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Abstract

Data gathered from a sensor network reflect its topology. It is therefore possible under
certain circumstances to extract the topology later on from the data.

We developed an algorithm that calculates the adjacency of the network in realtime
from timed events. It is based on a neural network with a spike-time dependent plasicity
rule.

We implemented it a Java-based framework, so it can learn the topology from arbitrary
connected devices like a neuromorphic vision chip. The learning process is monitored in
realtime.

The algorithm is able to learn almost all adjacency relations of the chip. The quality
of the result depends on the choice of timing parameters.
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Chapter 1

Introduction

In an ad hoc sensor network the topology is not known from the beginning. But the
knowledge of its topology is necessary for the interpretation of the data collected by it.

Martin Boerlin showed in [3] that it is possible to exploit dependencies in the data to
guess the adjacency relations between the nodes of a network and therefore reconstruct
its topology. He applied his algorithm to data from tactile floor [4] of the robot space
’Ada’ [1] and also from a neuromorphic vision chip.

In this work Boerlin’s solution is adapted for weak realtime. The adjacency is calcu-
lated incrementally, while the data is gathered from the network.

The sensor data is a sequence of events. Each event is given by a label, a timestamp
and its data load. The label indicates the sender node, at which the event has been
evoked, and the timestamp holds the time, when the event has been evoked. The data
load in our case is just a type flag, that says whether the sensor nodes state switched to
ON or to OFF.

Our algorithm extracts the topology information incrementally from the event data
and guesses the adjacency relations of the sensor nodes.

A spiking neural network is used to perform this task. In this context our sensor data
representation can be interpreted as address-event representation (AER): The idealized
spikes in the neural network are represented by their address and their time. So the events
are modelled as spikes in a neural network.

jAER [2] is a Java-based middleware for AER devices. jAER provides specific ex-
tensions of the events like the additonal type flag for ON and OFF events. Using this
middleware we implemented our algorithm in Java and added a view to monitor the
learning process in realtime.

We will first explain the problem and then we present our solution. We will give an
overview on the implementation and its use. Then we will have a look at the results and
end with a conclusion.
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Chapter 2

Problem

Let us try to describe the problem formally: We have a set of events given by the sender
node, a timestamp and the type of the event. The goal is, to learn the adjacency relations
between the nodes.

The events the nodes send are evoked by stimuli. When such a stimulus moves, it
evokes events at the sensor nodes at different times. Since the stimulus does not make
any jumps, there is a relationship between the times and the locations.

Let us first consider a single pair of events that are evoked by a stimulus moving from
one node to the other. Since we do not know how it moves, we suppose that its motion is
a Brownian motion. So the stimulus just moves randomly over the sensor network. Then
the time the stimulus needs to evoke the two events is inversely Gaussian distributed [9]
(see Figure 2.1).

The inverse Gaussian distribution is given by its probability density function

p(x;λ, µ) =

√
λ

2πx3
exp

(−λ(x− µ)2

2µ2x

)
(2.1)

µ is the distributions mean, λ is the so called shape parameter. The variance is calculated
by µ3/λ. You find a detailed explanation with examples in [8].
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T : time between events
µ : mean
λ : shape parameter

Figure 2.1: Time distribution for a stimulus moving to the neighbor node.

While the stimulus moves further it reaches the next node - the neighbor’s neighbor:
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2 Problem

the so-called 2nd-order neighbor. The time it needs to reach this level is distributed
similarly, as for the other higher order neighbors (see Figure 2.2).
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. . .

Ti ∼ IG(µi, λi)

Ti : time between events
µi = iµ : mean
λi = i2λ : shape parameter

Figure 2.2: Time distribution to reach higher order neighbors.

To reach heigher order neighbors, the stimulus needs more time in average (T2,T3, . . .).
But there is an overlap in the distributions. It is not possible to distinguish a direct
neighbor from a higher order neighbor by just looking at the time difference of a pair of
events.
Possibly we would say that a node cannot be the first order neighbor if we just found the
neighbor before with smaller time difference.
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n∑
i=1

T1

Ti

(2.2)

Figure 2.3: Probability of adjacency depending on time difference

So even if there was only a single stimulus in the system, it could not be decided
from the time difference between two events, if the nodes are neighbors or higher order
neighbors. Figure 2.3 shows the probability that the nodes the events are sent by are
direct neighbors and not higher order neighbors. It assumes that the events are evoked
by the same stimulus.
For very small time differences the adjacency is likely to be true.

If there is more than one stimulus in the system - what is mostly the case - there
is also a certain probability that the events are not evoked by the same stimulus. This
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αT1

αTi + (1− α)
(2.3)

α : rate of events evoked by same stimulus

Figure 2.4: Adjusted probability of adjacency depending on time difference.

probability must be calculated from the number of stimuli. The resulting curve (Figure
2.4) is similar to the previous curve (Figure 2.3), but it tends to zero for small time
differences, because its unlikely that a stimulus moves that fast: its much likelier that the
two events are evoked by different stimuli.
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Chapter 3

Algorithm

We exploit the non-unform distribution described above to learn the adjacency relation-
ship in real-time as the events are coming in. The algorithm guesses for each pair of
events the probability, that their nodes are adjacent. Instead of deciding, whether they
actually are, it sums up all these probability values for each potential adjacency relation
between two nodes. The idea is that real adjacency relations will get the biggest sums and
the adjacency relations can be guessed. For a sufficiently large set of events, the guessed
adjacency will converge to the real one.

A spiking neural network serves as model for the algorithm. The nodes of this network
represent the sensor nodes, the edge weights between two nodes indicate, how likely the
nodes are adjacent. The weights change according to a spike-time dependent plasticity
rule (see Gerstner/Kistler, Spiking Neuron Models [5]).

Note that in our case the weight change does also depend on the type of the events.
The adjacency relationship is symmetric, it would have been sufficient to have undirected
edges. But for the purpose of extensibility and flexibility they are directed: the weight
is changed only for a positive time difference; for negative ones it remains. The effect of
this specification is that the edge weight changes only on a stimulus moving in the edges
direction. Of course the symmetric case can be chosen expicitly - this is an option in our
implementation.

The adjacency estimating function is therefore modeled as the learning window in our
spiking neural network. The optimal learning window would look like in Figure 2.4. Since
we do now know the parameters of this curve, and its calculation could be expensive, the
following three shapes are used: a Gaussian, isosceles triangular function and a rectangular
function (see Figure 3).

(a) Gaussian (b) Triangle (c) Rectangle

Figure 3.1: The three shape types for the learning window.

To make the shapes comparable, they are parametrized by the mean and standard
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deviation. The standard deviation of the triangular function is 1/(2
√

6) of the width of
the learning window; for the rectangular it is 1/(2

√
3).

For efficiency sake the Gaussian function is cut off outside [−2.5σ,+2.5σ], so 99.7% of
the shape lie inside this border. Further complexity reduction is achieved by caching the
values of the Gaussian in a lookup table.

3.1 Steps of the algorithm

3.1.1 Initialization

At the beginning, all edge weights are initialized to 1 and the neighbors in the current
guess (see 3.1.5) are chosen randomly.

3.1.2 Buffering

Since the learning window is of finite width1, there is no need to store all the events
coming in from the sensor network: a circular buffer of sufficient size is enough. The
events are stored ordered by their timestamp. After an event has been processed, it will
reach the end of the circular buffer and simply be overwritten by new events.

3.1.3 Pair selection

Before an event is stored in the buffer, it is compared with all the events whose timestamp
lie within the the learning window of the event. Since the weight change is zero for negative
values in the event window, those events are all contained in the buffer.

The nodes are of course uniquely labelled. So events coming from the same node are
left out; only events from different nodes are selected.

3.1.4 Weight update

The weight change does not only depend on the difference between the timestamps of the
events but also the event types: in our model there are two types of events indicating
a direction – either to on or to off. So the learning window is more complicated than usual:

∆wij =

{
f(ti − tj) di = dj
0 otherwise

(3.1)

i postsynaptic node
j presynaptic node
∆wij weight change on edge from j to i
tn timestamp of event from node n
dn type of event from node n
f : R+ → R+ learning window

The current weight change procedure has no negative feedback: the weights grow per-
petually. In our tests this was not a problem. It has a positive impact on the algorithmic
complexity, because the set of supposed neighbors of a node can be updated in constant
time.

1For the gaussian shape, values outside 2.5σ are ignored.
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3.1 Steps of the algorithm

Boerlin [3] in his algorithm normalized the weight vectors to unit size: this prevented
the weights from perpetual growth. This step was left out because it would have required
for each event pair to change the weights on the edges to all other nodes, not only between
the two. Note that despite the symmetry of the adjacency relationship, the weight matrix
which gives a guess for the adjacency is not symmetric any more as soon as the weights
are normalized.
Since this is necessary also for the ability of adaptation, it will be an issue for later
improvements of the algorithm. One could i.e. easily add a logarithmic fall back by
storing to every edge weight the time of last access.

Boerlin’s algorithm also reinforced the weights to the nodes in the current guess of
neighbors of the node. This option can also be chosen in our implementation. But as
there is currently no negative feedback, the algorithm gets stuck in a suboptimal solution.

∆w′ij = ∆wij +

{
η j ∈ âi
0 otherwise

(3.2)

âi the nodes guessed to be adjacent to i (see below).

3.1.5 Adjacency guess

The edges with the biggest weights are supposed to lead to the neighbors of a node. So
every node maintains a list with these supposed neighbors, and updates it each time an
edge weight is updated.
In our implementation the correctness of this guess is monitored and displayed on an
OpenGL device.
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Chapter 4

Implementation

The topology learning algorithm is implemented in the jAER framework, a java frontend
for camera devices using address-event representation.

Using jAER framework the topology learning is implemented as a subclass of EventFilter2D
called TopologyTracker. The TopologyTracker gets the events in a method named
filterPacket which is sent to all filters in the filter chain. Each event in the EventPacket
is stored in a circular buffer. The buffer is implemented by a separate array for both fields
of the event: the label which is built from the address, the timestamp and the type.

The current event is compared with the other events in the the buffer and the weight
matrix is updated according to the learning window chosen. If the events are of the same
type (OFF or ON) and do not have the same address, then the time difference is taken to
update the weights. If the plastisity update function is symmetric (because the adjacency
relationship is symmetric as well), then the function is mirrored.

It can be chosen between different shapes of this function: a rectangle, triangle and a
gaussian function. They can be parametrized by the mean and standard deviation. For
efficiency purpose the gaussian function is cut off at the border at 2.5 sigma, so 99.7% of
the area is covered. One could think of cutting off more or less of the border depending
on the actual realtime performance.

4.1 Restrictions of the Algorithm

The weighted edges connect each node with any other in the network. The size of the
weight matrix is therefore quadratic to the number of nodes. And our implementation
uses single precision floating point numbers as edge weights of the network. They occupy
each 4 bytes in memory. So – n being the number of nodes – the memory used for the
weight matrix is 4 · n2, which is for the test data 4(27·2)2 Bytes = 1 GB.

So we downsized the input data by using only the inner 64x64 pixels. The matrix of
now 4(26·2)2 Bytes = 64 MB easily fit into memory.

Other data structures do not need much memory. So the total memory needed is
≈ 4n2 Bytes ∈ O(n2).

11



4 Implementation

4.2 Objects

The two main classes are the TopologyTracker class and the Monitor class. The later is
contained as an inner class.

4.2.1 TopologyTracker

The TopologyTracker implements the algorithm into the jAER framework. It subclasses
the EventFilter2D. The core algorithm is implemented in the method filterPacket

which overrides the the method inherited from EventFilter2D. This method handles the
events, which are given in an EventPacket as method parameter. This core method uses
two helper methods: calculateWeightChange and adaptWeight. The one calculates the
weight change for an event pair according to the selected learning window. The other
then adapts the weight matrix and the current adjacency guess.

4.2.2 Monitor

The Monitor supervises the topology learning process and displays it on the screen. It
measures the performance and could also be extended to the algorithm parameters like
the learning window to the current processing load to reach real-time performance.

In our case it knows the topology of the sensor in ahead - unlike the algorithm - and
compares the current adjacency guess with the correct adjacencies, and it shows up the
false adjacencies in the current guess and the ratio of correct ones.

12



Chapter 5

Running the Algorithm

Our algorithm, incarnated by the TopologyTracker is loaded automatically into the jAER
Viewer’s filter chain. Like any other filter we can activate or deactivate and reset it easily
in the GUI. There are parameters to set (see Figure 5), that influence the learning process:

Figure 5.1: The parameters to set in jAER

• The learning window must be chosen depending on the input data

– learningWindowMean - The mean time difference between two events in the
learning window.

13



5 Running the Algorithm

– learningWindowStandardDeviation - The standard deviation of the time dif-
ferences, defining the spread of the window

– learningWindowShape - One of 3 shape types are provided: a Gaussian (0), a
triangular function (1) and a rectangular function (2).

• symmetricPlasticityChange mirrors the learning window at ∆t = 0, so the edge
weights are changed symmetrically. This option is reasonnable because the adja-
cency relationship is symmetric as well - and it doubles the impact of any event.

• The neighborhood size - the number of adjacent nodes: e.g. 4 for a von Neuman
neighborhood; 8 for a Moore neighborhood.

• There are two experimental extensions:

– inhibit2ndOrderNeighbors let the algorithm ignore weight updates of edges
between nodes which are second order neighbors according to the current ad-
jacency guess.

– reinforcement: A value > 0 reinforces the weights of the edges to the guessed
neighbors of node by this amount, each time the node sends an event. This
should speed up convergence, but does not yet work properly since the algo-
rithm does not normalize the weights, so it gets stuck in a suboptimal solution.

• showStatus displays the algorithms status in a window: progress, utilization and
false edges.

– The false edges chart is only updated if showFalseEdges is on. One should
switch it off at the beginning because it could otherwise overwhelm the graphics
device.

The monitor panel looks as shown in Figures 5 and 5. It consists of the three subpanels
Progress, Utilization and Errors.

Progress shows the current percentage of correctly guessed neighborship relations. The
ordinate goes from 0 to 100%.

Utilization shows the current utilization, which is the processing time of an event packet
relative to the time between the first and the last event in a packet. The values for
graphs – Progress and Utilization – are calculated after each single packet and the
curve of each graph is moved one step further.

Errors is a panel on which the false adjacency relations are displayed. Because of its vast
need for processing time, updating can be inhibited by switching off showFalseEdges.

14
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Figure 5.2: The monitor panel in an early state.
.

Figure 5.3: The monitor panel later on.
.
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Chapter 6

Results

We tested our algorithm on a PC with Intel Core Duo T2300 Processor at 1.66 GHz and
1GB RAM. We used two different data sets of a resolution of 128x128 pixels.

6.1 Parameter fitting

To get good results with the algorithm, the learning window must be chosen manually
for each data. We tested three different shapes, which were parametrized by mean and
standard deviation to make them comparable.

The three shapes differ in their comutational complexity: The rectangle needs no
calculation after the selection of events, whereas the Gaussian is more costly to calculate.
But since its function values can be cached in an array, there is no significant loss of speed.

6.2 Remaining error

The following plots show the maximum ratio of correctly guessed adjacencies depending
on the parameters of the learning window.

Both the Gaussian and the triangular function minimize the error to 2%. The rect-
angular reaches only 2.5% with the given data. This is very similar. But the Gaussian is
slightly better than the others.
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(a) f : Gaussian
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Figure 6.1: Data set 1: Remaining error for different shapes parametrized by µ and σ.
The curves are at 3%, 4%, 5%... errors.

All the three shapes here can eliminate almost all of the errors. But more obvious
than in the plots before, the rectangular shape is less stable than the other two. Best is
always the Gaussian.

The Gaussian algorithm can estimate almost all the adjacency relations correctly. The
problem is, that this depends on the previous parameter setting. When the data changes
its behaviour over time, this good result is lost. For the data set 2 paramters µ and σ
can be set in a way, that the algorithm finds almost all the adjacency relations after half
the time. But since the data changes, those parameters suddenly are not appropriate any
more and the primary correct guess gets worse.
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Figure 6.2: Data set 2: Remaining error for different shapes parametrized by µ and σ.
The curves are at 2%, 4%, 6%... errors.

6.3 Number of events

Also the number of events needed to reach a certain level of correctness differs. We set
the level at 7/8 of the correctly guessed adjacency relations.
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Figure 6.3: Data set 1: Number of events needed to guess 7/8 of the adjacencies correctly.
The curves are at 1.3M, 1.35M, 1.4M... events.

This plots show clearlier, that the rectangular shape is less performant than the others:
The Gaussian and triangular function need only 1.3 million events whereas the rectangular
needs 1.4 million.
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Figure 6.4: Data set 2: Number of events needed to guess 7/8 of the adjacencies correctly.
The curves are at 400K, 450K, 500K events.

In the second data set the rectangle needs as best result only 1% more events than
the other shapes, but the other shapes are more stable. As you can see, the rectangle
with mean at 7 ms and the huge variance does not even let the algorithm reach the level
of 7/8 correct adjacency relations: this edge is cut off from the graph. The Gaussian and
triangular shape on the other hand can cope even with this extremal values.
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6.4 Time

The processing time is linear to the learning window size. The smaller the chosen learning
window is, the faster the data is processed. As the dependency is only linear, there is no
need to keep the learning window small.

The following figure shows a histogram plot of the utilization for the adjacency esti-
mation based on the data set 1 with a Gaussian with µ = 6.5ms and σ = 0.8ms. The
utilization is calculated by division of the time needed to process an event packet by the
timespan between the timestamp of the processed events in the packet.
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Figure 6.5: Utilization of the computer

Figure 6.4 show histogram plots of the logarithm of the utilization values (logarithm
to the base of 2). The data set 1 with µ = 6ms and σ = 0.8ms has been taken. Since the
Gaussian curve is cached in a lookup table, the three histograms do not differ much.
But we can see that the utilization sometimes is bigger than 1: its logarithm is more than
0. This exceeding part is 14% for the rectangular shape, 19% for the triangle and 20%
for the Gaussian. It higly depends on the chosen parameters.

To improve the realtime performance of the algorithm, one could change it to ignore
any events as the utilization tends towards 1. We already tried out a simple version of
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such an extension. But it seems, that a utilization prediction is needed to overcome this
issue.
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Conclusion

As we have seen, the algorithm presented gives us the ability to learn the adjacency
relations of the nodes in a sensor network, while the data is gathered. And with a
Gaussian or triangular function as shape of the learning window, the error rate of the
estimation is quite small even if their parameters are not set precisely. The rectangular
shape does not bring equally good results.
Our implementation in Java monitors the learning process in realtime. So there is a tool,
which lets us study the learning performance for different parameters and which can also
easily be extended.

There are several issues left, that are not yet addressed in the current algorithm. The
learning window, so the weight updating rule, must be parametrized in ahead: The algo-
rithm does not adapt to the data. It would be great to have such an adaptive algorithm.
This is probably possible by checking the input data against the model guessed from the
previous data.
The algorithm does in general not use the model to improve the estimation process –
apart from this experimental reinforcement. And it is also only a very simple model. One
could imagine to use the weight matrix to really construct the topology. I presume that
such an abitration of the neighbors, which depends on guess of the overall topology, would
lead to much better results.
There is also the issue of perpetual growing weights left. A logarithmic fall back would
be nice in terms of the algorithmic complexity, but would possibly lead to poor results.
Maybe mit would be feasible to implement a rule that normalizes the weights implicitly,
like Oja’s rule [7] (for rate based learning) or the Riccati rule for spiking neurons [6].
The algorithm does not adapt itself to the realtimeness: it should be easy to change the
domain of the learning window function upon realtime performance.

This work once more was instructive to me: it gave me a chance to get a glimpse of
what other engineers do and how I can contribute. A also learnt a lot on neural network
models and realtime visualization in OpenGL. I would like to thank Kynan Eng and Paul
Rogister for helping me and guiding me through this work.
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Appendix A

The Code

/*

* TopologyTracker.java

*

* contains the classes TopologyTracker and TopologyTracker.Monitor.

* A TopologyTracker makes a guess of the adjacency matrix of the pixels

* by tracking the events coming from the pixels.

* The monitor is used to display the algorithms progress and current state.

*

* Semester project Matthias Schrag , HS07

*/

package ch.unizh.ini.caviar.eventprocessing.tracking;

import ch.unizh.ini.caviar.chart.Axis;

import ch.unizh.ini.caviar.chart.Category;

import ch.unizh.ini.caviar.chart.VectorFieldChart;

import ch.unizh.ini.caviar.chart.VectorSeries;

import ch.unizh.ini.caviar.chart.XYChart;

import ch.unizh.ini.caviar.chip.AEChip;

import ch.unizh.ini.caviar.event.BasicEvent;

import ch.unizh.ini.caviar.event.EventPacket;

import ch.unizh.ini.caviar.event.TypedEvent;

import ch.unizh.ini.caviar.eventprocessing.EventFilter2D;

import ch.unizh.ini.caviar.chart.Series;

import java.awt.BorderLayout;

import java.awt.GridLayout;

import java.io.BufferedWriter;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Observable;

import java.util.Observer;

import java.util.Random;

import java.util.Vector;

import javax.swing.JFrame;

import javax.swing.JPanel;

/**

*

* @author Matthias

*/

public class TopologyTracker extends EventFilter2D implements Observer {

protected static final int DEFAULT_NEIGHBORHOOD_SIZE = 4;

protected static final int DEFAULT_MAX_SQUARED_NEIGHBORHOOD_DISTANCE = 1;

protected static final float DEFAULT_LEARNING_WINDOW_CENTER = 5.0f; // 5 ms per default

protected static final float DEFAULT_LEARNING_WINDOW_STANDARD_DEVIATION = 1.0f; // 1 ms standard deviation

protected static final int MAX_SIZE_X = 64;

protected static final int MAX_SIZE_Y = 64;

protected static final int BUFFER_SIZE = 10000; // the number of events in event window

protected static final int NO_LABEL = -1;

protected static final int NO_TIMESTAMP = Integer.MIN_VALUE;

protected static final byte NO_TYPE = -1;

protected static final float INITIAL_WEIGHT = 1.0f;

protected static final float BELL_CURVE_SIZE = 2.5f;

protected static final int BELL_CURVE_RESOLUTION = 1000;

protected static final float[] BELL_CURVE = new float [(int) (BELL_CURVE_SIZE * BELL_CURVE_RESOLUTION )]; // the Gaussian in range [ 0 .. 2.5 sigma [

/**

* Event source data structures.

*/

protected AEChip chip;

protected int sizeX , sizeY; // needed for labelling

protected int minX , minY; // needed to filter out subrange

protected int maxX , maxY; // needed to filter out subrange

/**

* The event window with fixed events count <code >windowSize </code >.
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* An event consists of its source and timestamp , both stored in simultaneous arrays.

* <code >eventsIndex </code > denotes the index of the current event.

*/

protected int[] eventsSource; // the labels of the nodes in event window

protected int[] eventsTimestamp; // the timestamp of the events in event window

protected byte[] eventsType; // the type of the event: ON|OFF

protected int eventWindowBegin = 1;

protected int eventWindowEnd = BUFFER_SIZE;

protected int eventIndex; // the index of the inserted event

protected long current; // the number of events passed

/**

* Algorithm parameters.

*/

protected int learningWindowShape;

protected float learningWindowMean;

protected float learningWindowStandardDeviation;

protected int neighborhoodSize;

protected boolean inhibit2ndOrderNeighbors;

protected boolean symmetricPlasticityChange;

protected float reinforcement;

private boolean ignoreReset;

/**

* Monitor parameters.

*/

protected int maxSquaredNeighborDistance;

protected boolean showStatus;

protected boolean showFalseEdges;

protected boolean onResetWriteStatsAndExit;

/**

* Algorithm data structures.

*/

protected float [][] weights; // the adjacency guess

protected int [][] neighbors; // the current neighbors guess

protected float learningWindowBegin;

protected float learningWindowEnd;

/**

* The monitor and stat data.

*/

protected Monitor monitor;

protected Vector <String > params;

protected Vector <String > stat;

protected ArrayList <Float > utilizationStat;

protected long startTime;

protected JFrame window;

/**

* Create a new TopologyTracker

*/

public TopologyTracker(AEChip chip) {

super(chip);

this.chip = chip;

initFilter ();

/* read alogorithm parameters */

neighborhoodSize = getPrefs (). getInt (" TopologyTracker.neighborhoodSize", DEFAULT_NEIGHBORHOOD_SIZE );

setPropertyTooltip (" neighborhoodSize", "Number of neighbors a single pixel can have .");

maxSquaredNeighborDistance = getPrefs (). getInt (" TopologyTracker.maxSquaredNeighborDistance", DEFAULT_MAX_SQUARED_NEIGHBORHOOD_DISTANCE );

setPropertyTooltip (" maxSquaredNeighborDistance", "[ monitor] Maximum squared distance between two neighbors. If neighborhoodSize is 4: choose 1; if 8: choose 2.");

learningWindowShape = getPrefs (). getInt (" TopologyTracker.learningWindowShape", 2);

setPropertyTooltip (" learningWindowShape", "Shape of the learning window [0= Gaussian 1= Triangle 2= Rectangle ].");

learningWindowMean = getPrefs (). getFloat (" TopologyTracker.learningWindowMean", DEFAULT_LEARNING_WINDOW_CENTER );

setPropertyTooltip (" learningWindowMean", "Center of the learning window [ms ].");

learningWindowStandardDeviation = getPrefs (). getFloat (" TopologyTracker.learningWindowStandardDeviation", DEFAULT_LEARNING_WINDOW_STANDARD_DEVIATION );

setPropertyTooltip (" learningWindowStandardDeviation", "Width of the learning window [ms].");

updateLearningWindow ();

symmetricPlasticityChange = getPrefs (). getBoolean (" TopologyTracker.symmetricPlasticityChange", true);

setPropertyTooltip (" symmetricPlasticityChange", "Update also symmetric edge in adjacency matrix .");

inhibit2ndOrderNeighbors = getPrefs (). getBoolean (" TopologyTracker.inhibit2ndOrderNeighbors", false );

setPropertyTooltip (" inhibit2ndOrderNeighbors", "Check before weight update if potential neighbor is guessed to be a 2nd -order neighbor .");

reinforcement = getPrefs (). getFloat (" TopologyTracker.reinforcement", 0.0f);

setPropertyTooltip (" reinforcement", "Reinforce edge weights of neighbors in current guess .");

ignoreReset = getPrefs (). getBoolean (" TopologyTracker.ignoreReset", true);

setPropertyTooltip (" ignoreReset", "Do not reset the filter upon reset events (but eventially write stats ).");

showStatus = getPrefs (). getBoolean (" TopologyTracker.showStatus", true);

setPropertyTooltip (" showStatus", "[ monitor] Show the algorithms status in a frame .");

showFalseEdges = false; // start without display of false edges

setPropertyTooltip (" showFalseEdges", "[ monitor] Show the false edges in a diagram .");

onResetWriteStatsAndExit = getPrefs (). getBoolean (" TopologyTracker.onResetWriteStatsAndExit", false );

setPropertyTooltip (" onResetWriteStatsAndExit", "[stat] Log stat data to file .");

chip.addObserver(this);

monitor = new Monitor ();

window = new JFrame (" Topology Learning Progress ");

// window.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE );

window.setPreferredSize(new java.awt.Dimension (1000 , 600));

window.setLocation (200, 100); // TODO

window.setLayout(new BorderLayout ());

JPanel panel = new JPanel ();
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panel.setLayout(new GridLayout (2, 1));

panel.add(monitor.progressChart );

panel.add(monitor.utilizationChart );

window.getContentPane (). add(BorderLayout.CENTER , panel );

window.getContentPane (). add(BorderLayout.EAST , monitor.vectorChart );

window.pack ();

window.setVisible(showStatus );

}

/**

* @see EventFilter.initFilter ()

* this should allocate and initialize memory:

* it may be called when the chip e.g. size parameters are changed after creation of the filter

*/

public void initFilter () {

/* set up constants */

double x = 0.0f;

for (int i = 0; i < BELL_CURVE.length; i++) {

BELL_CURVE[i] = (float) (Math.exp(-x*x / 2) / Math.sqrt(2 * Math.PI));

x += 1.0f / BELL_CURVE_RESOLUTION;

}

/* set range */

if ((sizeX = chip.getSizeX ()) > MAX_SIZE_X) {

sizeX = MAX_SIZE_X; // limit sizeX

minX = sizeX /2;

} else {

minX = 0;

}

maxX = minX + sizeX;

if ((sizeY = chip.getSizeY ()) > MAX_SIZE_Y) {

sizeY = MAX_SIZE_Y; // limit sizeY

minY = sizeY /2;

} else {

minX = 0;

}

maxY = minY + sizeY;

if (sizeX * sizeY == 0) {

System.err.println ("Chip dimensions not found: cannot init TopologyTracker !");

return; // ERROR!

}

/* create model */

int n = sizeX*sizeY;

weights = new float[n][n];

neighbors = new int[n][ neighborhoodSize +1]; // last element is dummy

// create event arrays

eventsSource = new int[BUFFER_SIZE ];

eventsTimestamp = new int[BUFFER_SIZE ];

eventsType = new byte[BUFFER_SIZE ];

if (ignoreReset) reset (); // ignore reset events , so do it now...

}

/**

* @see EventFilter.resetFilter ()

* should reset the filter to initial state

*/

public void resetFilter () {

/* write stats */

if (onResetWriteStatsAndExit) monitor.writeStat ();

if (ignoreReset) return;

// body

reset ();

}

/**

* Reset the filter.

*/

public void reset() {

Arrays.fill(eventsSource , NO_LABEL );

Arrays.fill(eventsTimestamp , NO_TIMESTAMP );

Arrays.fill(eventsType , NO_TYPE );

eventIndex = 0;

Random random = new Random ();

int n = sizeX*sizeY;

for (int i = 0; i < weights.length; i++) {

/* init weight */

Arrays.fill(weights[i], INITIAL_WEIGHT );

/* init neighbors randomly */

for (int rank = 0; rank < neighborhoodSize; rank ++) {

int j;

int r;

do {

j = random.nextInt(n-1); if (j >= i) j++; // random neighbor (without node itself)

for (r = 0; r < rank && neighbors[i][r] != j; r++); // check for collision

} while (r < rank); // repeat while collision

neighbors[i][rank] = j;

}

}

monitor.init ();

}

/**

* @see EventFilter.getFilterState ()

* should return the filter state in some useful form
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* @deprecated - no one uses this

*/

public Object getFilterState () {

return null;

}

/**

* Calculates the learning window begin and end.

*/

protected void updateLearningWindow () {

float halfWidth = learningWindowStandardDeviation;

switch (learningWindowShape) {

case 0: halfWidth = learningWindowStandardDeviation * BELL_CURVE_SIZE; break; // Gaussian (for 99.7%)

case 1: halfWidth = learningWindowStandardDeviation * (float) Math.sqrt (6); break; // Triangle

case 2: halfWidth = learningWindowStandardDeviation * (float) Math.sqrt (3); break; // Rectangle

default:

}

learningWindowBegin = learningWindowMean - halfWidth;

learningWindowEnd = learningWindowMean + halfWidth;

}

/**

* Core method:

* add new events to queue , learn topology

*/

public EventPacket <?> filterPacket(EventPacket <?> in) {

if (! filterEnabled) return in;

if (enclosedFilter != null) in = enclosedFilter.filterPacket(in);

assert in != null;

monitor.enter(in.getSize(), in.getLastTimestamp () - in.getFirstTimestamp ()); // begin monitored sequence

for (BasicEvent event : in) {

if (event.x < minX || event.x >= maxX || event.y < minY || event.y >= maxY) continue; // treat only events inside borders

// long start = System.nanoTime ();

/* create event (timestamp , label , type) */

int t = event.timestamp;

int i = (event.x - minX) * sizeY + (event.y - minY);

byte type = (event instanceof TypedEvent) ? (( TypedEvent) event ).type : NO_TYPE;

current ++;

/* learn topology */

int endIndex = (eventIndex + eventWindowEnd) % BUFFER_SIZE;

// iterate over previous events ...

for (int index = eventWindowBegin; index < eventWindowEnd; index ++) {

int current = (eventIndex + index) % BUFFER_SIZE;

if (eventsType[current] != type) continue; // weight change only if events have same type

// set aliases

int timestamp = eventsTimestamp[current ];

float dt = (t - timestamp) / 1000.0f; // convert from microseconds to milliseconds

if (dt < learningWindowBegin) continue;

if (dt >= learningWindowEnd) break;

int j = eventsSource[current ];

if (i == j) continue;

/* adapt weight */

float weightChange = calculateWeightChange(weights[i][j], dt);

// check if higher order neighbor

if (inhibit2ndOrderNeighbors) {

for (int rank = 0; rank < neighborhoodSize; rank ++) {

int direct = neighbors[i][rank];

for (int r = 0; rank < neighborhoodSize; rank ++) {

if (neighbors[direct ][r] == j) weightChange = 0.0f;

}

}

}

adaptWeight(i, j, weightChange );

if (symmetricPlasticityChange) adaptWeight(j, i, weightChange );

// reinforce winners

if (reinforcement > 0) {

for (int rank = 0; rank < neighborhoodSize; rank ++) {

int neighbor = neighbors[i][rank];

weights[i][ neighbor] += reinforcement; // adapt weight; does not disturb ranking of neighbors

}

}

} // improvement: adapt eventWindowSize to real time performance

eventIndex = (eventIndex - 1 + BUFFER_SIZE) % BUFFER_SIZE; // eventIndex -- (BUFFER_SIZE)

/* replace oldest event by current event */

eventsTimestamp[eventIndex] = t;

eventsSource[eventIndex] = i;

eventsType[eventIndex] = type;

}

monitor.exit ();

return in;

}

public int getNeighborhoodSize () {

return neighborhoodSize;

}

public void setNeighborhoodSize(int value) {

getPrefs (). putInt (" TopologyTracker.neighborhoodSize", value);

support.firePropertyChange (" neighborhoodSize", neighborhoodSize , value);
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neighborhoodSize = value;

}

public int getLearningWindowShape () {

return learningWindowShape;

}

public void setLearningWindowShape(int value) {

getPrefs (). putInt (" TopologyTracker.learningWindowShape", value);

support.firePropertyChange (" learningWindowShape", learningWindowShape , value );

learningWindowShape = value;

updateLearningWindow ();

}

public float getLearningWindowMean () {

return learningWindowMean;

}

public void setLearningWindowMean(float value) {

getPrefs (). putFloat (" TopologyTracker.learningWindowMean", value);

support.firePropertyChange (" learningWindowMean", learningWindowMean , value);

learningWindowMean = value;

updateLearningWindow ();

}

public float getLearningWindowStandardDeviation () {

return learningWindowStandardDeviation;

}

public void setLearningWindowStandardDeviation(float value) {

getPrefs (). putFloat (" TopologyTracker.learningWindowStandardDeviation", value);

support.firePropertyChange (" learningWindowStandardDeviation", learningWindowStandardDeviation , value);

learningWindowStandardDeviation = value;

updateLearningWindow ();

}

public boolean getInhibit2ndOrderNeighbors () {

return inhibit2ndOrderNeighbors;

}

public void setInhibit2ndOrderNeighbors(boolean value) {

getPrefs (). putBoolean (" TopologyTracker.inhibit2ndOrderNeighbors", value );

support.firePropertyChange (" inhibit2ndOrderNeighbors", inhibit2ndOrderNeighbors , value);

inhibit2ndOrderNeighbors = value;

}

public boolean getSymmetricPlasticityChange () {

return symmetricPlasticityChange;

}

public void setSymmetricPlasticityChange(boolean value) {

getPrefs (). putBoolean (" TopologyTracker.symmetricPlasticityChange", value);

support.firePropertyChange (" symmetricPlasticityChange", symmetricPlasticityChange , value);

symmetricPlasticityChange = value;

}

public float getReinforcement () {

return reinforcement;

}

public void setIgnoreReset(boolean value) {

getPrefs (). putBoolean (" TopologyTracker.ignoreReset", value);

support.firePropertyChange (" ignoreReset", ignoreReset , value);

ignoreReset = value;

}

public boolean getIgnoreReset () {

return ignoreReset;

}

public void setReinforcement(float value) {

getPrefs (). putFloat (" TopologyTracker.reinforcement", value);

support.firePropertyChange (" reinforcement", reinforcement , value);

reinforcement = value;

}

public boolean getShowStatus () {

return showStatus;

}

public void setShowStatus(boolean value) {

getPrefs (). putBoolean (" TopologyTracker.showStatus", value);

support.firePropertyChange (" showStatus", showStatus , value);

showStatus = value;

window.setVisible(showStatus );

}

public boolean getShowFalseEdges () {

return showFalseEdges;

}

public void setShowFalseEdges(boolean value) {

getPrefs (). putBoolean (" TopologyTracker.showFalseEdges", value );

support.firePropertyChange (" showFalseEdges", showFalseEdges , value );

showFalseEdges = value;

if (showFalseEdges) {
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for (int i = 0; i < neighbors.length; i++) {

monitor.neighborhoodChanged(i, neighbors[i]);

}

}

}

public boolean getOnResetWriteStatsAndExit () {

return onResetWriteStatsAndExit;

}

public void setOnResetWriteStatsAndExit(boolean value) {

getPrefs (). putBoolean (" TopologyTracker.onResetWriteStatsAndExit", value );

support.firePropertyChange (" onResetWriteStatsAndExit", onResetWriteStatsAndExit , value);

onResetWriteStatsAndExit = value;

}

public void update(Observable o, Object arg) {

initFilter ();

}

/**

* Change the weight(i,j) by a certain non -negative <code >amount </code >.

*

* Guess for neighbors (neighbors with highest weights) is recalculated.

*/

private void adaptWeight(int i, int j, float amount) {

/* precondition */

assert 0 <= i && i < weights.length; // i valid node label

assert 0 <= j && j < weights[i]. length; // j valid node label

assert amount >= 0; // amount non -negative

/* raise weight by amount */

weights[i][j] += amount;

/* reestablish ranking among guessed neighbors of i */

int[] neighbor = neighbors[i];

float[] weight = weights[i];

int rank;

int higher , lower;

neighbor[neighborhoodSize] = j; // dummy at end

for (rank = 0; neighbor[rank] != j; rank ++); // find node j in neighbors

// re -sort neighbors in ranking

while (rank > 0 && weight[ (lower = neighbor[rank -1]) ] < weight[ (higher = neighbor[rank]) ]) {

neighbor[rank -1] = higher; neighbor[rank] = lower; // swap rank of competing neighbors

rank --;

} // post: forall j: weight[neighbor[j-1]] >= weight[neighbor[j]]

if (rank < neighborhoodSize) { // if neighbor is new ...

monitor.neighborChanged(i, j, neighbor , rank); // ... monitor correctness of new guess

if (showStatus && showFalseEdges) monitor.neighborhoodChanged(i, neighbor );

}

}

/**

* Calculate a weight change depending on timestamp differences

*/

private float calculateWeightChange(float weight , float dt) {

if (dt < 0) return 0.0f;

float halfWidth = learningWindowMean - learningWindowBegin;

switch (learningWindowShape) {

case 0: // Gaussian

float x = Math.abs((dt - learningWindowMean) / learningWindowStandardDeviation );

int i = (int) (x * BELL_CURVE_RESOLUTION );

if (i < BELL_CURVE.length) return BELL_CURVE[i] / learningWindowStandardDeviation;

else return 0.0f; // round to zero for dt - mu >= BELL_CURVE_SIZE*sigma (==2.5* sigma)

case 1: // Triangle

if (dt < learningWindowMean) return (dt - learningWindowBegin) / halfWidth / halfWidth;

else return (learningWindowEnd - dt) / halfWidth / halfWidth;

case 2: // Rectangle

return 0.5f / halfWidth;

default:

return 0.0f;

}

}

/**

* The Monitor class.

*

* A monitor knows the structure of the pixels in ahead and can therefore display the progress.

*

* Remark: The outer class (TopologyTracker) does not access any non -public fields/methods.

*/

public class Monitor {

public final int DISPLAY_FREQUENCY = 30;

private int inputDuration; // current time span of input timestamps

private int referenceTime; // current begin time in microseconds

private int displayTime = Integer.MIN_VALUE;

private float correctNeighbors;

private float totalNeighbors;

private float currentBest;

private float outstanding;

/** The monitor ’s view */

public float time = 0;
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public Series progress;

public Series utilization;

public VectorSeries [] rankedErrors;

private Category progressCurve;

private Category utilizationCurve;

private Category windowSizeCurve;

private Category [] rankedErrorVectors;

private Axis timeAxis;

private Axis xAxis;

private Axis yAxis;

/** The charts */

public XYChart progressChart;

public XYChart utilizationChart;

public VectorFieldChart vectorChart;

/**

* Create a new Monitor

*/

public Monitor () {

progress = new Series (2);

utilization = new Series (2);

rankedErrors = new VectorSeries[neighborhoodSize ];

timeAxis = new Axis(-1000, 0); // display 1000 event packets

timeAxis.setTitle ("t");

timeAxis.setUnit ("ms");

Axis ratio = new Axis(0, 1);

ratio.setUnit ("%");

ratio.setTitle ("");

xAxis = new Axis ();

yAxis = new Axis ();

progressCurve = new Category(progress , new Axis[] {timeAxis , ratio });

progressCurve.setColor(new float[] {0.0f, 0.0f, 1.0f});

utilizationCurve = new Category(utilization , new Axis[] {timeAxis , ratio });

utilizationCurve.setColor(new float [] {0.8f, 0.8f, 0.8f});

rankedErrorVectors = new Category[rankedErrors.length ];

progressChart = new XYChart (" Progress ");

progressChart.addCategory(progressCurve );

utilizationChart = new XYChart (" Utilization ");

utilizationChart.addCategory(utilizationCurve );

vectorChart = new VectorFieldChart (" Errors ");

}

public void init() {

// init statistics

params = new Vector <String >();

stat = new Vector <String >();

utilizationStat = new ArrayList <Float >();

startTime = System.currentTimeMillis ();

// remember sizeX and sizeY are unknown upon construction: set it now

xAxis.setRange (-0.5, sizeX -0.5);

yAxis.setRange (-0.5, sizeY -0.5);

for (int i = 0; i < rankedErrors.length; i++) {

rankedErrors[i] = new VectorSeries(sizeX , sizeY);

}

for (int i = 0; i < rankedErrors.length; i++) {

rankedErrorVectors[i] = new Category(rankedErrors[i], new Axis[] {xAxis , yAxis });

rankedErrorVectors[i]. setColor(new float[] {1.0f, 0.0f, 0.0f});

}

for (Category c : rankedErrorVectors) {

vectorChart.addCategory(c);

}

totalNeighbors = neighborhoodSize * (sizeX -1)*( sizeY -1);

correctNeighbors = 0;

for (int i = 0; i < neighbors.length; i++) {

int last = neighborhoodSize;

/* adapt neighborhood size at borders */

int x = i / sizeY;

int y = i % sizeY;

if (x == 0 || x == sizeY -1) last = (last / 2) + 1;

if (y == 0 || y == sizeY -1) last = (last / 2) + 1;

/* check for accidental initial correct guesses */

for (int rank = 0; rank < last; rank ++) {

if (adjacent(i, neighbors[i][rank ])) correctNeighbors ++;

}

}

outstanding = 1.0f;

displayTime = (int) (System.nanoTime () / 1000);

}

/**

* Begin monitoring sequence.

*/

public void enter(int inputSize , int inputDuration) {

this.inputDuration = inputDuration;

referenceTime = (int) (System.nanoTime () / 1000); // start timer ...
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}

/**

* End monitoring sequence.

*/

public void exit() {

/* calculate parameters */

int now = (int) (System.nanoTime () / 1000);

float utilization = (float) (now - referenceTime) / (float) inputDuration;

/* update display data */

time += 1;

this.utilization.add(time , utilization );

this.progress.add(time , correctNeighbors / totalNeighbors );

progressCurve.getDataTransformation ()[12] = -time; // hack: shift progress curve back

utilizationCurve.getDataTransformation ()[12] = -time; // hack: shift utilization curve back

/* update display if needed */

if (now >= displayTime) {

progressChart.display ();

utilizationChart.display ();

if (showFalseEdges) vectorChart.display ();

displayTime += 1000000 / DISPLAY_FREQUENCY;

}

/* check for current best value */

if (correctNeighbors > currentBest) {

currentBest = correctNeighbors;

if (onResetWriteStatsAndExit) {

if (outstanding == 1.0f) {

params.add (""); // data set

params.add(learningWindowShape == 0 ? "Gaussian" : learningWindowShape == 1 ? "Triangle" : "Rectangle ");

params.add(String.valueOf(learningWindowMean ));

params.add(String.valueOf(learningWindowStandardDeviation ));

params.add (""); // reinforcement

params.add(String.valueOf(neighborhoodSize ));

params.add(inhibit2ndOrderNeighbors ? "On" : "Off");

outstanding /= 2;

} else if (1.0f - currentBest/totalNeighbors <= outstanding) {

stat.add(String.valueOf(current ));

outstanding /= 2;

}

if (utilizationStat != null) utilizationStat.add(utilization );

}

}

}

/**

* Write the stat data to ’topologyLearningStats.csv ’.

*/

public void writeStat () {

if (params.isEmpty ()) return; // nothing to write

try {

String fieldSeparator = ",";

BufferedWriter statFile = new BufferedWriter(new FileWriter (" topologyLearningStats.csv", true ));

for (String param : params) statFile.write(param + fieldSeparator );

statFile.write (100.0f - monitor.currentBest / monitor.totalNeighbors * 100.0f + "%");

for (String date : stat) statFile.write(fieldSeparator + date);

statFile.newLine ();

statFile.flush ();

if (utilizationStat != null) {

statFile = new BufferedWriter(new FileWriter (" utilization.csv", false ));

for (Float util : utilizationStat) {

statFile.write(String.valueOf(util ));

statFile.newLine ();

}

statFile.flush ();

}

System.out.println(String.valueOf (( System.currentTimeMillis () - startTime )) + " ms.");

System.exit (0);

} catch (IOException e) { throw new RuntimeException (); }

}

/**

* Checks if two nodes are adjacent.

*/

protected boolean adjacent(int i, int j) {

if (i == j) return false;

int dx = j / sizeY - i / sizeY;

int dy = j % sizeY - i % sizeY;

return dx*dx + dy*dy <= maxSquaredNeighborDistance;

}

/**

* Event handler on changed neighbor.

* Nodes at the border ignore inexistent higher ranked neighbors.

*/

public void neighborChanged(int i, int newNeighbor , int[] neighbors , int rank) {

assert newNeighbor == neighbors[rank];

int last = neighborhoodSize;

// /* adapt neighborhood size at borders */

// int x = i / sizeY;

// int y = i % sizeY;

// if (x == 0 || x == sizeY -1) last = (last / 2) + 1;

// if (y == 0 || y == sizeY -1) last = (last / 2) + 1;
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// if (rank >= last) return;

/* TODO: at the moment neighbors of border nodes do not have to be inside neigbors [0..last -1]

but only inside neighbors [0.. neighborhoodSize -1] */

/* check for changes in correctness */

if (adjacent(i, newNeighbor )) {

if (! adjacent(i, neighbors[last ])) correctNeighbors ++;

} else if (adjacent(i, neighbors[last ])) {

if (! adjacent(i, newNeighbor )) correctNeighbors --;

}

}

/**

* Event handler on changed neighbor ranking.

*/

private void neighborhoodChanged(int i, int[] neighbors) {

int last = neighborhoodSize;

int xi = i / sizeY;

int yi = i % sizeY;

if (xi == 0 || xi == sizeY -1) last = (last / 2) + 1;

if (yi == 0 || yi == sizeY -1) last = (last / 2) + 1;

for (int rank = 0; rank < last; rank ++) {

int j = neighbors[rank];

int dx = j / sizeY - i / sizeY;

int dy = j % sizeY - i % sizeY;

if (dx*dx + dy*dy <= maxSquaredNeighborDistance) j = i; // hide correct edges

// calculate (x,y) position of j

int xj = j / sizeY;

int yj = j % sizeY;

// set vector target to j

rankedErrors[rank].set(i, xj, yj);

}

}

}

}
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