. Cormen, et al; Introduction to algorithms, 2nd ed. MIT press, ISBN 0-262-53196-8

[5] Bruce Eckel; Thinking in JAVA, 9th ed. Prentice Hall, ISBN 0-13-027363-5

[6] Lewis et al; Java, software solutions, 3rd ed. Addision-Wesley, ISBN 0-201-78129-8

Mathematics:

[7] E. Kreyszig; Advanced engineering mathematics, 8th ed. Wiley, ISBN 0-471-33328-X

[8] H. Madsen; Time series analysis, Kgs. Lyngby 2001, lecture notes.

11 Appendix A: Script for running the different MatLab codes.
Alexander Tureczek

33

11 Appendix A: Script for running the different MatLab codes.

11.1COGAINdemo.m

%This script is intended for demonstration of the COGAIN facetrack project
%done by Alexander Tureczek in the fall of 07 and spring of 08. In each of
%the demos the user can tweak around with the parameters to see the effect.
% The parameters that can be altered are marked with a start under them.

%@Alexander Tureczek
clear all

%In order to run the demo, one of the below datasets has to be uncommented,
%e.g. remove the "%" in front of the name.
disp('Welcome to the deomostration of the Silicon retina face track project,')
disp('In the following 4 different demos will be displayed one by one, after')
disp('each demo you will have the choice to see it again. It has to be stated')
disp('that due to the amount of choices the user has in this demo, errors
might')
disp('be encountered, if so please restart the demo with new inputs.')
disp('Press enter to continue.')
disp(' ')
disp('Alexander Tureczek, june 08')
input(' ')
clc

disp('Choose your test data, options 1-5, Default is 2 kHz')
disp(' ')
disp('1: 300kHz data with 2 led')
disp('2: 500kHz data with 2 led')
disp('3: 1000Hz data with 2 led')
disp('4: 1500Hz data with 2 led')
disp('5: 2000Hz data with 2 led')
disp(' ');
data=input('Please make a choice: ')

if data==1
 [allAddr]=loadaerdat('C:\COGAIN\data\2LED300Hz.dat');
elseif data==2
 [allAddr]=loadaerdat('C:\COGAIN\data\2LED500Hz.dat');
elseif data==3
 [allAddr]=loadaerdat('C:\COGAIN\data\2LED1000Hz.dat');
elseif data==4
 [allAddr]=loadaerdat('C:\COGAIN\data\2LED1500Hz.dat');
else data==5
 [allAddr]=loadaerdat('C:\COGAIN\data\2LED2000Hz.dat');
end

[x,y,pol]=extractRetina128EventsFromAddr(allAddr);

%face_mund is the annotated model that has been used throughout the
%project.
load 'C:\COGAIN\Model\face_mund';

11 Appendix A: Script for running the different MatLab codes.
Alexander Tureczek

34

%Sets the pause between the iteractions in seconds.
disp(' ');
disp('Choose the pause between model update in seconds. recommended is 0.0001,
')
ppause=input('to get a smooth demonstration: ');
disp(' ')
disp('Choose the size of the LED movement box (value set in pixel), 5 is')
LEDsize=input('recommended. WARNING: A TOO HIGH VALUE MIGHT CHRASH THE PROGR: ')
clc

R=1;
while R==1
 disp('%--')
 disp('% ')
 disp('% Demo 1: tracking the face and mouth, no deformation of face ')
 disp('% ')
 disp('%--')

 face_mund(x, y, 1, 1000, faces, LEDsize, 3, ppause)
 % * * * *
 R=input('press 1 to see the demo again, press something else to continuoue
the demo')
end
clc

%Loading new model.
load 'C:\COGAIN\Model\omrids';
R=1;
while R==1
 disp('%--')
 disp('% ')
 disp('% Demo 2: tracking the face, deformation of face, resetting the ')
 disp('% face at each iteration. ')
 disp('% ')
 disp('%--')

 figure

 face_mund_deform(x, y, 1, 1000, faces, LEDsize, 3, ppause)
 % * * * *
 R=input('press 1 to see the demo again, press something else to continuoue
the demo')
end
clc

R=1;
while R==1
 disp('%--')
 disp('% ')
 disp('% Demo 3: tracking the face, deformation of face, using estimate ')
 disp('% for next iteration. ')
 disp('% ')
 disp('%--')

 figure
 face_mund_deform_dynamic(x, y, 1, 1000, faces, LEDsize, 3, ppause)
 % * * * *

11 Appendix A: Script for running the different MatLab codes.
Alexander Tureczek

35

 R=input('press 1 to see the demo again, press something else to continuoue
the demo')
end
clc

disp('%--')
disp('% ')
disp('% Demo 4: tracking the face, deformation of face, using estimate ')
disp('% for next iteration, with overlap of 500 events ')
disp('% ')
disp('%--')

figure
face_mund_deform_dynamic2(x, y, 1, 1000, faces, LEDsize, 3, ppause)
% * * * *
disp('End of DEMO')

1

12 Appendix B: Important MatLab code
Alexander Tureczek

36

12 Appendix B: Important MatLab code

12.1face_mund.m

% Facetracking function.
%Load omrids (faces)
%Load data from retina. (x,y)
%using retinaload.m
%specify the interval length; j, k.

function [hori_meanS]=face_mund(x, y, j, k, faces, box_size, box_size2, min_obs)

%initializing the meanshape, and rotating the meanshape
[meanshape, loadings]=meancent(faces);
[hori_meanS, FACEdist]=rotation(meanshape);

%Defines the border landmarks for the faces excluding the mouth.
face_end=8;

%Width of the face, between the left and right ear.
FACEdist=sqrt(real(hori_meanS(face_end)-
hori_meanS(1))^2+imag(hori_meanS(face_end)-hori_meanS(1))^2);

%used to calculate the increments in the
dif=k-j;

%finding out how many iterations to do.
[m, n]=size(x);

%Not a hole number, thus we end up missing something in the end!?!?!
iter=floor(m/(k-j));

%initial LED identification. This belongs inside the for-loop IF the
%approximation script movLED is not to be used!!!
%[LED1, LED2, LEDist]=LED2id(x,y,j,k)

 LED1=[35,80];
 LED2=[105,80];
 LEDist=(LED2(2)-LED1(2));

%adding the boundary of the mouth to the model.
m=hori_meanS(9:end);
x_add=min(real(m))-0.12;
y_add=min(imag(m))+0.42;
plist1=[complex((min(real(m))-x_add),(min(imag(m))-y_add))];
plist2=[complex((max(real(m))+x_add),(min(imag(m))-y_add))];
plist3=[complex((max(real(m))+x_add),(max(imag(m))+y_add))];
plist4=[complex((min(real(m))-x_add),(max(imag(m))+y_add))];
box_om_mund=[plist1;plist2;plist3;plist4;plist1];
hori_meanS = [hori_meanS;box_om_mund];%
new_mouth=hori_meanS(face_end+1:end-5);

for i=1:iter
 %identifying the position of the LED
 %---- Here is the place where LED2id should be copied in IF LEDmov is

12 Appendix B: Important MatLab code
Alexander Tureczek

37

 %canceled!! ----

 %plotting of the previous LED estimates. Colour used is black
% plot(LED1(1),LED1(2),'ok' ,'linewidth', 3);
% hold on
% plot(LED2(1),LED2(2),'ok' ,'linewidth', 3);

 %Estimation of the movement of the LED since previous iteration.
 [LED1, LED2, LEDist]=movLED(LED1,LED2, x(j:k), y(j:k), box_size);

 %Estimating the face size and position.
 [hori_meanS, FACEdist]=rotator(LED1, LED2, LEDist, FACEdist, hori_meanS);

 %Estimating the updated model from data.
 %[m_update]=mupdate(LED1, LED2, hori_meanS, x(j:k), y(j:k), loadings(:,1:3),
box_size2);

 %Investigating the mouth
 [new_mouth]=mund_rotering(x(j:k),y(j:k),hori_meanS,new_mouth);

 %plotting the data interval
 plot(x(j:k),y(j:k),'.');
 hold on
 %plotting the model on top of the data.
 plot(hori_meanS(1:face_end),'-r');
 plot(hori_meanS(end-4:end),'-k');
 %[mouth_up, hori_meanS(face_end+1:end)];

 plot(new_mouth,'-k')
 %plot(m_update,'-k');
 axis([0,140,0,140]);
 %plot(hori_meanS(face_end+1:end-5),'-r');

 plot(LED1(1),LED1(2),'or' ,'linewidth', 3);
 plot(LED2(1),LED2(2),'or' ,'linewidth', 3);

 [LED1, LED2];
 title('LED identification, 1000 obs. LED box-width = 5')
 xlabel('X-coordinate')
 ylabel('Y-coordinate')

 %updating the model.
 TEST=hori_meanS;
 hori_meanS=complex(real(hori_meanS)-LED1(1),imag(hori_meanS)-LED1(2));
 j=j+dif+1;
 k=k+dif+1;
 hold off
 %hist(x(j:k));
 pause(0.00001);

 %Uncoment if face deformation is done through mupdate.
 %hori_meanS=m_update;
 %hori_meanS=complex(real(hori_meanS)-LED1(1),imag(hori_meanS)-LED1(2));
end

12 Appendix B: Important MatLab code
Alexander Tureczek

38

12.2meancent.m

%mean centering of shapes
%Using procrustes analysis to calculate the average shape after centering
%of shapes.
%
%mc = mean centering! not standardizing
function [meanshape, loadings, allign]=meancent(faces)

[m,n]=size(faces);

for i=1:n
 mc(:,i)=(faces(:,i)-mean(faces(:,i)))/std(faces(:,i));
end

%formula 3.9 p.44 [1]
z2=conj(mc(:,:))/norm(mc(:,:));
z=mc(:,:)/norm(mc(:,:));
zz=z*z2';

[vec, val]=eigs(zz);

% %Mean shape plot
% plot(vec(:,1),'r', 'linewidth', 5)
meanshape=vec(:,1);

%alligning all shapes to meanshape.
for j=1:n
 meanallign(:,j)=(conj(mc(:,j))'*meanshape*mc(:,j))/(conj(mc(:,j))'*mc(:,j));
end

allign=meanallign;

%Converting back to real numbers, to calculate dispersion matrix.
%Alligned shapes
xa=real(meanallign);
ya=imag(meanallign);
areal=[xa;ya];

%Meanshape
xm=real(meanshape);
ym=imag(meanshape);
mreal=[xm; ym];
[a,b]=size(mreal);

%calculating the difference from mean to alligned!
for i=1:n
 aresm(:,i)=(areal(:,i))-mreal;
end

%dispersion matrix
disp=(1/(n-1))*aresm*aresm';

%principal component analysis on the dispersion
[loadings, variance, explained]=pcacov(disp);

for j=1:n
pct(j)=sum(explained(1:j));

12 Appendix B: Important MatLab code
Alexander Tureczek

39

end

%--
%--
%
% Plotting of Principal components
%
%--
%--

% %Plotting of the variance explanation.
% figure
% plot(pct)
% hold on
% bar(explained)

% %Subplotting with the effect of the first 3 eigenvectors on the meanshape.
% %subplot(height, width, number)
% figure
%
% %first row
% [q,w]=size(mreal);
%
% subplot(3,3,1),
% mode1=[mreal+3*sqrt(variance(1))*loadings(:,1),mreal-
3*sqrt(variance(1))*loadings(:,1)];
% mode2=[mreal+3*sqrt(variance(2))*loadings(:,2),mreal-
3*sqrt(variance(2))*loadings(:,2)];
% mode3=[mreal+3*sqrt(variance(3))*loadings(:,3),mreal-
3*sqrt(variance(3))*loadings(:,3)];
%
% %First row of plots
% plot(mode1(1:(q/2),2),mode1((q/2+1):end,2))
% title('-3 std.')
% ylabel('1. eigenvector')
% axis([-1,1,-0.5,0.5])
% subplot(3,3,2), plot(meanshape)
% title('Meanshape')
% axis([-1,1,-0.5,0.5])
% subplot(3,3,3),
% plot(mode1((1:(q/2)),1),mode1(((q/2+1):end),1))
% title('+3 std')
% axis([-1,1,-0.5,0.5])
%
% %second row
% subplot(3,3,4), plot(mode2(1:(q/2),2),mode2((q/2+1):end,2))
% ylabel('2. eigenvector')
% axis([-1,1,-0.5,0.5])
% subplot(3,3,5), plot(meanshape)
% axis([-1,1,-0.5,0.5])
% subplot(3,3,6), plot(mode2((1:(q/2)),1),mode2(((q/2+1):end),1))
% axis([-1,1,-0.5,0.5])
%
% %Third row
% subplot(3,3,7), plot(mode3((1:(q/2)),2),mode3(((q/2+1):end),2))
% ylabel('3. eigenvector')
% axis([-1,1,-0.5,0.5])
% subplot(3,3,8), plot(meanshape)
% axis([-1,1,-0.5,0.5])

12 Appendix B: Important MatLab code
Alexander Tureczek

40

% subplot(3,3,9), plot(mode3((1:(q/2)),1),mode3(((q/2+1):end),1))
% axis([-1,1,-0.5,0.5])

meanshape=meanshape;

% [1] Statistical shape analysis, Ian L. Dryden et al. (course note)

12 Appendix B: Important MatLab code
Alexander Tureczek

41

12.3Rotation.m

%This function rotates the meanshape to an angle where the face is in
%vertical (normal position). Uses polar coordinates to rotate.

function [hori_meanS, FACEdist, r]=rotation(meanshape)

%Translation to center around upper left landmark
hori=meanshape-meanshape(1);

%Defines the border landmarks for the faces excluding the mouth.
face_end=8;

%vector of angles
ang=angle(hori);

%Calculating the radian between the upper left landmark and upper right
%landmark (principal angle = difference between upper left and right
%landmark)
ang=[0;ang(2:end)-ang(face_end)];

new_ang=2*pi+ang;

%calculating the argument of the points
r=sqrt(real(hori).^2+imag(hori).^2);

%Creating the complex xy notation from the polar
new_real=r.*cos(new_ang);
new_imag=r.*sin(new_ang);

%Horizontal meanshape
hori_meanS=complex(new_real,new_imag);

%calculating the size of the model, used for scaling with the true data from
retina;
FACEdist=real(hori_meanS(face_end));

12 Appendix B: Important MatLab code
Alexander Tureczek

42

12.4LED2id.m (NOT USED, but works)

%Function for estimating the position of the LED

%function [LED1, LED2, LEDist]=LED2id(x,y,j,k)

%------------------------
%-------- X-axis --------
%------------------------
x=x(j:k)
x_new=sort(x);

%Identifying the position of the left median and the right median
%Left median
medL=length(x_new)/4
%Right median
medR=3*length(x_new)/4

%Value of left median in x coordinate
medLx=x_new(medL);
%Value of right median in y coordinate
medRx=x_new(medR);

%------------------------
%-------- Y-axis --------
%------------------------
y=y(j:k);

mLy=find(x==medLx);
mRy=find(x==medRx);

medLy=median(y(mLy));
medRy=median(y(mRy));

LED1=[medLx medLy];
LED2=[medRx medRy];

LEDist=sqrt((medRx-medLx)^2+(medRy-medLy)^2);

12 Appendix B: Important MatLab code
Alexander Tureczek

43

12.5movLED.m

%Method for restraining the movement of the LED for each Iteration.

function [LED1u, LED2u, LEDist]=movLED(LED1,LED2, x, y, box_size)

%Find all the maximum allowed movement for x1.
LED1x=(x>=LED1(1)-box_size & x<=LED1(1)+box_size);

%Estimate the x1 position of LED1
est_LED1x=median(x(LED1x));

%finding the maximum allowed movement for y1 for LED1
y_int1=(x>=LED1(1)-box_size & x<=LED1(1)+box_size); %dobbelt konfekt!!!
est_y1=(y(y_int1));
%Finding all y's in the allowed interval
LED1y=(est_y1>=LED1(2)-box_size & est_y1<=LED1(2)+box_size);

%finding the median of the y1
est_LED1y=median(est_y1(LED1y));

LED1u=round([est_LED1x, est_LED1y]);

%------------------------------
% Doing the same for the LED2

%Find all the maximum allowed movement for x1.
LED2x=(x>=LED2(1)-box_size & x<=LED2(1)+box_size);

%Estimate the x1 position of LED1
est_LED2x=median(x(LED2x));

%finding the maximum allowed movement for y1 for LED1
y_int2=(x>=LED2(1)-box_size & x<=LED2(1)+box_size);
est_y2=(y(y_int2));

LED2y=(est_y2>=LED2(2)-box_size & est_y2<=LED1(2)+box_size);

%finding the median of the y1
est_LED2y=median(est_y2(LED2y));

LED2u=round([est_LED2x, est_LED2y]);

%---
%--------- Distance between LED ------------
%---
LEDist=sqrt((LED2(1)-LED1(1))^2+(LED2(2)-LED1(2))^2);

12 Appendix B: Important MatLab code
Alexander Tureczek

44

12.6Rotator.m

%function rotating the scaled FACE to the LEDs angle and translating into
%the face.

function [hori_meanS, FACEdist]=rotator(LED1, LED2, LEDist, FACEdist,
hori_meanS)

%--
% Angle Calculation
%--

%Calculating the slope between the LEDs on the glasses. and calculating the
%angle of the %face in radians. (deegree=(radians*180)/2*pi)
LED_slope=atan((LED2(2)-LED1(2))/(LED2(1)-LED1(1)));

%Defines the border landmarks for the faces excluding the mouth.
face_end=8;

%Model slope known from the previous fit. Using only the upper right and
%left landmarks to determine the angle of the face.
Model_slope=atan((imag(hori_meanS(face_end))-
imag(hori_meanS(1)))./(real(hori_meanS(face_end))-real(hori_meanS(1))));

%Calculating the difference between the model slope and the LED slope, to
%correct for movement since last update of model.
dif_slope=LED_slope-Model_slope;

%Angle of the landmarks of the face model
mod_ang=atan((imag(hori_meanS(2:end))-
imag(hori_meanS(1)))./(real(hori_meanS(2:end))-real(hori_meanS(1))));

%Check which solution to arctan is to be used, atan or atan+pi. The
%counting starts in 2 because hori_meanS has a zero element in (1) and is
%0ne element larger than mod_ang.
for i=2:length(hori_meanS);
 if real(hori_meanS(i))<0 && imag(hori_meanS(i))<0
 mod_ang(i-1)=mod_ang(i-1)+pi;
 end
end

%Calculating the new angle of the model by adding the difference between
%previous model and the new LED angle. And setting position (1)=0
new_ang=[0;(mod_ang+dif_slope)];

%calculating the argument of the points (landmarks)
r=sqrt(real(hori_meanS).^2+imag(hori_meanS).^2);

%Creating the complex xy notation from the polar
new_real=r.*cos(new_ang);
new_imag=r.*sin(new_ang);

%tilted meanshape
tilt_meanS=complex(new_real,new_imag);

%--
%after having found the angle of the face we calculate the scaling of the

12 Appendix B: Important MatLab code
Alexander Tureczek

45

%face.
%--

%Calculating the scaling factor.
s_fact=LEDist/FACEdist;

%Scaling the model to fit the 2 LEDs.
estimate=s_fact.*tilt_meanS;

%distance in real numbers
FACEdist=sqrt(real(estimate(face_end)-estimate(1))^2+imag(estimate(face_end)-
estimate(1))^2);

%the final tilted face model.
hori_meanS=complex(real(estimate)+LED1(1),imag(estimate)+LED1(2));

12 Appendix B: Important MatLab code
Alexander Tureczek

46

12.7mupdate.m

%Calculating better landmark positions from given data. Using the known
%landmark as an initial guess, and calculating new median for x and y.

function [m_update]=mupdate(LED1, LED2, hori_meanS, x, y, loadings, box_size2)

[n,m]=size(hori_meanS);

x_coor=real(hori_meanS);
y_coor=imag(hori_meanS);

%Setting the first and final position equal to the LED position
m_update(1)=complex(LED1(1,1), LED1(1,2));
m_update(n)=complex(LED2(1,1), LED2(1,2));

%Loop investigating every landmark for better position!
for i=2:n-1

 %interval of interest defined from hori_meanS
 x_int=(x>=x_coor(i)-box_size2 & x<=x_coor(i)+box_size2);

 %Securing that the x and y intervals in question are not empty
 if sum(x_int)==0
 est_x=x_coor(i);
 else
 %X coordinate of the landmark
 est_x=median(x(x_int));
 end

 %Identifying the Y interval and coordinate. First we find the relevant
 %Y's i.e. the y in the interval found above.
 y_relevant=y(x_int);

 %Investigating the Y's in the interval around the modellandmark. If
 %none it is set to the input value already known.
 y_int=(y_relevant>=y_coor(i)-box_size2 & y_relevant<=y_coor(i)+box_size2) ;

 if sum(y_int)==0
 est_y=y_coor(i);
 else
 %Y coordinate of the landmark
 est_y=median(y_relevant(y_int));
 end

 %Delivering the estimates in the same format at received in hori_meanS
 %(complex).
 m_update(i)=complex(est_x, est_y);

end

m_update

%The deformation via loadings can be removed by deleting the below listet
%code. The only m_update from above needs to be returned.

%Calculating the new model fit from the formula 4.4 and 4.5 from T.F. Cootes

12 Appendix B: Important MatLab code
Alexander Tureczek

47

%First finding the difference between the initial estimate and the updated.
x_diff=(real(m_update')-real(hori_meanS));
y_diff=(-1*imag(m_update')-imag(hori_meanS));
%mod_diff=complex(x_diff,y_diff);
mod_diff=[x_diff;y_diff];

%Inverting the loadings vector
t_load=transpose(loadings);

%calculating the model parameters. (4.5)
para=t_load*mod_diff;

meanshape=[real(hori_meanS);imag(hori_meanS)];

%Calculating the final updated model
m_update=meanshape+loadings*para;

m_update=(complex(m_update(1:n),m_update((n+1):(2*n))))

12 Appendix B: Important MatLab code
Alexander Tureczek

48

12.8mund_rotering.m

%functionen mangler stadig at blive at implementere et minimum for hvor
%mange observationer som skal til før en opdatering laves.

function [new_mouth]=mund_rotering(x,y,hori_meanS,mouth)

%Centering point 4, upper left, to 0,0
box=hori_meanS(end-4:end);
%box=box-box(4);

%Calculating the slope between point 3 and 4, to finde the rotaton of the box
box_slope=(imag(box(3))-imag(box(4)))/(real(box(3))-real(box(4)));
%%box_slope=acos()

%--
%
% rotation of the box, to become horisontal
%
%--

 %finding the slope of every point.
 r=sqrt(real(box).^2+imag(box).^2);
 %the following is done to prevent divide by zero error.
% r(4)=1;

 %Angle of point
 ang=acos(real(box)./r);
 %Setting the true value r and ang(4) to zero
% r(4)=0;
% ang(4)=0;

 %Investigating the solution to chose from the angle calculation.
% % for i=1:length(ang)
% % if imag(box(i))<0
% % ang(i)=-1*ang(i);
% % end
% % if real(box(i))<0
% % ang(i)=ang(i)+pi;
% % end
% % end

 %Subracting the difference between the angle and the slope
 new_ang=ang-box_slope;

 new_x=r.*cos(new_ang);
 new_y=r.*sin(new_ang);

 new_box=complex(new_x,new_y);

%--
%
% rotation of the data, to become horisontal
%
%--

 %finding the relevant data
 %Finde data i og lige omkring kassen omkrng munden.

12 Appendix B: Important MatLab code
Alexander Tureczek

49

 count=1;
 mbox=hori_meanS(end-4:end);
 mx=0;
 for i=1:1000
 if x(i)>=min(real(mbox)) && x(i)<=max(real(mbox))
 if y(i)>=min(imag(mbox)) && y(i)<=max(imag(mbox))
 mx(count)=x(i);
 my(count)=y(i);
 count=count+1;
 end
 end
 end

 if length(mx)>1
 % %Centering the data to the point box(4)=0,0
 % mx=mx-real(box(4));
 % my=my-imag(box(4));
 %
 %Calculating the angle of all data.
 rd=sqrt(mx.^2+my.^2);
 %the following is done to prevent divide by zero error.

 %FORMELT SKAL HER CHECKES OM NOGLE AF R = 0! FOR AT UNDGÅ DIVIDE WITH
 %ZERO.

 %Angle of point
 ang_d=acos(mx./rd);

 %Investigating the solution to chose from the angle calculation.
% for i=1:length(ang_d)
% if my<0
% ang_d(i)=-1*ang_d(i);
% end
% if mx<0
% ang_d(i)=ang_d(i)+pi;
% end
% end

 %Subracting the difference between the angle and the slope
 new_ang_d=ang_d-box_slope;

 new_xd=rd.*cos(new_ang_d);
 new_yd=rd.*sin(new_ang_d);

 new_data=complex(new_xd,new_yd);

% %Plot af før efter af rotation.
% plot(new_box)
% hold on
% plot(box,'r')
% plot(new_data,'.')
% plot(mx,my,'.r')

%--
%
% Identification of the mean/median
%
%--

12 Appendix B: Important MatLab code
Alexander Tureczek

50

 %Test using 1/4 equidistant.

 %Width of the box.
 width=max(real(new_box))-min(real(new_box));
 hight=max(imag(new_box))-min(imag(new_box));

 part1L=0;
 part2L=0;
 part3L=0;
 part4L=0;

 part1U=0;
 part2U=0;
 part3U=0;
 part4U=0;

 count1L=1;
 count2L=1;
 count3L=1;
 count4L=1;

 count1U=1;
 count2U=1;
 count3U=1;
 count4U=1;

 %Division of the boundary-box
 %--
 % | | | |
 % 1U | 2U | 3U | 4U |
 % | | | |
 %--
 % | | | |
 % 1L | 2L | 3L | 4L |
 % | | | |
 %--

 for i=1:length(new_data)
 if new_data(i)>min(real(new_box)) &&
new_data(i)<=min(real(new_box))+width/4;
 if imag(new_data(i))>min(imag(new_box)) &&
imag(new_data(i))<=min(imag(new_box))+hight/2;
 part1L(count1L)=new_data(i);
 count1L=count1L+1;
 end
 if imag(new_data(i))>min(imag(new_box))+hight/2 &&
imag(new_data(i))<=max(imag(new_box));
 part1U(count1U)=new_data(i);
 count1U=count1U+1;
 end
 end
 if new_data(i)>min(real(new_box))+width/4 &&
new_data(i)<=min(real(new_box))+2*width/4;
 if imag(new_data(i))>min(imag(new_box)) &&
imag(new_data(i))<=min(imag(new_box))+hight/2;
 part2L(count2L)=new_data(i);
 count2L=count2L+1;

12 Appendix B: Important MatLab code
Alexander Tureczek

51

 end
 if imag(new_data(i))>min(imag(new_box))+hight/2 &&
imag(new_data(i))<=max(imag(new_box));
 part2U(count2U)=new_data(i);
 count2U=count2U+1;
 end
 end
 if new_data(i)>min(real(new_box))+2*width/4 &&
new_data(i)<=min(real(new_box))+3*width/4;
 if imag(new_data(i))>min(imag(new_box)) &&
imag(new_data(i))<=min(imag(new_box))+hight/2;
 part3L(count3L)=new_data(i);
 count3L=count3L+1;
 end
 if imag(new_data(i))>min(imag(new_box))+hight/2 &&
imag(new_data(i))<=max(imag(new_box));
 part3U(count3U)=new_data(i);
 count3U=count3U+1;
 end
 end
 if new_data(i)>min(real(new_box))+3*width/4 &&
new_data(i)<=min(real(new_box))+width;
 if imag(new_data(i))>min(imag(new_box)) &&
imag(new_data(i))<=min(imag(new_box))+hight/2;
 part4L(count4L)=new_data(i);
 count4L=count4L+1;
 end
 if imag(new_data(i))>min(imag(new_box))+hight/2 &&
imag(new_data(i))<=max(imag(new_box));
 part4U(count4U)=new_data(i);
 count4U=count4U+1;
 end
 end
 end

 %Checking to see if there is enough observations in the different zones
 %of the boundary box. If a zone has fewer obs than the threshold
 %min_obs requires then the zone is not updated and the previous
 %estimate is used. The funny way of counting is due to mouth being
 %defined from right to left, hvile box calculations are done from left
 %to right :s

% %endpoints
% if length(part1L)+length(part1U)<min_obs
% part1L=mouth(1);
% part1U=mouth(1);
% end
% if length(part4L)+length(part4U)<min_obs
% part4L=mouth(4);
% part4U=mouth(4);
% end
% Midpoints (lower)

flag1l=0;
flag1u=0;
flag2l=0;
flag2u=0;

12 Appendix B: Important MatLab code
Alexander Tureczek

52

flag3l=0;
flag3u=0;
flag4l=0;
flag4u=0;

if part1L==0
 part1L=mouth(1);
 flag1l=1;
end
if part1U==0
 part1U=mouth(1);
 flag1u=1;
end
if part2L==0
 part2L=mouth(6);
 flag2l=1;
end
if part2U==0
 part2U=mouth(2);
 flag2u=1;
end
if part3L==0
 part3L=mouth(5);
 flag3l=0;
end
if part3U==0
 part3U=mouth(3);
 flag3u=0;
end
if part4L==0
 part4L=mouth(4);
 flag4l=1;
end
if part4U==0
 part4U=mouth(4);
 flag4u=1;
end

 % % % %--
 % % % %
 % % % % MEAN
 % % % %
 % % % %--
 % % %
 % % % %Left and right side of mouth.
 % % % part1=mean([part1L,part1U]);
 % % % part4=mean([part4L,part4U]);
 % % %
 % % % %Lower lips.
 % % % part2L=mean(part2L);
 % % % part3L=mean(part3L);
 % % %
 % % % part2L=complex(real(part2L),mean([imag(part2L),imag(part3L)]));
 % % % part3L=complex(real(part3L),mean([imag(part2L),imag(part3L)]));
 % % %
 % % % %Upper lips.

12 Appendix B: Important MatLab code
Alexander Tureczek

53

 % % % part2U=mean(part2U);
 % % % part3U=mean(part3U);
 % % %
 % % % part2U=complex(real(part2U),mean([imag(part2U),imag(part3U)]));
 % % % part3U=complex(real(part3U),mean([imag(part2U),imag(part3U)]));
 % % %
 % % % lipplot=[part1, part2L, part2U, part3L,part3U, part4];
 % % %
 % % % plot(lipplot,'^')

 %--
 %
 % MEDIAN
 %
 %--

 %Upper lip.
 part2U=complex(median(real(part2U)),median(imag(part2U)));
 part2L=complex(median(real(part2L)),median(imag(part2L)));
 %
 part2x=median([real(part2U),real(part2L)]);

 %Lower lip
 part3U=complex(median(real(part3U)),median(imag(part3U)));
 part3L=complex(median(real(part3L)),median(imag(part3L)));
 part3x=median([real(part3U),real(part3L)]);

 %Final estimate of the lips, after averaging over x and y.
 part2LL=complex(part2x,median([imag(part2L),imag(part3L)]));
 part3LL=complex(part3x,median([imag(part2L),imag(part3L)]));

 part2UU=complex(part2x,median([imag(part2U),imag(part3U)]));
 part3UU=complex(part3x,median([imag(part2U),imag(part3U)]));

 %Left and right side of mouth.
 part1Ua=complex(median(real(part1U)),median(imag(part1U)));
 part1La=complex(median(real(part1L)),median(imag(part1L)));

part1=complex(mean([real(part1Ua),real(part1La)]),mean([imag(part1Ua),imag(part1
La)]));

 part4Ua=complex(median(real(part4U)),median(imag(part4U)));
 part4La=complex(median(real(part4L)),median(imag(part4L)));

part4=complex(mean([real(part4Ua),real(part4La)]),mean([imag(part4Ua),imag(part4
La)]));

 lipplot=[part1, part2LL, part3LL, part4, part3UU, part2UU];

 %--
 %
 % Rotation of the mouth to initial tilt
 %
 %--

 %finding the slope of every point.
 rm=sqrt(real(lipplot).^2+imag(lipplot).^2);

12 Appendix B: Important MatLab code
Alexander Tureczek

54

 %Angle of point
 ang_m=acos(real(lipplot)./rm);

% %Investigating the solution to chose from the angle calculation.
% for i=1:length(ang_m)
% if imag(lipplot(i))<0
% ang_m(i)=-1*ang_m(i);
% end
% if real(lipplot(i))<0 && imag(lipplot(i))<0
% ang_m(i)=ang_m(i)+pi;
% end
% end

 %Subracting the difference between the angle and the slope
 new_ang_m=ang_m+box_slope;

 new_xm=rm.*cos(new_ang_m);
 new_ym=rm.*sin(new_ang_m);

 new_mouth=complex(new_xm,new_ym);
 new_mouth(7)=new_mouth(1);

 if flag1l==1
 new_mouth(1)=part1;
 new_mouth(7)=part1;
 end
 if flag1u==1
 new_mouth(1)=part1;
 end
 if flag2l==1
 new_mouth(6)=part2LL;
 end
 if flag2u==1
 new_mouth(2)=part2UU;
 end
 if flag3l==1
 new_mouth(5)=part3LL;
 end
 if flag3u==1
 new_mouth(3)=part3UU;
 end
 if flag4l==1
 new_mouth(4)=part4;
 end
 if flag4u==1
 new_mouth(4)=part4;
 end
else
 new_mouth=mouth;
end

13 Appendix C: jAER java Filter code
Alexander Tureczek

55

13 Appendix C: jAER java Filter code

13.1Descriptive
 1 /* Descriptive.java
 2 *
 3 * Created on 14. april 2008, 14:42
 4 *
 5 * @Author: Alexander Tureczek
 6 *
 7 * This class implements descriptive statistics. takes as input a list and
 8 * returns a float number, containing the median of the list.
 9 */
10
11 package ch.unich.ini.caviar.face_track;
12
13 public class Descriptive {
14
15 public Descriptive(){}
16
17 //this is used to calculate the median of a list.
18 public float Median(float[] list)
19 {
20 float median = list.length;
21 short index=0;
22
23
24 //if the list is even length
25 if (median%2==0)
26 {
27 median = (float) list[(list.length/2)-1];
28 median = (float) list[(list.length/2)]+median;
29 median = median/2;
30 }
31 //if the list is odd length
32 else
33 {
34 index = (short) ((list.length + 1) / 2 - 1);
35 median = (short) list[index];
36 }
37
38 return (float) median;
39 }
40 }

13 Appendix C: jAER java Filter code
Alexander Tureczek

56

13.2FaceTrack
 1 /* FaceTrack.java
 2 *
 3 * Created on 14. april 2008, 18.03
 4 *
 5 * @Author: Alexander Tureczek
 6 *
 7 * This class is controlling the flow of the filter, and initializing all
 8 * variables and setting the GUI values. Also used to collect the data from
the
 9 * silicon retina.
 10 *
 11 */
 12
 13
 14 package ch.unich.ini.caviar.face_track;
 15
 16 import ch.unizh.ini.caviar.chip.*;
 17 import ch.unizh.ini.caviar.chip.AEChip;
 18 import ch.unizh.ini.caviar.event.*;
 19 import ch.unizh.ini.caviar.event.EventPacket;
 20 import ch.unizh.ini.caviar.eventprocessing.EventFilter2D;
 21 import java.util.*;
 22 import java.lang.Math.*;
 23 import ch.unizh.ini.caviar.eventprocessing.*;
 24 import ch.unizh.ini.caviar.eventprocessing.filter.SubSampler;
 25 import ch.unizh.ini.caviar.graphics.FrameAnnotater;
 26 import ch.unizh.ini.caviar.util.VectorHistogram;
 27 import java.awt.Graphics2D;
 28 import java.awt.geom.Point2D;
 29 import javax.media.opengl.GL;
 30 import javax.media.opengl.GLAutoDrawable;
 31
 32
 33 public class FaceTrack extends EventFilter2D implements FrameAnnotater,
Observer {
 34
 35 //final int NEVENTS = 1000;
 36 protected int NEVENTS = getPrefs().getInt("NEVENTS", 1000);
 37 {setPropertyTooltip("NEVENTS","Number of events to buffer before
updating the model");}
 38
 39 protected int LEDBOX = getPrefs().getInt("LEDBOX",5);
 40 {setPropertyTooltip("LEDBOX","Sets the size of the allowed movement of
LED");}
 41
 42 //Collecting data in two vectors x and y.
 43 int[] x_data = new int[NEVENTS];
 44 int[] y_data = new int[NEVENTS];
 45 float[] LED = new float[5];
 46 float[] LEDold = new float[5];
 47 //float[][] hori_meanS = new float[8][2];
 48 float f_dist;
 49 float[][] new_hori = new float[20][2];
 50 float[][] pre_mouth = new float[7][2];
 51 float[][] mouth_boundary = new float[5][2];

13 Appendix C: jAER java Filter code
Alexander Tureczek

57

 52 int face_end = 7; //Face has 8 landmarks but JAVA counts from 0.
 53
 54 //Constructor.
 55 public FaceTrack(AEChip chip) {
 56 super(chip);
 57 initFilter();
 58 resetFilter();
 59 }
 60
 61 @Override
 62 public Object getFilterState() {
 63 return null;
 64 }
 65
 66 //Resetting the filter, is only done when the filter is initialized.
 67 @Override
 68 public void resetFilter() {
 69 //Defining variables used by the filter
 70
 71 //initializing the face model.
 72 HorizontalFaceModel model = new HorizontalFaceModel();
 73 float[][] face =(float[][]) model.InitialFace();
 74
 75 //calculating the size of the face model, used for scaling to the
LED.
 76 HorizontalFaceModel dist = new HorizontalFaceModel();
 77 f_dist =(float) dist.FACEdist(face);
 78
 79 //initial guess of the LED, calculated in matlab.
 80 int[] LED1 = {35, 80};
 81 int[] LED2 = {105, 80};
 82
 83 //Calculating the distance between the LED
 84 int x = (int) ((LED2[0] - LED1[0]) * (LED2[0] - LED1[0]));
 85 int y = (int) ((LED2[1] - LED1[1]) * (LED2[1] - LED1[1]));
 86 //calculation of distance using standard foormula.
 87 float LEDdist = (float) Math.sqrt(x+ y);
 88
 89 LEDold[0] = LED1[0];
 90 LEDold[1] = LED1[1];
 91 LEDold[2] = LED2[0];
 92 LEDold[3] = LED2[1];
 93 LEDold[4] = (float) LEDdist;
 94
 95 //Defining the boundary of the mouth. the boundary points are
surrounding
 96 //the mouth, that is the 7 last observations in hori_meanS.java
 97 float minx = face[8][0];
 98 float miny = face[8][1];
 99 float maxx = face[8][0];
100 float maxy = face[8][1];
101
102 for (int i = 8; i < face.length; i++) {
103 //finding minimum for the bounadary box around the emouth.
104 if (face[i][0] < minx) {
105 minx = face[i][0];
106 }
107 if (face[i][1] < miny) {
108 miny = face[i][1];

13 Appendix C: jAER java Filter code
Alexander Tureczek

58

109 }
110 //finding maximum for the bounadary box around the emouth.
111 if (face[i][0] > maxx) {
112 maxx = face[i][0];
113 }
114 if (face[i][1] > maxy) {
115 maxy = face[i][1];
116 }
117 }
118
119 // ---
120 //
121 // Check disse udregninger igen, jeg kan ikke gennemskue dem
122 //
123 // ---
124 float x_add = (float) (minx - 0.12);
125 float y_add = (float) (miny + 0.42);
126
127
128 //X-coordinates of the boundary box
129 mouth_boundary[0][0] = minx - x_add;
130 mouth_boundary[1][0] = maxx + x_add;
131 mouth_boundary[2][0] = maxx + x_add;
132 mouth_boundary[3][0] = minx - x_add;
133 mouth_boundary[4][0] = minx - x_add;
134
135 //Y-coordinates of the boundary box
136 mouth_boundary[0][1] = miny - y_add;
137 mouth_boundary[1][1] = miny - y_add;
138 mouth_boundary[2][1] = maxy + y_add;
139 mouth_boundary[3][1] = maxy + y_add;
140 mouth_boundary[4][1] = miny - y_add;
141
142 //--
143 //
144 // Creating initial mouth and face
145 //
146 //--
147
148 //Creating combined face, mouth and boundary vector
149 for (int i = (int) 0; i < face.length + mouth_boundary.length; i++)
{
150 if (i < face.length)
151 {
152 new_hori[i][0] = face[i][0];
153 new_hori[i][1] = face[i][1];
154 }
155 else
156 {
157 new_hori[i][0] = mouth_boundary[i - face.length][0];
158 new_hori[i][1] = mouth_boundary[i - face.length][1];
159 }
160 if (i > face_end && i < face.length)
161 {
162 pre_mouth[i - face_end - 1][0] = face[i][0];
163 pre_mouth[i - face_end - 1][1] = face[i][1];
164 }
165 }
166

13 Appendix C: jAER java Filter code
Alexander Tureczek

59

167 //Setting the end point equal starting point to make sure the mouth
is
168 //closed
169 pre_mouth[6][0] = pre_mouth[0][0];
170 pre_mouth[6][1] = pre_mouth[0][1];
171
172 for (int index=0; index<new_hori.length; index++)
173 {
174 new_hori[index][0]=new_hori[index][0]+LEDold[0];
175 new_hori[index][1]=new_hori[index][1]+LEDold[1];
176 }
177
178 }
179
180 //@Override
181 public void initFilter() {
182 resetFilter();
183 }
184
185 //Parameter setting in the GUI, Setting NEVENTS and LEDBOX
186 public int getNEVENTS() {
187 return this.NEVENTS;
188 }
189
190 //Setting the NEVENTS parameters in the parameter box in the GUI.
191 public void setNEVENTS(final int NEVENTS) {
192 getPrefs().putInt("FaceTracker.NEVENTS",NEVENTS);
193 support.firePropertyChange("NEVENTS",this.NEVENTS,NEVENTS);
194 this.NEVENTS = NEVENTS;
195 }
196
197 //Getting the LEDBOX parameters in the parameter box in the GUI.
198 public int getLEDBOX() {
199 return this.LEDBOX;
200 }
201
202 //Setting the LEDBOX parameters in the parameter box in the GUI.
203 public void setLEDBOX(final int LEDBOX) {
204 getPrefs().putInt("FaceTracker.LEDBOX",LEDBOX);
205 support.firePropertyChange("LEDBOX",this.LEDBOX,LEDBOX);
206 this.LEDBOX = LEDBOX;
207 }
208
209 public void update(Observable o, Object arg) {
210 initFilter();
211 }
212 int numEventsCollected = 0;
213
214 //Method for collecting data from the retina.
215 //@Override
216 public EventPacket<?> filterPacket(EventPacket<?> in) {
217
218 if (!filterEnabled) {
219 return in;
220 } //Check to avoid always running filter.
221 if (enclosedFilter != null) {
222 in = enclosedFilter.filterPacket(in);
223 }
224

13 Appendix C: jAER java Filter code
Alexander Tureczek

60

225 for (Object e : in) {
226 BasicEvent i = (BasicEvent) e;
227 x_data[numEventsCollected] = (int)i.x;
228 y_data[numEventsCollected] = (int)i.y;
229 numEventsCollected++;
230 if (numEventsCollected == NEVENTS) {
231 processEvents();
232 numEventsCollected = 0;
233 }
234 }
235
236 return in;
237 }
238
239 private void processEvents() {
240
241 //Calculating the updated estimates of the LED positions, and the
distance between the LED.
242 //initializing the followLED class, used for updating the LED
position
243 //shape and size of the face.
244 FollowLED shapeUpdate = new FollowLED();
245 HorizontalFaceModel fdist = new HorizontalFaceModel();
246 Mund mouth = new Mund();
247
248 //LED is an array of 5 elements with information about the Position
of the LED and distance between them.
249 LED = shapeUpdate.movLED(LEDold, x_data, y_data, LEDBOX);
250
251 //Updating the shape of the model.
252 new_hori = shapeUpdate.rotator(LED, f_dist, new_hori, LEDold);
253
254 //Updating the FACEdist.
255 f_dist = fdist.FACEdist(new_hori);
256
257 //Updating the mouth
258 //pre_mouth = mouth.rotateMouth(x_data, y_data, new_hori, pre_mouth,
mouth_boundary);
259
260 LEDold=LED;
261 }
262
263 //Plotting of the vectors, new_hori(0:7), pre_mouth and LED.
264 public void annotate(Graphics2D g) {}
265
266 //Method for annotating arrays in the GUI, using openGl
267 synchronized public void annotate(GLAutoDrawable drawable) {
268 final float LINE_WIDTH=6f; // in pixels
269 if(!isFilterEnabled()) return;
270 GL gl=drawable.getGL(); // when we get this we are already set up
with scale 1=1 pixel, at LL corner
271 if(gl==null){
272 log.warning("null GL in Face_Track.annotate");
273 return;
274 }
275
276 float[] rgb=new float[4];
277 rgb[0]=1;
278 gl.glPushMatrix();

13 Appendix C: jAER java Filter code
Alexander Tureczek

61

279
280 gl.glColor3fv(rgb,0);
281 gl.glLineWidth(LINE_WIDTH);
282 gl.glPointSize(LINE_WIDTH);
283 gl.glBegin(GL.GL_POINTS);
284 for (int index=0; index<=new_hori.length-1; index++)
285 {
286 //gl.glVertex2f(LED[index][1],LED[index][0]);
287 gl.glVertex2f(new_hori[index][0],new_hori[index][1]);
288
289 if (index>face_end && index<(new_hori.length-5))
290 {
291 gl.glVertex2f(pre_mouth[index-8][0],pre_mouth[index-
8][1]);
292 }
293 }
294 gl.glEnd();
295 gl.glPopMatrix();
296
297 }
298
299 //Empty method for plotting, needs to implemented but not used.
300 public void annotate(float[][][] frame) {}
301
302 //Used for standardizing arrays removing the LED1 influence.
303 public void standard(float[][]new_hori)
304 {
305 for (int index=0; index<new_hori.length; index++)
306 {
307 new_hori[index][0]=new_hori[index][0]-LED[0];
308 new_hori[index][1]=new_hori[index][1]-LED[1];
309 }
310
311 }
312 }

13 Appendix C: jAER java Filter code
Alexander Tureczek

62

13.3HorizontalFaceModel
 1 /* HorizontalFaceModel.java
 2 *
 3 * Created on 20. april 2008, 16:14
 4 *
 5 * Author: Alexander Tureczek
 6 *
 7 /* This class is governing the model used in the facetracker. The face has
been
 8 meancentered and rotated to up-right position. It has been converted from
complex
 9 notation in MatLab xy notation in JAVA. The rotation and alligning methods
has
10 not been implemented in JAVA and thus a new model has to be made in MatLab
with
11 the functions meancent and rotation. The size of the model is recommended to
be
12 of an even number of landmarks.
13 */
14
15 package ch.unich.ini.caviar.face_track;
16 import java.lang.Math;
17
18
19 public class HorizontalFaceModel {
20
21 public HorizontalFaceModel(){}
22
23 //This contains the coordinates of the initial model, rotated but NOT
scaled.
24 public float[][] InitialFace()
25 {
26
27 float[][] meanshape = new float[15][2];
28 //This is the x-coordinates of the model
29 meanshape[0][0]=0f;
30 meanshape[1][0]=0.0208f;
31 meanshape[2][0]=0.0581f;
32 meanshape[3][0]=0.2440f;
33 meanshape[4][0]=0.4264f;
34 meanshape[5][0]=0.6118f;
35 meanshape[6][0]=0.6474f;
36 meanshape[7][0]=0.6605f;
37
38 //Landmarks for the mouth, x-coordinates
39 meanshape[8][0]=0.1823f;
40 meanshape[9][0]=0.2728f;
41 meanshape[10][0]=0.3530f;
42 meanshape[11][0]=0.4551f;
43 meanshape[12][0]=0.3694f;
44 meanshape[13][0]=0.2615f;
45 meanshape[14][0]=0.1823f;
46
47 //This is the y-coordinates of the model
48 meanshape[0][1]=-0f;
49 meanshape[1][1]=-0.2156f;

13 Appendix C: jAER java Filter code
Alexander Tureczek

63

50 meanshape[2][1]=-0.3668f;
51 meanshape[3][1]=-0.5600f;
52 meanshape[4][1]=-0.5561f;
53 meanshape[5][1]=-0.3774f;
54 meanshape[6][1]=-0.2131f;
55 meanshape[7][1]=-0f;
56 //Landmarks for the mouth, y-coordinates
57 meanshape[8][1] =-0.3183f;
58 meanshape[9][1] =-0.3044f;
59 meanshape[10][1]=-0.3003f;
60 meanshape[11][1]=-0.3176f;
61 meanshape[12][1]=-0.3843f;
62 meanshape[13][1]=-0.3843f;
63 meanshape[14][1]=-0.3183f;
64
65 return (float[][]) meanshape;
66 }
67
68
69
70 //This method calculates the distance between the (1,1) and (8,1), this
is
71 //used to calculate the scaling of the model to the LED.
72 public float FACEdist(float meanshape[][])
73 {
74 float x,y, dist;
75
76 x=(float) (meanshape[7][0]-meanshape[0][0])*(meanshape[7][0]-
meanshape[0][0]);
77 y=(float) (meanshape[7][1]-meanshape[0][1])*(meanshape[7][1]-
meanshape[0][1]);
78
79 //calculation of distance using standard foormula.
80 dist=(float) Math.sqrt(x+y);
81
82 return dist;
83 }
84
85 }

13 Appendix C: jAER java Filter code
Alexander Tureczek

64

13.4Mund.java
 1 /* Mund.java
 2 *
 3 * Created on 13. juni 2008, 14:15
 4 *
 5 * @Author: Alexander Tureczek
 6 *
 7 * Governs the mouth and the deformation of it. It takes as input the data
 8 * vector and the model. Though rotation and scaling the model is deformed
to
 9 * fit the data.
 10 */
 11
 12 package ch.unich.ini.caviar.face_track;
 13
 14 import java.lang.Math.*;
 15 import java.util.ArrayList;
 16
 17 public class Mund
 18 {
 19
 20 //empty constructor
 21 public Mund(){}
 22
 23 public float[][] rotateMouth(int[] x, int[] y, float[][] hori_meanS,
float[][] pre_mouth, float[][] mouth_boundary)
 24 {
 25 //identifying the boundary box.
 26 int count=0;
 27 float[][] box = new float[5][2];
 28
 29 for (int index=15; index<hori_meanS.length; index++)
 30 {
 31 box[count][0]=hori_meanS[index][0];
 32 box[count][1]=hori_meanS[index][1];
 33 count++;
 34 }
 35 //calculating the tilt of the mouth_boundary box.
 36
 37 float box_slope = (box[2][1]-box[3][1])/(box[2][0]-box[3][0]);
 38
 39 float[] r = new float[5];
 40 float[] ang = new float[5];
 41 float[] new_ang = new float[5];
 42 float[][] new_box = new float[5][2];
 43
 44 for (int index=0; index<box.length; index++)
 45 {
 46 //calculating the argument of every point. using normal a^2+b^2
= c^2
 47
 48 r[index] = (float)
Math.sqrt(Math.pow(box[index][0],2)+Math.pow(box[index][1],2));
 49
 50 //Calculating the modulo of the boundary.
 51

13 Appendix C: jAER java Filter code
Alexander Tureczek

65

 52 ang[index] = (float) Math.acos(box[index][0]/r[index]);
 53
 54 //Subracting the difference between the angle and the slope
 55
 56 new_ang[index] = ang[index]-box_slope;
 57
 58 //calculating the final horisontal box.
 59
 60 new_box[index][0] = (float) (r[index]*Math.cos(new_ang[index]));
 61 new_box[index][1] = (float) (r[index]*Math.sin(new_ang[index]));
 62 }
 63
64 // --

 65 //
 66 // Finding relevant data and doing Rotation.
 67 //
 68 // --
 69
 70 //Finding the relevant data. -> data within the mouth_boundary
 71
 72 float[] mx = new float[x.length];
 73 float[] my = new float[x.length];
 74 count=0;
 75
 76 //finding the smallest and largest x and y, to find a box that
surrounds the mouth.
 77 float minx = box[0][0];
 78 float miny = box[0][1];
 79 float maxx = box[0][0];
 80 float maxy = box[0][1];
 81
 82 for (int index=0; index < box.length; index++) {
 83 //finding minimum for the bounadary box around the emouth.
 84 if (box[index][0] < minx)
 85 {
 86 minx = box[index][0];
 87 }
 88 if (box[index][1] < miny)
 89 {
 90 miny = box[index][1];
 91 }
 92 //finding maximum for the bounadary box around the emouth.
 93 if (box[index][0] > maxx)
 94 {
 95 maxx = box[index][0];
 96 }
 97 if (box[index][1] > maxy)
 98 {
 99 maxy = box[index][1];
100 }
101 }
102 //finding all relevant data, e.g. data inside the boundary box.
103 count=0;
104 for (int index=0; index<x.length; index++)
105 {
106 if ((x[index]>=minx) && (x[index]<=maxx) && (y[index]>=miny) &&
(y[index]<=maxy))
107 {
108 mx[count]=x[index];

13 Appendix C: jAER java Filter code
Alexander Tureczek

66

109 my[count]=y[index];
110 count++;
111 }
112 }
113
114 //if relevant data is found, we analyse this.
115 if (count>0)
116 {
117 //calculating the angle for all data. Used to rotate
118
119 //Modulo for data
120 float[] rd = new float[count];
121 // Argument for data
122 float[] ang_d = new float[count];
123 float[][] new_data = new float[count][2];
124 float[] new_ang_d = new float[count];
125
126
127 for (int index=0; index<count; index++)
128 {
129
rd[index]=(float)(Math.sqrt(Math.pow(mx[index],2)+Math.pow(my[index],2)));
130
131 ang_d[index]=(float)(Math.acos(mx[index]/rd[index]));
132
133 //Here is not included check for solution due to float
solution.
134
135 //Subtracting the difference in angles
136 new_ang_d[index] = ang_d[index]-box_slope;
137
138 //calculating the final horisontal data.
139 new_data[index][0] =
(float)(rd[index]*Math.cos(new_ang_d[index]));
140 new_data[index][1] =
(float)(rd[index]*Math.sin(new_ang_d[index]));
141 }
142
143
144
145
146 //--
147 //
148 // Identification of # obs in each cell.
149 //
150 //--
151
152 //Test using 1/4 equidistant.
153
154 //Width of the box.
155 float width=new_box[1][0]-new_box[0][0];
156 float height=new_box[3][1]-new_box[0][1];
157
158 int count1L=0;
159 int count2L=0;
160 int count3L=0;
161 int count4L=0;
162
163 int count1U=0;

13 Appendix C: jAER java Filter code
Alexander Tureczek

67

164 int count2U=0;
165 int count3U=0;
166 int count4U=0;
167
168 //This is initiating each cell in the boundary (c.f report for cell
division)
169
170 //this for-loop is used to determine the number of observations in
each cell.
171 //this is used in the next for-loop to define the vector for each
cell.
172 for (int index=0; index<new_data.length; index++)
173 {
174 //Left cell calculation. First finding the x-data and then
finding the y-data.
175 if (new_data[index][0]>new_box[0][0] &&
new_data[index][0]<=new_box[0][0]+width/4)
176 {
177 if (new_data[index][1]>new_box[0][1] &&
new_data[index][1]<=new_box[0][1]+height/2)
178 {
179 count1L++;
180 }
181 if (new_data[index][1]>new_box[0][1]+height/2 &&
new_data[index][1]<=new_box[3][1])
182 {
183 count1U++;
184 }
185 }
186 //Cell 2 from the left.
187 if (new_data[index][0]>new_box[0][0]+width/4 &&
new_data[index][0]<=new_box[0][0]+2*width/4)
188 {
189 if (new_data[index][1]>new_box[0][1] &&
new_data[index][1]<=new_box[0][1]+height/2)
190 {
191 count2L++;
192 }
193 if (new_data[index][1]>new_box[0][1]+height/2 &&
new_data[index][1]<=new_box[3][1])
194 {
195 count2U++;
196 }
197 }
198 //third cell from the left.
199 if (new_data[index][0]>new_box[0][0]+2*width/4 &&
new_data[index][0]<=new_box[0][0]+3*width/4)
200 {
201 if (new_data[index][1]>new_box[0][1] &&
new_data[index][1]<=new_box[0][1]+height/2)
202 {
203 count3L++;
204 }
205 if (new_data[index][1]>new_box[0][1]+height/2 &&
new_data[index][1]<=new_box[3][1])
206 {
207 count3U++;
208 }
209 }

13 Appendix C: jAER java Filter code
Alexander Tureczek

68

210 //Right cell
211 if (new_data[index][0]>new_box[0][0]+3*width/4 &&
new_data[index][0]<=new_box[0][0]+width)
212 {
213 if (new_data[index][1]>new_box[0][1] &&
new_data[index][1]<=new_box[0][1]+height/2)
214 {
215 count4L++;
216 }
217 if (new_data[index][1]>new_box[0][1]+height/2 &&
new_data[index][1]<=new_box[3][1])
218 {
219 count4U++;
220 }
221 }
222 }
223
224 //knowing the number of observations in each cell, we define the
arrays for each cell.
225 float[][] part1L = new float[count1L][2];
226 float[][] part1U = new float[count1U][2];
227 float[][] part2L = new float[count2L][2];
228 float[][] part2U = new float[count2U][2];
229 float[][] part3L = new float[count3L][2];
230 float[][] part3U = new float[count3U][2];
231 float[][] part4L = new float[count4L][2];
232 float[][] part4U = new float[count4U][2];
233
234 //Resetting the counting.
235 count1L=0;
236 count2L=0;
237 count3L=0;
238 count4L=0;
239
240 count1U=0;
241 count2U=0;
242 count3U=0;
243 count4U=0;
244
245
246 for (int index=0; index<new_data.length; index++)
247 {
248 //Left cell calculation. First finding the x-data and then
finding the y-data.
249 if (new_data[index][0]>new_box[0][0] &&
new_data[index][0]<=new_box[0][0]+width/4)
250 {
251 if (new_data[index][1]>new_box[0][1] &&
new_data[index][1]<=new_box[0][1]+height/2)
252 {
253 part1L[count1L][0] = new_data[index][0];
254 part1L[count1L][1] = new_data[index][1];
255 count1L++;
256 }
257 if (new_data[index][1]>new_box[0][1]+height/2 &&
new_data[index][1]<=new_box[3][1])
258 {
259 part1U[count1U][0] = new_data[index][0];
260 part1U[count1U][1] = new_data[index][1];

13 Appendix C: jAER java Filter code
Alexander Tureczek

69

261 count1U++;
262 }
263 }
264 //Cell 2 from the left.
265 if (new_data[index][0]>new_box[0][0]+width/4 &&
new_data[index][0]<=new_box[0][0]+2*width/4)
266 {
267 if (new_data[index][1]>new_box[0][1] &&
new_data[index][1]<=new_box[0][1]+height/2)
268 {
269 part2L[count2L][0] = new_data[index][0];
270 part2L[count2L][1] = new_data[index][1];
271 count2L++;
272 }
273 if (new_data[index][1]>new_box[0][1]+height/2 &&
new_data[index][1]<=new_box[3][1])
274 {
275 part2U[count2U][0] = new_data[index][0];
276 part2U[count2U][1] = new_data[index][1];
277 count2U++;
278 }
279 }
280 //third cell from the left.
281 if (new_data[index][0]>new_box[0][0]+2*width/4 &&
new_data[index][0]<=new_box[0][0]+3*width/4)
282 {
283 if (new_data[index][1]>new_box[0][1] &&
new_data[index][1]<=new_box[0][1]+height/2)
284 {
285 part3L[count3L][0] = new_data[index][0];
286 part3L[count3L][1] = new_data[index][1];
287 count3L++;
288 }
289 if (new_data[index][1]>new_box[0][1]+height/2 &&
new_data[index][1]<=new_box[3][1])
290 {
291 part3U[count3U][0] = new_data[index][0];
292 part3U[count3U][1] = new_data[index][1];
293 count3U++;
294 }
295 }
296 //Right cell
297 if (new_data[index][0]>new_box[0][0]+3*width/4 &&
new_data[index][0]<=new_box[0][0]+width)
298 {
299 if (new_data[index][1]>new_box[0][1] &&
new_data[index][1]<=new_box[0][1]+height/2)
300 {
301 part4L[count4L][0] = new_data[index][0];
302 part4L[count4L][1] = new_data[index][1];
303 count4L++;
304 }
305 if (new_data[index][1]>new_box[0][1]+height/2 &&
new_data[index][1]<=new_box[3][1])
306 {
307 part4U[count4U][0] = new_data[index][0];
308 part4U[count4U][1] = new_data[index][1];
309 count4U++;
310 }

13 Appendix C: jAER java Filter code
Alexander Tureczek

70

311 }
312 }
313
314 // --
315 //
316 // Calculating the mean in each cell
317 //
318 // --
319
320 //Initializing the sorting and median methods.
321 Sorting heap = new Sorting();
322 Descriptive median = new Descriptive();
323
324 //Calculating median x and y in cell 2L and 2U
325 part2L =(float[][]) heap.medianHeap(part2L);
326 part2U =(float[][]) heap.medianHeap(part2U);
327
328 //putting the median x value from cell 2L and 2U in part2x
329 float part2x = (part2L[0][0]+part2U[0][0])/2;
330
331 //Calculating median x and y in cell 3L and 3U
332 part3L = (float[][]) heap.medianHeap(part3L);
333 part3U = (float[][]) heap.medianHeap(part3U);
334
335 //putting the median x value from cell 3L and 3U in part3x
336 float part3x = (float)(part3L[0][0]+part3U[0][0])/2;
337
338
339 //Averaging over 2L and 3L
340 float part23L = (float)(part2L[0][1]+part3L[0][1])/2;
341 float part23U = (float)(part2U[0][1]+part3U[0][1])/2;
342
343 //final estimate of 2L and 3L
344 part2L[0][0] = part2x;
345 part2L[0][1] = part23L;
346
347 part3L[0][0] = part3x;
348 part3L[0][1] = part23L;
349
350 //final estimate of 2U and 3U
351 part2U[0][0] = part2x;
352 part2U[0][1] = part23U;
353
354 part3L[0][0] = part3x;
355 part3L[0][1] = part23U;
356
357
358 //Estimating 1L and 1U
359 part1L = heap.medianHeap(part1L);
360 part1U = heap.medianHeap(part1U);
361
362 float part1x = (float)(part1L[0][0]+part1U[0][0])/2;
363 float part1y = (float)(part1L[0][1]+part1U[0][1])/2;
364
365 part1L[0][0]=part1x;
366 part1U[0][0]=part1x;
367
368 part1L[0][1]=part1y;
369 part1U[0][1]=part1y;

13 Appendix C: jAER java Filter code
Alexander Tureczek

71

370
371
372 //Estimating 4L and 4U
373 part4L = (float[][]) (heap.medianHeap(part4L));
374 part4U = (float[][]) (heap.medianHeap(part4U));
375
376 float part4x = (float)(part4L[0][0]+part4U[0][0])/2;
377 float part4y = (float)(part4L[0][1]+part4U[0][1])/2;
378
379 part4L[0][0]=part4x;
380 part4U[0][0]=part4x;
381
382 part4L[0][1]=part4y;
383 part4U[0][1]=part4y;
384
385 // collecting all estimates in 1 array.
386 float[][] new_mouth = new float[7][2];
387 new_mouth[0][0] = part1x;
388 new_mouth[1][0] = part2x;
389 new_mouth[2][0] = part3x;
390 new_mouth[3][0] = part4x;
391 new_mouth[4][0] = part3x;
392 new_mouth[5][0] = part2x;
393 new_mouth[6][0] = part1x;
394
395 new_mouth[0][1] = part1y;
396 new_mouth[1][1] = part23L;
397 new_mouth[2][1] = part23L;
398 new_mouth[3][1] = part4y;
399 new_mouth[4][1] = part23U;
400 new_mouth[5][1] = part23U;
401 new_mouth[6][1] = part1y;
402
403
404 // ---
405 //
406 // Rotating the estimate bock to original tilt
407 //
408 // ---
409
410 //finding the slope of every point.
411 //calculating the angle for all data. Used to rotate
412
413 //Modulo for data
414 float[] rm = new float[new_mouth.length];
415 // Argument for data
416 float[] new_ang_m = new float[new_mouth.length];
417
418 //float[][] pre_mouth = new float[new_mouth.length][2];
419 float[] new_m = new float[new_mouth.length];
420 float[] ang_m = new float[new_mouth.length];
421
422
423 for (int index=0; index<new_mouth.length; index++)
424 {
425
rm[index]=(float)(Math.sqrt(Math.pow(new_mouth[index][0],2)+Math.pow(new_mouth[i
ndex][1],2)));
426

13 Appendix C: jAER java Filter code
Alexander Tureczek

72

427 ang_m[index]=(float)(Math.acos(new_mouth[index][0]/rm[index]));
428
429 //Subtracting the difference in angles
430 new_ang_m[index] =(float) ang_m[index]+box_slope;
431
432 //calculating the final horisontal data.
433 new_mouth[index][0] =
(float)(rm[index]*Math.cos(new_ang_m[index]));
434 new_mouth[index][1] =
(float)(rm[index]*Math.sin(new_ang_m[index]));
435 }
436
437 if (count1L==0 || count1U==0)
438 {
439 new_mouth[0][0] = pre_mouth[0][0];
440 new_mouth[0][1] = pre_mouth[0][1];
441
442 new_mouth[6][0] = pre_mouth[0][0];
443 new_mouth[6][1] = pre_mouth[0][1];
444 }
445
446 if (count2L==0)
447 {
448 new_mouth[5][0] = pre_mouth[5][0];
449 new_mouth[5][1] = pre_mouth[5][1];
450 }
451
452 if (count3L==0)
453 {
454 new_mouth[4][0] = pre_mouth[4][0];
455 new_mouth[4][1] = pre_mouth[4][1];
456 }
457
458 if (count4L==0 || count4U==0)
459 {
460 new_mouth[3][0] = pre_mouth[3][0];
461 new_mouth[3][1] = pre_mouth[3][1];
462 }
463
464 if (count3U==0)
465 {
466 new_mouth[2][0] = pre_mouth[2][0];
467 new_mouth[2][1] = pre_mouth[2][1];
468 }
469
470 if (count2U==0)
471 {
472 new_mouth[1][0] = pre_mouth[1][0];
473 new_mouth[1][1] = pre_mouth[1][1];
474 }
475
476 return new_mouth;
477 }
478
479 return pre_mouth;
480 }
481 }

13 Appendix C: jAER java Filter code
Alexander Tureczek

73

13.5Sorting
 1 /* Sorting.java
 2 *
 3 * Created on 14. april 2008, 12:46
 4 *
 5 * Author Alexander Tureczek
 6 *
 7 *This file implements the selection sort algorithm. The selectionSort
method is
 8 *copied from Lewis/Loftus "Java, software solutions". the algorithm is
sorting
 9 *an array of numbers in O(n^2) time.
 10 *
 11 *Also implemented is the Heap Sort algorithm that sorts any vector in
n*lg(n)
 12 *time.
 13 *
 14 */
 15
 16 package ch.unich.ini.caviar.face_track;
 17 import java.lang.Math;
 18
 19
 20 public class Sorting
 21 {
 22 public Sorting(){}
 23
 24 //Contains an implementation of the selection sort algorithm.
 25 public float[] selectionSort(float[] numbers)
 26 {
 27 float temp;
 28 short min;
 29
 30 //running through the elements and moving the smaller to the left.
 31 for (short index=0; index < numbers.length-1; index++)
 32 {
 33 min = index;
 34 for (short scan =(short) (index + 1); scan < numbers.length;
scan++)
 35 {
 36 if (numbers[scan]<numbers[min])
 37 min = scan;
 38
 39 //Swaping values.
 40 temp=(float) numbers[min];
 41 numbers[min]=(float) numbers[index];
 42 numbers[index]=(float) temp;
 43 }
 44 }
 45 return numbers;
 46 }
47

 48
 49 //prepares a nx2 array for heap sort row vise.
 50 public float[][] medianHeap(float[][] list)
 51 {

13 Appendix C: jAER java Filter code
Alexander Tureczek

74

 52 float[] list_a = new float[list.length];
 53 float[] list_b = new float[list.length];
 54
 55 //initializing the median calculation.
 56 Descriptive median = new Descriptive();
 57 System.out.println(list.length);
 58
 59 //If the list is empty then the list is returned with zero elements.
 60 if (list.length==0)
 61 {
 62 float[][] median_list = new float[list.length+1][2];
 63 median_list[0][0] = 0;
 64 median_list[0][1] = 0;
 65 return (float[][]) median_list;
 66 }
 67 //else the list is sorted and the median is calculated through a
call to
68 //Descriptive class.

 69 else
 70 {
 71 float[][] median_list = new float[list.length][2];
 72
 73 for (short index=0; index<list.length; index++)
 74 {
 75 list_a[index] =(float) list[index][0];
 76 list_b[index] =(float) list[index][1];
 77 }
 78 list_a = (float[]) heapSort(list_a);
 79 float med_x =(float) median.Median(list_a);
 80
 81 list_b = heapSort(list_b);
 82 float med_y = median.Median(list_b);
83
84 median_list[0][0] = med_x;

 85 median_list[0][1] = med_y;
86

 87 return (float[][]) median_list;
 88 }
 89 }
 90
 91 // Contains an implementation of the heapsort algorithm.T.H. Cormen
et.al,
 92 //"Introduction to algorithms"
 93 public float[] heapSort(float[] numbers)
 94 {
 95 float[] A=numbers;
 96 short heap_size=(short) A.length;
 97 float temp;
 98 A=build_heap(A);
99

100 for (short index=(short)(A.length-1); index>=1; index--)
101 {
102 temp=(float) A[0];
103 A[0]=A[index];
104 A[index]=(float) temp;
105
106 heap_size=(short) (heap_size - 1);
107 heapify(A,(short)0,heap_size);
108 }

13 Appendix C: jAER java Filter code
Alexander Tureczek

75

109 return A;
110 }
111
112 //Building the heap that is being sorted with heapify.
113 private float[] build_heap(float[] A)
114 {
115 short heap_size=(short)A.length;
116 for (short index = (short) Math.floor(A.length/2); index>=0; index--
)
117 {
118 A=heapify(A,index,heap_size);
119 }
120
121 return A;
122 }
123
124 //This is an implementation of the Max-heapify p.130 T.H. Cormen et.al,
125 //"Introduction to algorithms"
126 private float[] heapify(float[] A, short i, short heap_size)
127 {
128 //creating children
129 //Left, corrected for 0 indices
130 short l=(short) (2 * i + 1);
131 //Right, corrected for 0 indices
132 short r=(short) (2 * i + 2);
133
134 short largest=0;
135
136 //int heap_size = A.length;
137 if (l<=heap_size-1 && A[l]>A[i])
138 {
139 largest=l;
140 }
141 else
142 largest=i;
143
144 if (r<=heap_size-1 && A[r]>A[largest])
145 {
146 largest=r;
147 }
148 if (largest!=i)
149 {
150 float temp=(float) A[i];
151 A[i]=(float) A[largest];
152 A[largest]=(float) temp;
153 heapify(A,largest,heap_size);
154 }
155 return A;
156 }
157 }

