
Wiring Considerations in Analog VLSI Systems, with

Application to Field-Programmable Networks

Thesis by
Massimo Antonio Sivilotti

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California USA

1991

(Defended July 17, 1990)

ii

c©1991
Massimo Antonio Sivilotti

All rights reserved

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 iii

Acknowledgments

I am greatly indebted to Carver Mead, whose unfailing support and guidance through the
long years made this work possible. His insight and encouragement were critical components
in the process of my learning to do research. The environment that he created for his
students was rich and fertile; in leading by example, Carver is a role model for all of us.

I would also like to thank my committee, Professors Yaser Abu-Mostafa, Al Barr, Sandeep
Bhatt, Alain Martin, and Carver Mead, for their helpful comments and patient review of
this thesis. Their office doors were always open to me, despite pressing commitments and
demanding students of their own. It was an honor, and a privilege, to work with these
gentlemen.

I owe much gratitude to my colleagues and fellow students in Carver’s research group. In
particular, the early work on implementations of neural networks was done in conjunction
with Michael Emerling. The later work on self-timed retinal architectures was a collabora-
tion with Misha Mahowald. In the intervening years, countless discussions with Steve De-
Weerth, Michael, Tor Lande, Mary Ann Maher, Misha, John Tanner and John Wawryznek
helped shape my research. Thanks also to the countless people who braved my design tools;
even though I was not always as sympathetic as I should have been, their suggestions made
it possible for all of us to get real chips done.

I owe what sanity I have today to a fabulous set of friends. Biking, hiking, camping,
cooking, “Friday Lunching,” WallyBall, indeed... Nan, Andy, SteveB, SteveD, Michael,
JohnT, JohnW... what can I say? And what can I say about Ruth, other than, without
her constant love and understanding, I would not be writing these words today?

Finally, I must acknowledge the moral support of my family, without which the long journey
to Southern California would have been much more difficult.

This research was supported by the System Development Foundation and the Office of Naval
Research, and by equipment grants from Hewlett-Packard. Integrated circuit fabrication
was generously provided by MOSIS. I was personally supported by NSERC and IBM, for
which I am grateful.

iv

Abstract

This thesis develops a theoretical model for the wiring complexity of wide classes of systems,
relating the degree of connectivity of a circuit to the dimensionality of its interconnect
technology. This model is used to design an efficient, hierarchical interconnection network
capable of accommodating large classes of circuits. Predesigned circuit elements can be
incorporated into this hierarchy, permitting semi-customization for particular classes of
systems (e.g., photoreceptors included on vision chips). A polynomial-time programming
algorithm for embedding the desired circuit graph onto the prefabricated routing resources
is presented, and is implemented as part of a general design tool for specifying, manipulating
and comparing circuit netlists.

This thesis presents a system intended to facilitate analog circuit design. At its core is a
VLSI chip that is electrically configured in the field by selectively connecting predesigned
elements to form a desired circuit, which is then tested electrically. The system may be
considered a hardware accelerator for simulation, and its large capacity permits testing
system ideas, which is impractical using current means. A fast-turnaround simulator per-
mitting rapid conception and evaluation of circuit ideas is an invaluable aid to developing
an understanding of system design in a VLSI context.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 v

We have constructed systems using both reconfigurable interconnection switches and laser-
programmed interconnect. Prototypes capable of synthesizing circuits consisting of over
1000 transistors have been constructed. The flexibility of the system has been demonstrated,
and data from parametric tests have proven the validity of the approach.

Finally, this thesis presents several new circuits that have become key components in many
analog VLSI systems. Fast, dense and provably safe one-phase latches and hierarchical
arbiters are presented, as are a low-noise analog switch, an isotropic novelty filter, a dense,
active high-resistance element, and a subthreshold differential amplifier with a large linear
input range.

vi

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 vii

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

1.1 Reader’s road map . 2

2 A Novel Associative Memory Implemented Using Collective Computa-
tion 4

2.1 Introduction . 4

2.2 The Content-Addressable Memory . 5

2.3 The Hopfield Model for Collective Systems 6

2.3.1 A Continuous Model . 7

2.4 VLSI Considerations . 9

2.4.1 Cost . 9

2.4.2 Power . 9

2.4.3 Parameter Variation . 10

2.5 Design and Fabrication of a VLSI Implementation 11

2.5.1 Design of the Active Elements . 11

viii

2.5.2 Resistive Interconnect . 13

2.5.3 Programming the Tij Elements . 14

2.6 Fabrication History . 15

2.7 Experimental Results . 17

2.8 High-Density Preprogrammed Associative Memories 22

2.9 Summary . 24

3 A Theoretical Model for Estimation of Circuit Wiring Density 27

3.1 Introduction . 27

3.2 Rent’s Rule . 28

3.3 An Operational Definition of Optimal Design 28

3.4 A Model for Circuit Connectivity . 31

3.5 Contact Density . 32

3.6 Limits on Wire Length . 33

3.6.1 Area Limits on Average Wire Length 40

3.7 Summary . 40

4 A Dynamically Configurable Architecture for Prototyping of Analog Cir-
cuits 41

4.1 Introduction . 41

4.2 Connectivity of Circuits . 43

4.3 Hierarchy and Abstraction in System Design 46

4.4 Embedding a Circuit Graph . 47

4.5 Interconnect Switches . 48

4.5.1 Reconfigurable Interconnect Switches 48

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 ix

4.5.2 Scaling of Transmission Gate Transistors for Maximum Linearity . . 49

4.5.3 A High-Density Nonvolatile Switch Technology 50

4.6 Compiling a PROTOCHIP . 53

4.6.1 Leaf Cells . 53

4.6.2 Physical Placement of Leaves and Interconnect 59

4.7 Experiments with the PROTOCHIP . 61

4.8 Summary . 65

5 Specification of Netlists, Testing of Graph Isomorphism, and Embedding
of Circuits onto the PROTOCHIP 68

5.1 NETGEN: A Netlist-Specification Language 69

5.1.1 Natural Support for Common Design Styles 70

5.1.2 NETGEN’s Internal Representation 70

5.1.3 A Simple Model for Placement and Interconnect 71

5.1.4 Scoping Rules for Identifiers . 72

5.1.5 Summary . 74

5.2 Netlist Comparison for Validation of VLSI Systems 76

5.2.1 Previous Work . 76

5.2.2 Testing of Graph Isomorphism . 77

5.2.3 Enhancements to the Algorithm . 83

5.2.4 Implementation and Experience . 86

5.2.5 Summary . 90

5.3 A Bottom Up Graph-Embedding Algorithm 91

5.4 A Fast Greedy Algorithm for Graph Embedding 96

x

5.4.1 Greedy Graph Partitioning . 96

5.4.2 Analysis of the Greedy Algorithm for Random Graphs 97

5.4.3 Summary . 103

6 Novel Circuits 105

6.1 An Isotropic Novelty Filter . 107

6.1.1 Series MOS Transistors with Back-Gate Effect 107

6.1.2 Multiple Differential Pair Circuit . 108

6.1.3 Summary . 110

6.2 A Low-Noise Sampling Circuit . 111

6.2.1 Estimation of Time Derivatives Using Discrete Differences 111

6.2.2 Established Circuits for Sampling of Voltages 112

6.2.3 A Circuit for Reduced Charge Injection 113

6.2.4 A Low-Noise Discrete-Time Differentiator 117

6.3 A Single-Phase Latch . 119

6.3.1 A Level-Sensitive Latch . 119

6.3.2 An Edge-Sensitive Latch . 121

6.3.3 Analysis of the Edge-Sensitive Latch 122

6.3.4 Single Phase Toggle Flip-Flops . 124

6.3.5 Asynchronous Up–Down Counters 126

6.4 A Self-Timed Retina Design Frame . 132

6.4.1 Designing An Efficient Arbiter . 133

6.5 Summary . 139

7 Conclusions 141

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 xi

List of Figures

2.1 Hopfield’s neural network model. 8

2.2 Full-wafer current variation in 3x3 micron MOS transistors. 10

2.3 Drain current variation in adjacent 3x3µ MOS transistors. 11

2.4 Drain current variation in adjacent 24x24µ MOS transistors. 11

2.5 ASSOCMEM architecture, and outer-product programming. 12

2.6 Dual-rail signal representation. 12

2.7 ASSOCMEM neuron element. 13

2.8 Tii element schematic. 14

2.9 Resistive interconnect. 15

2.10 Programming the Tij matrix. 16

2.11 Schematic of Tij element. 17

2.12 The ASSOCMEM. 18

2.13 Tii transfer characteristic. 19

2.14 Ring oscillator. 20

2.15 Ring oscillator periods. 20

2.16 ASSOCMEM convergence properties. 21

2.17 Single-step association. 22

xii

2.18 Tij yield map. 22

2.19 Fully-connected associative memory layout strategies. 23

2.20 Subthreshold CMOS active element. 24

3.1 Estimating the number of wires crossing the perimeter. 29

3.2 A model for circuit connectivity. 30

3.3 Model for predicting distribution of wire lengths. 34

3.4 Predicted probability of wire absorption with distance. 36

3.5 Range of application of restricted model. 37

3.6 Integrand of
∫∞
r=rc

r pf (r) dr. 38

3.7 Relative error introduced by integrating model from r = 0. 39

3.8 Average wire length predicted by model. 39

4.1 The PROTOCHIP environment. 42

4.2 Hierarchical interconnect parameters. 44

4.3 Efficiency of hierarchical Rent’s rule interconnect. 46

4.4 CSRL static RAM and transmission gate switch. 49

4.5 Transmission gate small-signal resistance variation — theoretical. 51

4.6 Layout of 4× 4 laser-programmed switch matrix. 52

4.7 Photographs of laser-programmed interconnect matrix. 54

4.8 Transfer characteristic for poor inverter design. 55

4.9 Resistance of laser-programmed link. 55

4.10 Programmable analog leaf cell. 56

4.11 Wide-range transconductance amplifier. 57

4.12 NAND gate implemented with analog leaf. 57

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 xiii

4.13 Tradeoff between inputs and outputs in digital leaf. 58

4.14 Binary H-tree hierarchical interconnect structure. 59

4.15 Photomicrograph of first PROTOCHIP. 60

4.16 Transmission gate small-signal resistance variation — experimental. 61

4.17 Scaling transistors to compensate for capacitance of interconnect. 62

4.18 Inverter with transmission gates in series with high-current path. 63

4.19 Transfer curve for inverter in Figure 4.18. 63

4.20 Effective large-signal resistance of transmission gates in Figure 4.18. 64

4.21 Transfer curve for an inverter designed with no transmission gates in series
with high-current path. 64

4.22 A follower–integrator delay line constructed of first-order sections. 65

4.23 Waveform delay as a function of distance down the delay line of Figure 4.22. 66

4.24 Waveform risetime as a function of delay. 66

5.1 NETGEN internal representation. 71

5.2 The connect operator on lists. 72

5.3 NETGEN place operator. 73

5.4 Dynamic scoping of identifiers. 74

5.5 X Window System interface to NETGEN. 75

5.6 Transforming a circuit into a graph – 1. 77

5.7 Transforming a circuit into a graph – 2. 78

5.8 Simplified NETCMP algorithm. 79

5.9 Failure of the graph partitioning algorithm. 80

5.10 Sample output from NETCMP. 81

xiv

5.11 Nearly-symmetric circuits yield hard-to-find errors. 82

5.12 An And-Or-Invert (AOI) gate. 85

5.13 The NETCMP datastructure. 86

5.14 AOI gate node count. 88

5.15 Failure of NETCMP algorithm on a real circuit. 89

5.16 Embedding a one-phase CSRL toggle flip-flop. 93

5.17 Output from bottom-up graph embedding algorithm. 94

5.18 Complexity of circuit partitioning. 94

5.19 Treatment of shared nodes by embedding algorithm. 95

5.20 Breadth-first graph traversal. 96

5.21 Analysis of greedy algorithm. 98

5.22 Graph bisection by greedy algorithm. 102

5.23 Graph bisection by simulated annealing. 104

6.1 Series MOS transistor chain. 108

6.2 Novelty filter circuit. 109

6.3 Approximating derivatives with finite differences. 112

6.4 Compensating for charge injection noise. 113

6.5 A model for MOS channel-charge injection. 114

6.6 Low-noise sample-and-hold circuit. 115

6.7 Analysis of low-noise sample-and-hold circuit. 116

6.8 The discrete-time differentiator. 117

6.9 Operation of the low-noise discrete-time differentiator. 118

6.10 Single CSRL stage. 120

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 xv

6.11 An edge-sensitive CSRL latch. 121

6.12 Minimum geometry factor for safe operation of the edge-sensitive latch. . . 123

6.13 A toggle flip-flop cell using the single-clock CSRL discipline. 124

6.14 Two-bit binary counter implemented with toggle flip-flop cells. 125

6.15 Nonrestored clock applied to toggle flip-flop cell. 125

6.16 The Gray code. 127

6.17 A scalable Gray-code counter. 128

6.18 Sample output from a Gray-code counter. 128

6.19 Synthesis of an up–down counter from two up-counters. 129

6.20 State-transition diagram for up–down counter. 130

6.21 Huffman flow table for up–down counter. 131

6.22 Simplified Huffman flow-table for up–down counter. 131

6.23 First-generation retina design frame. 132

6.24 The self-timed retina asynchronous communication protocol. 134

6.25 Self-timed retina design frame. 134

6.26 Delta-modulation cell. 135

6.27 Binary tree of 2-input arbiters. 136

6.28 The 2-input arbiter cell. 136

6.29 Equivalent circuit for arbiter in metastable state. 137

6.30 Guaranteeing safe operation of arbiter by scaling transistors. 138

xvi

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 xvii

List of Tables

2.1 Tij update operation. 16

5.1 NETCMP Performance. 87

5.2 Greedy algorithm model. 101

xviii

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 1

Chapter 1

Introduction

The inexorable demands for greater functionality, higher performance, reduced silicon area,
and lower power consumption are constantly driving advanced VLSI designs toward more
aggressive technologies. Analog networks hold great promise, as their explicit parallelism is
an obvious match for VLSI circuits. A clear advantage of such networks is a natural scala-
bility intrinsic in their computational structure. Another advantage is that analog systems
are often in a better position to exploit innovations in devices, processes and structures,
because: (1) analog circuits rely on the rich physical behavior of their components to attain
their compactness and great breadth of computational functionality, and (2) analog circuit
designers are accustomed to paying great care in interfacing components (great flexibility is
possible in the absence of rigid abstraction and composition rules). So-called neural net-
works are currently an attractive research topic. Their great potential is evidenced by the
existence of functional biological systems, able to solve complex tasks necessary to survive
in a dynamic, ill-structured, and often hostile environment. From a systems perspective,
the chief virtue of neural networks is their departure from a reliance on programming in
the conventional algorithmic sense; rather, such networks are commonly taught to solve a
problem, generally by observation of a sequence of input data that has been previously
classified by an external teacher. From an implementation perspective, these networks are
intrinsically parallel, and typically comprise large numbers of relatively simple individual
components; these characteristics make them attractive to VLSI implementation.

Because the connectivity of these networks is often explicitly determined by the neural
computation being performed (and the neural training algorithm being applied), a careful
consideration of the implications of this connectivity is both appropriate and required at
an early point in the design process. Also, as neuromorphic systems continue to increase in
sophistication, the necessity for hierarchical processing operating on evolving signal repre-
sentations will become an increasingly important research issue. In this thesis, we present
the design of a system capable of accommodating medium-scale networks by exploiting a
hierarchical interconnect strategy; this system provides a prototyping platform for testing
such hierarchical networks.

2

Aggressive designs require sophisticated and reliable design tools. Unfortunately, automated
design aids, long considered barely adequate even for traditional digital VLSI applications,
are woefully insufficient for large-scale analog systems. In particular, conventional software
simulators are too slow, have limited capacities, are inaccurate (the device models are usu-
ally for discrete, and not integrated, devices and structures) and inextensible (it is usually
difficult to improve the device models, or to add new ones) and, in general, constitute an
unfriendly design environment. Consequently, such simulators are inappropriate for test-
ing ideas relating to intermediate-scale systems. For example, analog networks, collective
systems, and adaptive control systems all require larger number of components than can
be reasonably accommodated in present circuit simulators. Also, large classes of systems
exhibit highly data-dependent operation, and require simulation of large numbers of test
cases. Even the advent of parallel circuit simulators will not solve the design bottleneck, as
the issues of accurately modeling device behavior over wide ranges, and of modeling circuit
parasitics, still remain.

The opportunity thus exists for a high-performance, high-capacity circuit simulator, with
precision and flexibility as its principal objectives, and the capability to accommodate
novel integrated structures. In this thesis, we propose such a system, built around a field-
configurable network that interconnects actual physical devices.

1.1 Reader’s road map

The first part of the thesis (Chapters 2, 3, and 4) is a discussion of the connectivity re-
quirement of regular VLSI systems. We begin by describing an early system: the first VLSI
implementation of a neural network. In particular, we discuss several implementations of
Hopfield-style associative memories, and the consequences of their full interconnect with
regard to the absolute size of viable implementations and the scalability of such networks.

We then consider one facet of the general graph embedding problem: by considering the
dimensionality of the interconnection medium, we derive wiring limits that determine im-
plementable systems. In particular, we propose a requirement for such systems: the com-
ponents within the system should be approximately uniformly distributed spatially. From
this requirement, we derive a wiring relation that is consistent with a commonly used em-
pirical relation known as Rent’s rule. Finally, we approach the wiring problem from the
perspective of permissible wire length distributions; we use our wiring model to derive the
average wire length for regularly arrayed cells, and relate this length to allowed physical
area limits.

The second part of the thesis (Chapters 4 and 5) applies these connectivity constraints
to designing an efficient, field-programmable interconnect structure intended for real-time
prototyping of medium scale analog systems (a few thousand transistors). Various aspects
of the design are discussed, including algorithms for embedding circuit graphs onto the
hierarchical interconnect, various tradeoffs in the interconnect technology (e.g., volatility,
area density, speed and ease of programming); examples of particular implementations are

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 3

presented. Test results quantifying the electrical performance of the system are presented.

The opportunity that exists for this system is to provide a fast, versatile environment
for developing and testing analog circuits. To this end, in addition to considering the
universality and functionality of the hierarchical interconnect network, we describe the
software tools that provide utility functions such as netlist specification and manipulation,
and provide a methodology for design validation in the form of testing for isomorphism
between pairs of circuit graphs. These tools are available as part of the Caltech suite of
VLSI CAD tools.

The third part of this thesis (Chapter 6) illustrates particular aspects of analog circuit design
by presenting some previously unreported circuits that have become key components in
several VLSI systems. Two of these, a single-clock-phase latch and a two-input asynchronous
arbiter, are “digital” circuits whose correct operation is guaranteed by careful consideration
of their internal analog components. Other circuits include a low-noise differentiator, built
using a low clock-feedthrough analog switch, and an isotropic novelty filter that efficiently
performs an O(N2) computation with only O(N) components. System-level applications
are also presented, including various asynchronous counters, and a self-timed retina design
frame.

4

Chapter 2

A Novel Associative Memory

Implemented Using

Collective Computation1

Nullumst iam dictum quod non dictum sit prius.

Terrence (c. 190-159 B.C.), Eunuchus. Prolog. 41

2.1 Introduction

In nature, there exist many examples of systems consisting of large numbers of individu-
ally simple elements, which interact in simple ways, yet collectively yield highly complex
behaviors. For example, soap molecules interact via local van der Waals forces, yet on a
global scale produce strikingly robust bubbles, which minimize rather sophisticated energy
functions due to surface tension. In biology, although neurons are not simple (and neither
are the mechanisms of excitation/inhibition at synapses) a similar observation is made: the
formidable macroscopic computing capability of a human brain must result from the highly
interconnected nature of the neurons. In general, specific high-level functions cannot be
attributed to a specific neuron, and furthermore it has been shown that the wiring “map”
varies considerably between individuals of the same species [?].

1Portions of this chapter have been previously published. See [?] [?] [?].

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 5

Collective systems such as these generally display a number of intriguing properties. First,
since no single element encapsulates the function of the system as a whole, they are very
robust against the failure of a subset of elements. For example, in the human brain, about
0.1% of all cells die each year, and are not replaced (that’s some 3 million per day); yet
the functionality of the brain is not noticeably impaired. This fault tolerance is in direct
contrast with our conventional design techniques for computers, where every element has
a clear function, and failure of that element is, in general, catastrophic. For this reason,
and for the obvious ability of collective systems to solve problems (e.g. vision, audition)
that are difficult for conventional computational paradigms, the understanding of collective
computations is desirable.

If computation is defined as the processing of information, there are two aspects which must
be investigated: (1) the storage of information, with the associated issue of representation,
and (2) retrieval of information, which may be considered a transformation between repre-
sentations. We will describe a specific example of a collective computation, that addresses
both of these aspects.

2.2 The Content-Addressable Memory

One of the simplest, and best understood, behaviors of collective systems is that of content-
addressable memory (CAM), or associative memory. The model we use for this association
is that of viewing the computation as an evolution in state space. The association consists
of establishing an initial condition, then evolving to a final, stable state, which we call
a memory. In some sense, this property can be considered error correction, as the initial
partial information is increased until the state of the system (which represents some encoding
of some piece of information) is fully determined.

A physical system can be used as a CAM if a specific set of states can be made to be stable,
and if the dynamics of the system guarantee evolution into one of these states. As we shall
see, an energy formulation shall prove useful to understanding the behavior of the system.

Conventional digital associative memories [Hayes, 1978] [Parhami, 1973] [Weems, 1982] have
two characteristic shortcomings: (1) the association occurs on an a priori defined key, which
must be supplied exactly, (2) resolution of multiple matches often demands an additional
serial polling algorithm (slow). In addition, they only work on digital (restored) data, and
thus are useless for recognition of patterns with grey scale. We have designed and tested a
radically new genre of associative memory. In the ASSOCMEM, association takes place
on the word as a whole; the result is the word stored in memory that is closest to the
supplied word. There is no distinction made between key and data. The convergence of the
association process is guaranteed by theory. The length of time required to perform the
association depends, in some sense, on the distance between the input and the result.

This novel behavior is obtained through the use of analog circuit techniques to perform a
“collective computation” [Hopfield, 1982]. Each bit of the word is represented by the state

6

of an active element (amplifier). These elements are interconnected in a way to make the
desired memory contents stable states of the network. An association consists of setting
the initial conditions of the network to a neutral state, then letting the network evolve to a
fixed-point.

2.3 The Hopfield Model for Collective Systems

These concepts were formalized in Hopfield’s fundamental work [?] [?]. He proposed an
algorithm to model a collective system, and derived the dynamics of this model. His first
model [?] provided for the stochastic update of binary processing elements, called “neurons”
after the model of McCulloch and Pitts [?]. An extension to the model [?] allows continuous
analog neurons, and generalizes to permit communication via “action potentials.”

The stochastic model postulates N neurons; each neuron has 2 possible output states
(Vi = −1 (“off”) and Vi = +1 (“on”)). The state of the system is characterized by
~V = (V1, V2, ..., VN). The output of each neuron is fed back to the inputs of other neu-
rons. The strength of coupling between the output of neuron j and the input of neuron i is
given by Tij – the matrix T is called the interconnect matrix.

The input to a neuron i is given by

vi =
∑

j

TijVj.

The state change in the stochastic model is determined by the following algorithm: at
random points in time, each neuron i compares its input with a threshold Ui (usually taken
to be zero, by the symmetry of the scheme), and updates its output:

Vi → +1
Vi → −1

}

if

{

vi > Ui

vi < Ui

The justification for this algorithm becomes clear once the construction of the Tij matrix is
considered. A self-reinforcement argument leads to the outer product form [?]

Tij =
∑

s

V s
i V s

j , where {V s, s = 1..M} = set of memories to be stored

but with Tii = 0. Hence,

∑

j

TijVj =
∑

s

V s
i





∑

j

VjV
s
j



 (2.1)

By statistical orthogonality between random states (a natural consequence of optimal en-
codings), the mean value of the bracketed term in Equation 2.1 is 0, unless V is near V s,

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 7

in which case this term asymptotically approaches N , as V → V s. Thus, for a state near a
memory

∑

j TijVj ≈ N V s
i , which drives Vi toward V s

i .

The stability of the system can be investigated by defining a function:

E = −1

2

∑

i

∑

j

TijViVj

For symmetric T (Tij = Tji), the ∆E due to ∆Vi is:

∆E = −∆Vi

∑

j

TijVj

Since, by the update algorithm, ∆Vi and
∑

TijVj have the same sign, E is a monotonically
decreasing function, the local minima of which constitute the memory states. By analogy
with the Ising spin model, E is an energy function for the system where Tij is the exchange
coupling. Symmetric Tij’s hence give rise to spin glasses [?], which are known to display
many stable configurations.

2.3.1 A Continuous Model

Replacing the binary neurons with elements displaying graded transfer functions, and sub-
stituting continuous time constants for the asynchronous update schedule, yields a contin-
uous system that displays similar properties [?]. Its analysis is facilitated by considering an
electrical circuit model (Figure 2.1).

Application of Kirchoff’s Current Law at each input node yields the dynamic equation:

Ci
∂vi

∂t
=
∑

j

Gij(Vj − vi) (2.2)

where Vi = g(vi). The interconnection conductance Gij plays the role of Tij . A Liapunov
energy function exists for the system:

E = −1

2

∑

i

∑

j

TijViVj +
∑

i

1

Ri

∫ Vi

0
g−1
i (V)dV (2.3)

where Ri is the input impedance seen by the input of amplifier i (1
Ri

=
∑

j Gij). The time
derivative of Equation 2.3 is (for symmetric T):

∂E

∂t
= −

∑

i

∂Vi

∂t





∑

j

TijVj −
vi

Ri





8

Vj

Gij

vi

C

Vi

g(vi)

Figure 2.1: Hopfield’s neural network model: interconnection
of active elements (neurons).

Substituting Equation 2.2 for the parenthesized expression gives

∂E

∂t
= −

∑

i

Ci
∂Vi

∂t

∂vi

∂t
= −

∑

i

Ci
∂g−1(V)

∂V

∣

∣

∣

∣

∣

Vi

(

∂Vi

∂t

)2

If g−1(V) is monotonic and increasing,

∂E

∂t
≤ 0 and

∂E

∂t
= 0 ⇒ ∂Vi

∂t
= 0, ∀i

Thus, the continuous model also describes a system which evolves towards stable states,
corresponding to local minima of an energy function.

Such associative memories have several appealing features. First, it is possible to indicate
confidence on a bit-by-bit basis, by setting the initial conditions appropriately, that is, by
making certain bits weigh more heavily, if desired. This property allows the ASSOCMEM

to accept analog inputs, thus permitting it to process image or sound data. Secondly, all the
bits are treated uniformly, in that the network does not require the distinction of a search
key from a data field in either the source or target words. The device may be thought of as
an error-correcting machine, where randomly-occurring bit errors are corrected. Thirdly,
the actual memories are stored in the interconnect in a highly redundant fashion, making
this architecture naturally fault tolerant. Simulation results have indicated that 10% to
20% of all connections may be destroyed with practically no loss of functionality. If a small
number of amplifiers are nonfunctional, they can still be “out-voted” by the rest of the
network, and errors limited to those bits only.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 9

2.4 VLSI Considerations

Since collective systems exhibit interesting global properties as a consequence of having
large numbers of individually simple elements, implementation with very large scale inte-
gration (VLSI) circuit technology appears very suitable. There are, however, a number of
technology-dependent limitations that are introduced by such a choice.

2.4.1 Cost

The principal cost measure in VLSI is area. Even with the use of die-stitching techniques,
there exists a physical limit on the maximum area a circuit can occupy. Also, the off-chip
environment is quite different from the internal circuit, for electrical reasons. This fact,
coupled with the fundamental restriction on I/O pads, makes it desirable to integrate an
entire system on a single chip.

Analog electronics, by exploiting the intrinsic physics of native devices, generally occupy
less area per function than an implementation using a digital abstraction. For example,
an analog differential-input multiplier may require as few as 8 transistors to perform the
relatively complex calculation (y = k(x1+ − x1−)(x2+ − x2−)). Furthermore, there is none
of the overhead associated with mapping what is essentially a continuous problem into a
discrete-time (sampled digital) system.

2.4.2 Power

A common complaint about analog computing elements is that their power consumption
is high, due to a desire for maximum linearity at high operating speeds, and because dis-
crete (off-chip) components present relatively highly capacitive loads. In a VLSI context,
power dissipation must be limited to a few Watts (for conventional packaging technologies).
However, collective circuits implemented entirely on one die have no requirements to drive
external loads, do not have to be particularly fast, and value symmetry much more highly
than linearity.

It is important to note that the Hopfield circuit model exhibits nonzero power dissipation
even after convergence is reached, and the computation is nominally terminated. For sys-
tems of several hundred amplifiers, it is not possible to build interconnect matrices of tens
of thousands of resistors without explicitly limiting the power consumption of the ampli-
fiers. A commonly suggested alternative, computation by current summing, is even more
impractical, as the number of (power dissipating) current injectors that must be controlled
scales with the number of synapses.

The approach we have taken to permit the implementation of large arrays is to limit the
current consumption of the amplifiers, guaranteed by keeping most of the MOS devices in

10

0

2

4

6

8

10

12

14

16

18

20

22

σ = 24.4
%

F
ra

ct
io

n
in

ra
n
g
e

(%)

Relative current difference (% of average)

-100 -80 -60 -40 -20 0 20 40 60 80 100

Figure 2.2: Full-wafer current variation in 3x3 micron MOS
transistors.

a subthreshold regime of operation [?]. For sufficiently low gate voltages (less than the
so-called “threshold voltage,” below which the digital abstraction of transistor operation
classifies the transistor as “off”), the drain current is exponential in the gate voltage. This
behavior is exactly the same (and indeed, the physics are identical) as bipolar transistors
exhibit throughout their operating range, with the additional benefit that MOS transistors
draw no gate current.

2.4.3 Parameter Variation

An additional complication is introduced in the case of very small devices, where statis-
tical or systematic doping variations can affect their transfer characteristics by significant
amounts. These variations are particularly evident in the case of fabrication lines intended
for digital chips (which are relatively insensitive to such variation). If an analog design
methodology is used that requires currents to be precisely matched or subtracted, it is un-
likely that sufficient accuracy can be obtained with single small transistors. The degree of
variation to be expected is illustrated in Figure 2.2 [?], which shows the drain currents of
identically biased MOS transistors from a typical MOSIS [?] digital process. When differ-
ences between adjacent transistor currents are taken (Figure 2.3), the variation in relative
current differences is substantial, and indicates (in this case) a fairly random process, as
opposed to some longer-range (die-scale) systematic variation. These variations can be
minimized by using larger transistors (Figure 2.4), or by relying on statistical numbers of
transistors to participate in a computation.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 11

0

2

4

6

8

10

12

14

16
Mean = −2.2%

σ = 44.8
%

F
ra

ct
io

n
in

ra
n
g
e

(%)

Relative current difference (%)
-100-80 -60-40 -20 0 20 40 60 80 100

Figure 2.3: Drain current variation in ad-
jacent 3x3µ MOS transistors.

0

2

4

6

8

10

12

14

16

18

Relative Current Difference (%
)

F
ra

ct
io

n
in

R
a
n
g
e

(%)

σ = 33.6%
Mean = −5.5%

0 20 40 60 80 100-20-40-60-80-100

Figure 2.4: Drain current variation in ad-
jacent 24x24µ MOS transistors.

Furthermore, it is clear that a computational scheme must be designed that is robust against
such variation, and that displays a high tolerance to noise. Such claims are commonly
made of collective systems; they must be carefully examined, however, in light of the actual
implementation.

2.5 Design and Fabrication of a VLSI Implementation

The first version of the ASSOCMEM was designed in 4µm nMOS technology, and has a
dynamically programmable full interconnect. Consequently, every amplifier must be con-
nectable to every other amplifier, dictating a mesh topology with the amplifiers on the
diagonal, and their input and output lines running orthogonal to each other. At each off-
diagonal node, an interconnection “conductance,” Gij , is located. This topology (used in
Figure 2.5) produces a two-dimensional embedding of the interconnect graph implied by
Figure 2.1.

2.5.1 Design of the Active Elements

In order to achieve a general computation, both positive and negative signals and intercon-
nect values must be representable. It is not possible to fabricate negative resistances, as
would be implied by a negative matrix element. The solution was to design the amplifiers to
take differential inputs and generate complementary outputs. These inputs may be thought
of as excitatory and inhibitory (i.e., noninverting and inverting). This duality allows us to
represent “negative” Vj ’s while using only positive signals. Also, it guarantees symmetry
between “positive” and “negative” Vj ’s, since they are in fact the same voltage, merely on
different lines (Figure 2.6). The matched parameters of VLSI devices ensure a high CMRR
for this configuration.

This dual-rail voltage representation on both input and output to the active elements greatly

12

~v × ~v = −1

+1

+1

+1+1

+1

−1

−1 −1

+1

+1

−1

−1

−1 −1
~v = (+1, −1, −1)

Figure 2.5: ASSOCMEM architecture, and reinforcement of
stable state with interconnect matrix generated by outer
product technique (guaranteeing the symmetry property
Tij = Tji).

Vi

Vi

vi vi

Figure 2.6: Dual-rail signal representation.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 13

vi vi

Vi

Vi

Figure 2.7: ASSOCMEM neuron element, with variable feed-
back in Tii.

simplifies their design. The only constraint on the transfer function g(vj) is monotonicity
(to guarantee convergence, by the energy theorem), and that the gain be sufficiently large.
A loop gain of greater than 1 is required to create distinct stable states; a high gain guaran-
tees that all outputs will be driven to the rails. We chose to implement the amplifiers with
the simplest circuit element possible: an nMOS depletion-load inverter (Figure 2.7). Two
inverters are required for each amplifier: one between the noninverting input and the com-
plemented output, and one between the inverting input and the uncomplemented output.
Note that feedback through the matrix is required to ensure that the amplifier outputs are
indeed complementary. If the two inverters are replaced by a pair of cross-coupled NOR
gates (i.e., a simple SR flip-flop), this complementarity can be enforced at each diagonal
(Tii) element.

The design that was implemented allowed for both modes of operation to be tested, by
providing a variable strength cross-connection (CROSS COUPLE) between the two invert-
ers. The circuit diagram for the Tii element is shown in Figure 2.8. Two pass transistors,
gated on Φ1, allow the inputs of the amplifier to be latched. This capability is required
for programming the interconnection matrix, and is desirable to halt the operation of the
memory, for test purposes.

2.5.2 Resistive Interconnect

The resistive coupling, representing the Gij matrix, is provided by pass transistors, which
constitute the functional part of the “Gij Element” (Figure 2.9), located at every off-

14

CROSS COUPLE

v

v

V

V

Φ1 Φ1

Figure 2.8: Tii element schematic.

diagonal location of the chip. These pass transistors are controlled by the tri-flop Tij cell,
which provides three interconnection strengths (+1, 0, −1). When Tij = +1, the + output
of amplifier j is connected to the + input of amplifier i (excitation), and the − output is
connected to the − input of the respective amplifiers (negative inhibition⇒ excitation); the
opposite is true for Tij = −1. If Tij = 0, all transistors are disconnected, and amplifier j
has no direct influence on amplifier i. Each pass transistor is in series with an ENABLE
transistor that allows the matrix to be selectively disengaged, providing a “single-step”
operation.

2.5.3 Programming the Tij Elements

The associative memory can be programmed to have a particular vector as a stable state
by adding the outer product of that vector with itself to the existing T matrix. In the
ASSOCMEM, this operation is a primitive of the hardware, and has been generalized to
allow taking outer products of any two vectors. The components of the outer product are
produced in place at the Tij element where they are required, by placing one vector on the
horizontal signal lines, and the other on the vertical lines. This calculation requires only a
1-bit by 1-bit multiplication (for vectors containing +1 and −1 exclusively), which can be
implemented by an AND structure (Figure 2.10). The result of the correlation is added to
the present contents of the Tij cell, and the result is stored in the tri-flop Tij latch.

The addition operation is truncated, and the behavior is described in Table 2.1. It should
be noted that this operation is not associative (the final matrix depends on the order in
which the memories were added); however, the symmetry of the final matrix is guaranteed

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 15

+1 −1

ENABLE (Φ2)
vj vj

Vi

Vi

Tij

Figure 2.9: Resistive interconnect.

(since all intermediate sums comprised symmetric matrices, in the case of outer products
taken of a vector with itself).

The effect of truncating the matrix in this fashion was one aspect of the theory we were
interested in investigating. Software simulation of this scheme indicated that little function-
ality would be lost, in the case of uncorrelated memories (memories sufficiently far apart in
Hamming space, so that no small number of bits become crucial in differentiating between
them).

The complete schematic of the Tij element, and the interconnection “resistors,” is shown in
Figure 2.11. It should be pointed out that all but four of the transistors are required just
to implement the programmability of the ASSOCMEM. In many applications, the inter-
connect matrix could be determined a priori, and the chip fabricated to this specification.
We estimate that 100 times as many active elements could be fabricated within the same
die size, for a predetermined function.

2.6 Fabrication History

The first version of this chip was fabricated by MOSIS, the ARPA chip broker, on run M41U,
in December 1983. It consisted of a 22 × 22 matrix, measuring 6700µm × 5700µm, and
containing over 20,000 transistors (Figure 2.12). The ASSOCMEM required 53 pads, as
both inputs of each amplifier were brought out to pads. This redundancy was incorporated
to increase flexibility in testing the chip. Only one input per amplifier is required, as the

16

vj vj

Vi

Vi

+1−1

Tij Triflop
(+1, 0,−1)

Adder

Present Next
State State

Figure 2.10: Programming the Tij matrix.

0

−1

−1

+1

0

−1

+1

+1

0

Next

State

−1 0 +1

Present S
ta

te

O
u
te

r
P

ro

duct

+1

0

−1

Table 2.1: Tij update operation.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 17

V

V

Φ2 S1

v
S1

S−1

V
v

v
L

S1

S0

Φ1

S−1Φ2

Φ1

V

S−1

S1 Φ2

V v

V v
C L L

S−1

S−1 Φ2

S1

S0

v

Figure 2.11: Schematic of Tij element. S1, S0, and S−1 are
the three state-holding nodes, C is the CLEAR line, and L
is the LOAD line.

complement could be generated on-chip.

A second version of the chip was fabricated in May 1984, correcting some defects that made
sections of the first chip nonfunctional and nonobservable. This redesign yielded testable
chips; however, the chips were returned unbonded, and only a few could be bonded locally
and tested. The yield was low, and no single project was fully functional.

The desire for a larger sample size of chips prompted a third re-submission, which incor-
porated a set of minor modifications making it possible for MOSIS to package and bond
the ASSOCMEM. This set of chips was returned in November 1984, and was subsequently
tested.

2.7 Experimental Results

The ASSOCMEM was tested on a dedicated, workstation-based functional tester. The first
sets of experiments were designed to measure the input-output characteristics of the active
elements. The input of a single Tii element was connected, (via Tij elements) to the outputs
of the other amplifiers. The output of this element was monitored for 220,000 randomly
chosen input vectors (this operation corresponds to taking the inner product of the random
input vector with a vector that is all 1s). The resulting output was plotted as a function of
the arithmetic sum of the input bits (i.e., the number of +1’s in the input vector minus the

18

Figure 2.12: The ASSOCMEM.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 19

P
er

ce
n
ta

g
e

o
f
R

es
p
o
n
se

s

(%)

Output = −1Output = +1

Summation of inputs to Tii Element (bits)

100

90

80

70

60

50

40

30

20

10

0
-25 -20 -15 -10 -5 0 5 10 15 20 25

Figure 2.13: Tii transfer characteristic.

number of −1’s), as shown in Figure 2.13. The symmetry of the graph demonstrates that
the output is unbiased and the input sum to the active element is balanced for an input
vector containing equal numbers of +1’s and −1’s.

The ability to arbitrarily set a single Tij element confirmed the functionality of the adder
elements and tri-flops within each Tij element. Several ring oscillators were programmed into
the matrix, ranging from 3 stages to 19 stages. A typical waveform is shown in Figure 2.14.
The results in Figure 2.15 indicate a characteristic propagation delay of 510ns per stage.
The ring oscillators required an asymmetric connection matrix, as oscillatory behavior is
excluded for symmetric matrices.

The next experiment was to perform an actual association. Two random memories were
programmed into the matrix, via the on-chip outer product and adder mechanisms, and
were observed to be, in fact, fixed points of the network. Due to the fast Tii elements,
the convergence of the network, including the driving of the output pads, was generally
completed within a few microseconds.

If the function of the ASSOCMEM is considered to be that of an error-correcting code, it
is useful to consider the final stable state as a function of the bit-errors in the initial state.
Typical experimental results demonstrating the distinct regions of convergence for a two
memory system are shown in Figure 2.16. Effectively, this system always converges to the
memory nearest in Hamming space to the initial condition.

By using Φ1 and Φ2 as nonoverlapping “clocks” to successively engage and disengage the
connection matrix and Tii elements, it is possible to “single-step” through the convergence

20

Figure 2.14: Ring oscillator.

sec)

Stages in ring oscillator

9

8

7

6

5

4

3

2

1

0
2 4 6 8 10 12 14 16 18 20

Figure 2.15: Ring oscillator periods.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 21

Memory A Memory B

P
er

ce
n
ta

g
e

fa
ll
in

g
in

to
ea

ch
m

em
o
ry

(%)
(Hamming distance from Memory A) − (Hamming distance from Memory B)

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

100

90

80

70

60

50

40

30

20

10

0

Figure 2.16: ASSOCMEM convergence properties.

operation. Each step corresponds to the network synchronously performing an inner product
calculation to obtain the next state from the present state. It can be proven that a network
which converges in synchronous-update mode will also do so asynchronously (i.e., Φ1 and
Φ2 ON simultaneously), although the converse is not true. For networks that do converge in
single-step mode, it is interesting to observe the process in action (see Figure 2.17). In this
illustration, note that the intermediate results are restored approximations to the analog
voltages within the ASSOCMEM, and that although two iterations appear identical, the
convergence is not yet complete.

Simulation results [?] have suggested an empirical limit on the number of uncorrelated
memories that can be programmed into a Hopfield network to be approximately 15% of
the number of active elements. Beyond this, spurious stable states begin to appear, often
displacing desired memories. Since the network is based on mutual inhibition and reinforce-
ment, any correlation between memories causes some bits to be weighted more heavily than
others. Statistical orthogonality between memories minimizes this effect.

A second limitation on the number of stable states arises due to the clipped nature of the Tij

matrix. Hopfield and Feinstein [Feinstein and Hopfield, 1985] showed that the “attraction”
of stable states decays exponentially with the number of memories subsequently added to
the matrix.

For the ASSOCMEM, it was found that up to three stable states could be reliably pro-
grammed, along with their complements (which appear due to the symmetry of the system).
At all stages of the experimentation, consistency with simulation results was observed.

22

Incremental Association:

(stable states (hex): 0F0F0F, 000FFF)

(vector written (hex): 00000F)

Iteration 0: V = 0000000000000000001111

Iteration 1: V = 0000000000111100001111

Iteration 2: V = 0000000000111100001111

Iteration 3: V = 0001010000111100001111

Iteration 4: V = 0011110000111100001111

Figure 2.17: Single-step association.

X ***

*X***********

X

***X*

X

*****X

X

****** X

X

****** X

X ***

***********X*

X ****

*************X

X

***************X* ****

****************X ****

*****************X****

***************** X***

***************** *X**

***************** **X*

***************** ***X

Figure 2.18: Tij yield map.

Of the ten chips returned by MOSIS, all were found to be functional to the extent of permit-
ting at least two stable states. A CIF defect made a particular Tij element malfunction in
all chips. On some chips, sizable numbers of Tij elements were inoperative. A sample map,
from a particularly bad chip, is shown in Figure 2.18 (“∗” represent good Tij elements).
Since care was taken to keep the CLEAR circuit simple, and the matrices on all chips were
observed to clear correctly (and totally), it is postulated that the primary failure mode was
Tij stuck-at-zero faults. Since null Tij’s do not contribute detrimentally to the operation of
the network, even the ASSOCMEM of Figure 2.18 was capable of memorizing two stable
states, and associating to them.

2.8 High-Density Preprogrammed

Associative Memories

In order to explore the behavior of large associative memories, we undertook the design
and fabrication of a series of chips incorporating fixed (i.e., mask-programmable) intercon-
nect matrices. These Tij elements were considerably smaller than the programmable Tij

element described in Section 2.5.2. Because of pitch-matching difficulties between the in-
terconnect conductances and the active amplifiers, a different topology was employed (see

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 23

a) Amplifiers embedded in interconnect matrix

b) Amplifiers along matrix perimeter

ViVi Vi+1 Vi+1 Vi Vi Vi+1 Vi+1

vi vi vi+1 vi+1 vi vi vi+1 vi+1

vi

vi+1

vi+1

vi vi

vi+1

vi+1
vi

Vi

Vi+1

Vi+1

Vi

Vi

Vi+1

Vi+1

Vi

-1

+1-1

+1

-1

+1 +1

-1

Figure 2.19: Fully-connected associative memory layout
strategies.

Figure 2.19(b)); arranging the amplifiers along two sides of the array also facilitated I/O
(the states of the neurons were read/loaded by means of a serial shift register).

At this time, a redesign in a 3µ CMOS technology was undertaken. The amplifiers, which
had been implemented with inverters in nMOS, were dual-output transconductance ampli-
fiers, with true differential inputs (see Figure 2.20). The interconnect conductances mea-
sured 16×18λ, and could be mask-programmed to the values (−2,−1, 0,+1,+2). The entire
chip contained 290 neurons (and 167620 possible transistors in the interconnect matrix).
Twenty memories were stored, corresponding to bit-patterns for a schematized alphanu-
meric character set sampled at 17× 17 resolution.

The chip was fabricated on MOSIS run M65N in May, 1986. Upon testing, we found that
all 20 memories were stable, and that the performance-limiting step was the serial readout

24

I+ I+ I+

I+

I− I− I−

I−
IN−

IN+

Bias OUT−

OUT+

Iout = ±IBias tanh
(

VIN+
−VIN

−

VT

)

VddVdd VddVdd Vdd

Figure 2.20: Subthreshold CMOS active element.

of the results. Nonetheless, 50,000 associations per second were attainable. Of course, if a
higher data rate were required, word-parallel inputs to the shift register would accelerate
the data transfer.

2.9 Summary

Collective systems exhibit many appealing properties, including robustness and fault-tolerance,
an ability to deal with ill-posed problems and noisy data, which conventional digital archi-
tectures do not. The ASSOCMEM represents a novel computational structure for VLSI.
By implementing a well-understood system, such as associative memories, with collective
circuit design, we have produced a functional component demonstrating these properties.
Collective circuits are ideally suited to VLSI, as they require very large numbers of individ-
ually simple elements.

However, the model, as presented in this chapter, scales very poorly with available silicon
area. The main difficulty is due to the full interconnect of the general Hopfield model;
every neuron has to connect to every other neuron. Thus, the number of neurons, which
determines the length of the codewords stored in the memory, increases proportionately to
the square root of the die area. A secondary difficulty arises in the practical implementation
of the different components: the architectures we have discussed require pitch-matching
of the “neuron” and “synapse” components. In the 22-neuron ASSOCMEM, the pro-
grammable synapses were much more complicated than the active gain elements; in the
preprogrammed associative memory, the synapses consisted of merely two transistors, while

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 25

the CMOS amplifiers were much more complex.

Nonetheless, as feature sizes continue to shrink to the submicron range, the design of as-
sociative memories containing 1000 fully-connected neurons is feasible. Because of their
ability to reach crisp decisions in the face of noisy or incomplete data, we expect that such
networks will find application in the analysis of “fuzzy” sensory data, an application at
which biological processes excel, while conventional computer architectures fail miserably.

26

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 27

Chapter 3

A Theoretical Model for

Estimation of Circuit Wiring

Density

Get your facts first, then you can distort them as you please.

Mark Twain (1835–1910)

3.1 Introduction

The need to consider complexity of wiring as an essential component of any algorithm has
been a key contribution to computer science from VLSI design. Whereas in digital VLSI,
wiring considerations give rise to an area–time tradeoff, in analog VLSI (in the absence
of time multiplexing) wiring complexity determines the scalability of an architecture or
algorithm. This constraint is amply illustrated by the full interconnect of the Hopfield
associative memory presented in Chapter 2. A fully-connected architecture requires O(N2)
area, where N is the number of neurons in the collective system.

Much of VLSI complexity theory has concentrated on efficient embeddings of particular com-
putational graphs, under particular models for interconnect [Thompson, 1980] [Ullman, 1984].
The basic procedure is to select a class of graphs, and derive an information-theoretic lower

28

bound for a separator (or partitioning) operator. This separator is then combined with a
simple synchronous model for data communication to determine a minimum AT 2 constraint
on the computation.

In this section, we take a different approach: we ignore the time cost of communication
(we assume that our analog networks use dedicated wires for all signals), and consider only
the connectivity of graphs that can be generated when we define a set of layout parameters
that specify acceptable component placements. This procedure will define a necessary (but
not sufficient) constraint on the connectivity of a circuit graph, in contrast to traditional
approaches, which generate the worst-case solution for a class of graphs, not the best-case
for a specific graph (i.e., solutions which are “not universally optimal, but existentially
optimal” [Bhatt and Leighton, 1984]).

Under a connectivity model based on the intrinsic dimensionality of the interconnect tech-
nology, we will derive a wire partition function to bound the number of wires that can cross
a closed perimeter. We will show how this function is consistent with a common empirical
wiring relation known as Rent’s rule. Finally, we will consider acceptable distributions of
wire lengths within regular layouts, and derive a physical constraint on the average wire
length predicted by the model.

3.2 Rent’s Rule

A circuit may be considered as a graph, the vertices of which represent elements, linked
by arcs corresponding to wires. Rent’s rule [?] is an empirical relationship that relates the
number of wires crossing an arbitrary boundary containing a group of elements:

P = P0N
b (3.1)

where P is the number of wires that need to cross the border, N is the number of elements
(each of which has P0 pins) contained within the border, and b is an assumed constant.
Analysis of several large designs has indicated that typical values lie in the range b ∈
[0.5, 0.75] [?].

3.3 An Operational Definition of Optimal Design

In this section, we introduce an aesthetic evaluation metric by which we can measure the
quality of a design’s implementation. Unlike the information-theoretic lower bounds de-
veloped by classical VLSI complexity theory [Thompson, 1980] [Ullman, 1984], we are less
interested in bounds on classes of graphs than in considering the optimality of the layout of
a specific instance within the class. In particular, we are interested in specifying minimum
acceptance levels, below which a layout is considered too inefficient, and hence not eco-
nomically viable. Finally, we will show how our constraint conforms to an empirical wiring
relation known as Rent’s rule.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 29

P0

P0

P0

Γ

N

Figure 3.1: Estimating the number of wires crossing the
perimeter.

We begin with a key observation regarding manufactured systems. We consider such sys-
tems to be examples of “optimal systems”—they have successfully satisfied the constraints
imposed by the end-application (e.g., cost, size, power, weight, reliability, manufacturabil-
ity).

Observation 3.1 In any system consisting of a collection of components, these components
are distributed spatially in an approximately uniform manner.

The phrasing of this observation is intentionally general; we intend for the results of this
section to be applicable to many different systems, ranging from integrated circuits to
printed-circuit boards to entire racks and boxes. In this section, we combine this observation
with the physical dimensionality of interconnect wiring to obtain an upper bound partition

function. This function bounds the number of wires crossing a manifold containing a number
of components of the system in question (see Figure 3.1). We will derive a particular function
for systems that are intrinsically two-dimensional (e.g., integrated circuits and printed-
circuit boards) and repeat the derivation for three-dimensional systems (e.g., computer
back-planes and other aggressive interconnect technologies).

We begin by quantifying Observation 3.1: In a two-dimensional space, assume the density
of components is uniform and equal to ρ components per unit area. Furthermore, assume
that a fraction γ of the total area of the system is consumed by components. If we model
the components as identical and square, of dimension x× x, we have

x2 =
γ

ρ

30

d

y = kx

x
P0

Figure 3.2: A model for circuit connectivity. The area in
question measures 2d by 2d, and has perimeter 8d.

Proof: Consider an area A of the system. By definition, the number of components within
this area is ρA, and the fraction of area occupied by these components is γA. The average
area per component is then γ/ρ, and, because the components measure x by x, the result
x2 = γ/ρ follows directly.

We now apply this result to the system in Figure 3.2: a square area of dimensions 2d× 2d.
We wish to compute the number of wiring tracks crossing the perimeter as a function of
the number of components within the boundary. We begin by parameterizing the space
occupied by these wiring tracks (i.e., the wiring pitch) in terms of the single dimension of
the model: x, the size of the components.

Let the average wire spacing y = kx. In the two-dimensional model, k is a scalar, because
x and y are simple linear dimensions.

The component count within the boundary is then

N = 4d2ρ (3.2)

The maximum pin count per element is limited by the number of wiring channels that can
abut the perimeter of a single component:

P0 =
4x

y
=

4

k
(3.3)

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 31

3.4 A Model for Circuit Connectivity

Estimating the number of wiring channels that cross the perimeter of the region is some-
what more subtle. The analysis is complicated by the need to model the routing capacity
through the perimeter Γ in regions where Γ lies within a components. We make the (rather
pessimistic) assumption that no routing can occupy the same physical location as the com-
ponents. This restriction is appropriate for integrated circuits, where programmable logic
devices (PLDs), gate arrays, and standard-cell designs tend to have preallocated wiring
channels between rows of cells, with severely limited (if any) routing capability through
these cells. In particular, this restriction is appropriate for the architecture in Chapter 4. It
is less appropriate for technologies such as multi-layer PCBs; however, as we shall see, this
approximation only affects certain multiplicative constants—it does not affect the general
form of our results.

For randomly placed components, the probability that any given point on the perimeter lies
within a component is γ; consequently, the amount of perimeter available to wiring tracks
is 8d(1 − γ). The maximum number of wiring tracks is then

P =
8d(1 − γ)

kx
(3.4)

Combining Equations 3.2, 3.3, and 3.4, and recalling x2 = γ/ρ, we obtain the partition
function

P =
1− γ

γ1/2
P0N

1/2 (3.5)

As a self-consistency check, we can compare this expression with the conventional statement
of Rent’s rule (Equation 3.1): P = P0N

b. Setting b = 1/2, and solving 1−γ
γ1/2 = 1, we

obtain equivalence between the two forms for γ = 0.38. This result corresponds to an area
utilization of approximately 40 percent, a typical value for semiautomated VLSI designs
(gate arrays, standard-cells, etc.).

We are now in a position to reconsider our assumption that area dedicated to components
was unavailable to routing tracks. If all of the perimeter is available for routing, Equation 3.5
becomes P = γ−1/2P0N

1/2, which would allow γ to reach values near 1. Of course, such
high utilization of board area is precisely what we see for typical multi-layer printed-circuit
boards.

Now let us consider a higher dimensionality system. In three dimensions, we set y = kx2

(i.e., wires now have finite cross-sectional area), and observe that x3 = γ/ρ.

The number of components within the volume is

N = ρ(2d)3 (3.6)

32

The maximum number of wires connecting each component is

P0 =
6x2

y
=

6

k
(3.7)

The maximum number of wires crossing the surface Γ is

P = (1− γ)
6(2d)2

y
(3.8)

Again, combining Equations 3.6, 3.7, and 3.8, we obtain

P =
1− γ

γ2/3
P0N

2/3 (3.9)

Setting 1−γ
γ2/3 = 1 gives γ = 0.43.

In summary, this analysis yields wiring bounds that are consistent with Rent’s rule in form,
and that suggest that the typically observed values for Rent’s rule exponents (typically in
the range [0.5, 0.7] [?]) are due to dimensional constraints of the implementation technology.

3.5 Contact Density

An interesting consequence to the partition function is obtained by considering the number
of contacts that must be placed in order to satisfy the wiring limit of Equation 3.5. Clearly,
not all of the wires that originate within the perimeter of the region in Figure 3.2 can
propagate through the boundary. Each of the other wires must terminate at a contact with
at least one other internal wire. For the purposes of this analysis, we assume, for simplicity,
that precisely two wires meet at a contact (this assumption does not affect the form of the
final result).

The total number of wires originating within a region measuring L× L (or, d = L/2) is

Ptotal = P0L
2ρ

The maximum number that can pass through the region’s perimeter is given by Equation 3.4:

P =
4L(1− γ)

kx

The number of required contacts is then

Pc =
1

2

(

P0L
2ρ− 4L(1− γ)

kx

)

In the large L limit,

Pc →
P0ρL2

2

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 33

and the average area per contact is

Ac =
L2

Pc
=

2(1/ρ)

P0

We can interpret this expression by observing that (1/ρ) is the average area per component,
in which P0 pins originate. Each pin must terminate at a contact—the factor of 2 indicates
that each contact has two wires connected to it.

If we compute the area density of contacts as a function of d, we obtain (recall that ρ = γ/x2,
and that P0 = 4/k)

∆Pc =
P0

x

(

4dγ

x
+ γ − 1

)

∆d

∆A = 8d∆d
∂Pc

∂A
=

P0

x

(

γ

2x
+

γ − 1

8d

)

(3.10)

Thus, the area density of contacts as a function of position d tends to a uniform limit. This
result is consistent with our original assumption that components are uniformly distributed
throughout the region.

3.6 Limits on Wire Length

Although the results of Section 3.3 place upper bounds on the number of available wiring
channels, they tell us nothing about the macroscopic properties of the interconnect. In
particular, it would be useful to consider the distribution of wire lengths predicted by
the model, and to verify that this distribution satisfies the dimensional constraints of the
implementation technology.

Before we can compute the average wire length, we must consider the rate at which wires
from a given cell terminate as a function of distance. Consider the two-dimensional case
illustrated in Figure 3.3; a circular partition is drawn a distance r from the cell in question.
Applying the general form of Rent’s rule, we have

P = P0N
b

= P0γ
b
(

r

r0

)2b

since N ≡ πr2γ
πr2

0
.

If we consider the region between r and r + ∆r, we estimate the wires that cross the outer
perimeter to be

Pouter = P ·
(

1 +
2b∆r

r

)

34

r

∆r

P

Pnew Pouter

Figure 3.3: Model for predicting distribution of wire lengths.
The system consists of a regular array of identical cells of area
πr2

c each. P wires cross the perimeter at r, while Pouter cross
the perimeter at r + ∆r. The number of new pins appearing
in the annulus is Pnew.

The new pins that are created within the annulus are

Pnew =
2γr∆rP0

r2
0

Lemma 3.1 We now compute the number of wires PT crossing through the annulus.

PT =
1

2
(P + Pouter − Pnew)

Proof: Let x equal the number of wires that enter the annulus though the inner perimeter
and connect to new pins within the annulus. Similarly, let y equal the number of wires that
originate on new pins within the annulus, and exit the region through the outer perimeter.
Let PT equal the number of wires that enter through the inner perimeter and exit through
the outer perimeter. The following relations hold:

P = x + PT (3.11)

Pouter = y + PT (3.12)

Pnew = x + y (3.13)

Adding Equations 3.11 and 3.12, and subtracting Equation 3.13 yields

P + Pouter − Pnew = 2PT

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 35

from which the lemma follows directly.

Substituting the values of P, Pouter, and Pnew gives

PT = P +
Pb∆r

r
− P0γr∆r

r2
0

The fraction of wires crossing though the annulus is then

F ≡ PT

P
= 1 +

b∆r

r
− γ1−br1−2b∆r

r2−2b
0

If η(r) is the number of wires from the central element that are still in existence a distance
r from that element, a recurrence relation for η exists:

η(r + ∆r) = η(r)F

= η(r)

(

1 +

(

br−1 − γ1−br1−2b

r2−2b
0

)

∆r

)

= η(r) + η(r)

(

br−1 − γ1−br1−2b

r2−2b
0

)

∆r

Comparing this expression to the Taylor series expansion of η(r + ∆r)

η(r + ∆r) = η(r) + η′(r)∆r + O(∆r2)

yields the nonlinear differential equation

η′(r) = η(r)

(

br−1 − γ1−br1−2b

r2−2b
0

)

This equation can be solved by noting that ∂
∂r log η(r) = η′(r)

η(r) . Hence,

∫ r

r0

∂

∂r
log η(r) ∂r =

∫ r

r0

(

br−1 − γ1−br1−2b

r2−2b
0

)

∂r

log η(r)− log η(r0) = b log r − γ1−b

(2− 2b)r2−2b
0

r2−2b

∣

∣

∣

∣

∣

r

r0

The final solution is then

η(r) = A(r0)r
b exp

(

− γ1−b

2− 2b

(

r

r0

)2−2b
)

which we write, for the sake of normalized distance measures, as

η(r) = A0

(

r

r0

)b

exp

(

− γ1−b

2− 2b

(

r

r0

)2−2b
)

(3.14)

36

2 4 6 8 10

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.4:

Distance (units of r0)

F
ra

ct
io

n
of

w
ir

es
ab

so
rb

ed

Predicted probability of wire absorption with
distance. The vertical line marks the point rc = r0/

√
γ. The

curve is for γ = 0.5, b = 0.5. The horizontal scale is in units
of r0.

The fraction of wires that continue a distance r from the original element is then

f(r) = 1− η(r)

where f(rc) ≡ 1, and rc is the size of the “unit cell” of the tiled elements. In particular, for
an area utilization γ and an element radius r0, we have

γπr2
c = πr2

0 ⇒ rc =
r0√
γ

Then,

f(rc) = 1 ⇒ A0 =

(

rc

r0

)−b

exp

(

γ1−b

2− 2b

(

rc

r0

)2−2b
)

Figure 3.4 plots f(r) for typical values of γ and b.

At this point, we can confirm that the model yields a plausible distribution function (i.e.,
one that is monotonic, equal to 0 at rc and has a limiting value of 1 for large r). In fact, it
is easy to show that f satisfies these requirements for all values of γ and b. The function f
reaches a minimum at rmin, given by

∂f

∂r
= 0 ⇒ bγb−1 =

(

rmin

r0

)2−2b

(3.15)

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 37

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.0 0.2 0.4 0.6 0.8 1.0

M
i
n
i
m
u
m

v
a
l
u
e

f
o
r

g
a
m
m
a

Rent’s Rule coefficient (b)

Figure 3.5: Range of application of restricted model. If we
only permit wires to terminate outside the “unit cell,” the
restriction on γ disappears.

We can substitute r0 =
√

γrc into Equation 3.15 to obtain

(

rmin

rc

)2−2b

= b (3.16)

Since b < 1, we have rmin < rc always, and the model is applicable for all values of γ and b.

If the model is modified to f(r0) = 1 (i.e., we permit wires from a component to terminate
within the “unit cell” surrounding the component), the monotonicity constraint requires
the function f to reach a minimum at a point rmin that is less than r0. Consequently,

Equation 3.15 requires γ > b
1

1−b . This expression is plotted in Figure 3.5.

Armed with the function f(r), we can now compute the probability density function pf (r)
that specifies the probability that a wire terminates between a distance r and r + δr :

pf (r) =
∂f(r)

∂r
(3.17)

The average length of the wires connected to a component is then given by

〈w〉 =

∫ ∞

r=rc

r pf (r) dr (3.18)

It is instructive to plot the integrand (Figure 3.6). We observe that integrating the function
in the region 0 < r < rc would contribute only a small error to 〈w〉. Figure 3.7 illustrates

38

5 10 15 20

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3.6:

Distance r (units of r0)

r
p

f
(r

)

Integrand of
∫∞
r=rc

r pf (r) dr, plotted for γ = 0.5,
and b ranging from 0.2 to 0.9 (in increments of 0.1). The
vertical line represents the edge of the unit cell.

the relative error introduced by making the approximation

〈w̃〉 =

∫ ∞

r=0
r pf (r) dr

One advantage of making this approximation is the existence of a closed form solution for
〈w̃〉, that we obtain from Equations 3.14 and 3.17 by applying ([Gradshteyn and Ryzhik, 1980]
Equation 3.478.1)

∫ ∞

0
xν−1e−µxp

dx =
1

p

(

µ
− ν

p

)

Γ

(

ν

p

)

Giving

〈w̃〉 =
A0

2− 2b





γ1−b

r2−2b
0

(

γ1−b

(2− 2b)r2−2b
0

)− 3−b
2−2b

Γ

(

3− b

2− 2b

)

−b

(

γ1−b

(2− 2b)r2−2b
0

)− b+1
2−2b

Γ

(

b + 1

2− 2b

)



 (3.19)

This approximation is plotted in Figure 3.8 for several typical parameter values.

In addition to its intrinsic physical plausibility, the model that wires only terminate outside

the “unit cell” has the advantages of providing an accurate closed form approximation to the
average wire length, and of removing any constraints on the values of the model parameters
γ and b.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 39

0.2 0.4 0.6 0.8

-0.02

0.00

0.02

0.04

0.06

0.08

Figure 3.7:

Rent’s rule exponent b.

R
el

at
iv

e
er

ro
r

of
cl

os
ed

-f
or

m

solution.

Relative error introduced by integrating model
from r = 0. This curve is computed from numerical inte-
gration of Equation 3.18 and comparison to the closed form
expression of Equation 3.19. This error is independent of γ.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15

20

25

30

35

Figure 3.8:

Rent’s rule exponent b.

A
ve

ra
ge

w
ir

e
le

n
gt

h
(u

n
it
s

of
r 0

)

Average wire length predicted by model. The
wire length is in units of r0, and is plotted as a function of
the Rent’s rule coefficient b. for γ = 0.3, 0.5, and 0.7.

40

3.6.1 Area Limits on Average Wire Length

For a regularly tiled array of cells, the area of wire connected to each cell must be less

than the area of the cell itself. This result is obtained by “folding back” all wires from a
particular cell onto the cell itself, and can be expressed as

Lmax
∑

L=0

W Ln(L) = A

where W is the wire pitch (the minimum center-to-center distance between two wires), L
is the length of a given wire, and n(L) is the number of wires of that length [Mead, 1990].
In the continuous limit, the summation is replaced by an integral using the probability
distribution function of Equation 3.17. If we attribute each wire equally to the two cells it
connects, and we substitute A = πr2

c , we obtain

WP0〈w〉
2

< πr2
c

Giving

〈w〉 <
2πr2

0

γWP0

3.7 Summary

In this chapter, we have developed a simple wiring model based on an analysis of the intrinsic
dimensionality of the interconnection medium. The essential assumption we made is that
components are uniformly distributed throughout the spatial extent of the system. This
postulate leads directly to the result that a power law relates available wiring density to
component count. We have presented this result as a specific case of Rent’s rule, a general
empirical wire partition relation.

Based on Rent’s rule, we have derived a closed-form approximation to the average wire
length for cells in regular arrays. Finally, we have reintroduced physical wiring constraints
to obtain yet another upper bound on the connectivity of cells.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 41

Chapter 4

A Dynamically Configurable

Architecture for Prototyping of

Analog Circuits1

One of the symptoms of an approaching nervous breakdown is the belief that

one’s work is terribly important.

Bertrand Russell (1872–1970)

4.1 Introduction

Even with fast-turnaround fabrication, a considerable fraction of prototyping lead-time is
consumed by the VLSI fabrication step. This delay is particularly expensive when we
consider prototyping subcircuits, or exploring new circuit structures and logic forms as a
prelude to a large design project. The fabrication step is beyond the control of the designer,
raising technical issues of yield and parametric behavior, as well as the logistic issues of cost,
time, and the need to interface with an external vendor.

This chapter presents the design of a VLSI prototyping platform, in which the PRO-

TOCHIP, a field-reconfigurable integrated circuit, is used to physically wire up the circuit

1Portions of this chapter have been previously published. See [?].

42

Hierarchical

interconnectProgram

Predesigned elements

Workstation Test
equipment

PROTOCHIP

Figure 4.1: The PROTOCHIP environment. We program
the PROTOCHIP by interconnecting the elements into a
circuit that is then tested electrically.

to be tested. The PROTOCHIP is particularly intended for synthesis and testing of analog
neural-network architectures [?], which generally require large numbers of active elements,
but usually with relaxed precision requirements. These demands make neural networks a
poor match for conventional software simulators. In addition to the obvious advantages of
a hardware accelerator and simulator for fast prototyping, this system provides the first
opportunity to attain a truly integrated design–fabricate–test environment.

The basic structure of the PROTOCHIP is a set of circuit elements arranged within a
hierarchy of interconnect switches, facilitating the synthesis of the desired circuit. This
programming process is controlled in the field by a workstation (Figure 4.1). Because this
chip can effectively be considered an extension of a design-tool suite, similar performance
criteria are applicable:

1. Universality. Given that the circuits to be prototyped generally are designed after

the PROTOCHIP has been fabricated, can the user be reasonably assured the system
is capable of testing a usefully wide range of circuits?

2. Functionality and performance. Do the prototyped circuits function correctly?
How useful is the tool as a simulator?

3. Programmability. How directly can the PROTOCHIP be configured into the
desired circuit for testing?

4. Scalability. Can the prototyping-chip architecture exploit the additional capacity of
improving VLSI processes? In particular, can we exploit hierarchical architectures and

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 43

modular programming algorithms, in order to remain efficient as transistor densities
and counts increase.

5. Flexibility. Can the design of the PROTOCHIP itself be usefully adapted for
synthesizing particular classes of circuit networks? The system can be custom-tailored
at two levels: the basic circuit elements and interconnect structure are bound at
fabricate time, and the actual PROTOCHIP is configured electrically in the field at
runtime.

This chapter concentrates on three aspects of the PROTOCHIP’s design. First, an anal-
ysis of a general model for circuit connectivity is used to explore the requirements on the
interconnect matrix (Section 4.2). The case for a hierarchical architecture is presented,
based on a desire to minimize these wiring resources, as are some general observations re-
garding the organization of large systems. Second, two interconnection switch technologies
are discussed, and their relative merits are compared (Section 4.5). Third, the structure
and design of the fabricated PROTOCHIP is discussed, and test results are presented
(Sections 4.6and 4.7). We defer discussion of algorithms for embedding circuits onto the
PROTOCHIP to Chapter 5.

4.2 Connectivity of Circuits

The general form of the prototyping chip is a collection of functional elements interconnected
by a programmable switch matrix. This matrix is responsible for both the great flexibility
of the system and also is that system’s most severe constraint. Because the design of the
switch matrix is bound when the PROTOCHIP is fabricated, it needs to accommodate
unanticipated circuits, while not incurring a prohibitive area penalty.

To this end, it is highly instructive to examine some general interconnect properties of
circuits. This section uses Rent’s rule as a connectivity model to investigate various wiring
strategies. The ultimate objective is the development of a hierarchical interconnect matrix.

It is important to distinguish between topology and structure; the former deals exclusively
with connectivity, the latter adds placement and layout constraints. The high cost of
wiring in VLSI circuits makes consideration of structure imperative, as do several objectives
for particular networks (e.g., an imaging array should be regularly placed); discussion of
structure is, however, deferred to Section 4.6.2.

The least restrictive model of circuit connectivity requires every element to be connectable
to any other. Defining N to be the number of elements permitted on the chip, and PL to be
the number of ports (pins) on each of these leaf elements, the required number of switches
is

NS = P 2
LN2

Of course, the requirement that any pin connect arbitrarily to any other pin (and possibly

44

PL

PLkb

PLN b

Leaf

Level 1 interconnect

Level 2 interconnect

k

N leaves total

Total levels:

L = ⌈logk N⌉

k

Outputs from

level L

Figure 4.2: Hierarchical interconnect parameters.

to any number of other pins) requires the full generality of a crossbar switch, with its
associated quadratic overhead. We define a useful measure of circuit-wiring complexity to
be

β =
NS

P 2
LN

which can be thought of as the number of other elements to which a particular element
must fan out. For the crossbar,

βcrossbar = N

Now consider an interconnect chip with N elements. If the interconnect is flat (nonhierar-
chical), applying Rent’s rule (Equation 3.1) once gives the following number of outputs:

Pout = PLN b

The interconnection matrix can then be realized by a crossbar with PLN inputs and Pout
outputs. The total number of switches is then

NS = P 2
LN b+1 ⇒ β = N b (4.1)

which, for large N, represents a sizable improvement over the full-crossbar interconnect.

Another approach to connecting the N elements is incremental in nature: Suppose k ele-
ments are connected simultaneously with a crossbar switch; then, k of these meta-elements
are connected. Repeating this procedure gives rise to the k-ary tree in Figure 4.2, of height
L = logk N .

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 45

The number of switches required to implement the ith level of interconnect is then given by

NSi = (inputs to each matrix at level i) ·
(outputs from level i) · (number of ith level matrices)

Level 1: NS1 = (kPL)(PLkb)

(

N

k

)

Level 2: NS2 =
(

k(PLkb)
) (

(PLkb)kb
)

(

N

k2

)

Level i: NSi = kP 2
i−1k

b
(

N

ki

)

where

Pi = outputs of matrix at level i =

{

PLkb if i = 1
kbPi−1 otherwise

The solution to this recurrence is Pi = PLkbi, which gives the number of switches at level i
to be

NSi = P 2
Lkb+1k2b(i−1) N

ki
= P 2

LNk(2b−1)ik1−b

The total number of switches is the sum over all levels in the hierarchy:

NS =

logk N
∑

i=1

P 2
LNk1−bk(2b−1)i

= P 2
L

kb

k2b−1 − 1
(N2b −N)

Giving

β =
kb

k2b−1 − 1
(N2b−1 − 1)

Now 2b−1 ≤ b for all b ∈ [0, 1], and, asymptotically, this expression gives us fewer switches
than does Equation 4.1.

In addition, an interesting case results from b = 0.5, which yields the greatest savings

β =

√
k

ln k
ln N

It is useful to consider some typical numbers. The number of switches for the hierarchical
interconnect compared to the flat Rent’s rule interconnect is

βhier
βflat

=
N b−1 −N−b

kb−1 − k−b
=

NShier
NSflat

(4.2)

Equation 4.2 is plotted in Figure 4.3 for k = 2.

46

16 32 64 128 256 512 1024

Number of leaves (N)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2
.0

β
h
ie

r/
β

flat

b = 0.5
b = 0.6

b = 0.7

b = 0.8

b = 0.9

b = 1.0

Figure 4.3: Number of switches in hierarchical interconnect
relative to flat Rent’s rule interconnect. Equation 4.2 is plot-
ted for k = 2.

We can obtain further gains by interleaving processing elements with the interconnect hi-
erarchy. In general, for a tree with branching factor k, the addition of one fixed fanout
element at each interconnect node yields

β = βhier
k − 1

k

where βhier is the quantity computed previously (and N is the number of leaves at the
bottom of the tree).

4.3 Hierarchy and Abstraction in System Design

In addition to assisting in the management of the basic issues of wiring complexity and
length, the hierarchy in the PROTOCHIP can be used to take advantage of system-level
organization in the network to be embedded. In particular, the top-down design style ex-
pounded in structured design methodologies [?] can be exploited; we can simplify greatly
the mapping from design to silicon by using for interconnect the same hierarchical specifica-
tion present in the functional description of the design. In short, most circuits that we wish
to prototype are hierarchical, and therefore the general PROTOCHIP architecture uses
hierarchy as well. Furthermore, such circuits generally are easily scalable to larger systems,
as is the PROTOCHIP architecture itself. Several other issues concerning hierarchy in
system synthesis are discussed in the literature [?].

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 47

We chose a hierarchical design for three other reasons. First, the electrical properties of
the resulting circuits are improved, due to (1) lower capacitances, because the wires are
shorter and there are fewer switches, and (2) the ability (and space, as will be shown in
Section 4.6.2) to place buffer stages within the interconnect itself. This possibility of in-
tegrating processing with interconnect also is appealing for networks that are inherently
specified recursively (as are, e.g., many neural-network architectures). Second, the parti-
tioning of a circuit into a hierarchy permits (1) nonuniform hierarchies to be tailored a
priori to specific architectures (e.g., neural-networks, processing surfaces, systolic arrays),
(2) high-density special cells to be incorporated, and (3) subtle embeddings of subcircuits
to be stored in libraries and easily integrated into subsequent designs. Third, hierarchy sim-
plifies the embedding problem by providing a convenient interface with CAD tools, most
of which encourage or enforce a hierarchical style. In addition, most interchange formats
(CIF, NTK, EDIF, etc.) intrinsically support hierarchy.

4.4 Embedding a Circuit Graph

The ultimate workability of this prototyping system is determined by the ease with which
the desired circuit graph can be embedded onto the interconnect matrix. Basically, there
are four approaches to this problem:

1. Exploit the hierarchy present in the circuit specification as much as possible. When
this approach results in an unroutable system, resort to one of the other approaches
to solve the embedding of the problem spot.

2. Exploit structural information available from the design tool. For example, a schematic
editor also identifies approximate relative placement of subcircuits; schematics usu-
ally are drawn with similar objectives (e.g., minimal global and random wiring) as
required by the embedding algorithm.

3. Ignore any hierarchy in the specification, and attempt to synthesize a partition of the
circuit graph that can be embedded directly.

4. Accept a user-provided interactive routing strategy.

We have developed an algorithm based on the third approach; it is described in detail in
Chapter 5. The network-embedding compiler accepts a flat circuit graph, and generates a
hierarchical decomposition, with the provision for optional human assistance. Alternately,
the explicit hierarchy present in the circuit specification can be followed, and embeddings for
duplicated subcells need only be computed once. The addition of a final global optimization
pass would be a worthwhile improvement.

48

4.5 Interconnect Switches

By far the most expensive components of the PROTOCHIP, in terms of area and per-
formance, are the switches in the interconnect matrix. In this section, we consider three
degrees of freedom of field-reconfigurable systems:

1. Are we able to reconfigure the system? That is, can the same silicon die be reused
for multiple applications? This flexibility is often achieved at the expense of requiring
large switches or special processes.

2. How volatile are the switch settings? Does the device need to be reprogrammed after
power interruption? Again, special processing may be required, leading to additional
expense.

3. What is the density of interconnect switches? The size of the interconnect ultimately
determines the scale of the system we can construct, but must be traded off against
process cost and yield.

Each of these compromises has a direct effect on the ease of manufacture—and hence the
yield efficiency and cost—of the system. As an example, a high-density nonvolatile recon-
figurable system could be implemented using an “E-squared” process, at the additional
expense of special processing steps to manufacture the tunneling oxides.

4.5.1 Reconfigurable Interconnect Switches

For the first PROTOCHIP, CMOS transmission gates were used as the active switch ele-
ments, controlled by a static RAM cell based on a modified CSRL design [?] (Figure 4.4).
The modification permits the CSRL to remain powered when a read operation is being per-
formed. Two global signal lines broadcast the Q and Q data signals along the perimeter of
the chip. The vertical decoder connects these lines to a single horizontal row; the horizontal
decoder enables the access pass transistors of an entire column. If a read operation is being
performed, transistor MW remains ON, and the single selected cell drives its contents onto
the global Q/Q bus, which is buffered at pads when it comes off-chip. If a write operation
is requested, the vertical row decoder ANDs its output with the R/W request, and disables
transistor MW in the row addressed. The other power-down transistor is disabled by the
horizontal column decoder. The cross-coupled inverter is then in an undriven state, and is
loaded with Q/Q from the bus. The sequence is reversed to reapply power and to make the
RAM cell static.

The size of the prototype switch is 39 × 49λ (including RAM and pass-gate using 10 × 2λ
transistors), for a total area of 4300µ2 (λ = 1.5µ).

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 49

Switch

Switch

VADDR

VLOAD R/W

MW

HLOAD

HADDR

Q Q

Figure 4.4: CSRL static RAM and transmission gate switch.
The enclosed circuit is replicated at each interconnect site
in Figure 4.10; the decoders are shared by the entire row or
column.

4.5.2 Scaling of Transmission Gate Transistors for Maximum Linearity

In order to minimize the variation in interconnect resistance with operating point, it is im-
portant to scale the p- and n-channel MOS transistors appropriately within the transmission
gate. To this end, it is useful to consider the resistance of the transmission gate for small
differential voltages. For a differential voltage δ applied across a transmission gate with
geometry W/L for the p-device, and Z(W/L) for the n-device, with both devices operating
in the above-threshold ohmic region, at a terminal voltage V, we have

I = Zkn

[

(Vdd − V − VTn)δ +
δ2

2

]

+ kp

[

(V + δ − VTp)δ −
δ2

2

]

The conductance is then

g ≡ ∂I

∂δ
= ZknVdd − (ZknVTn + kpVTp) + (kp − Zkn)(V + δ) (4.3)

To first order (ignoring the contribution of V to the threshold voltages VTn and VTp), setting
kp − Zkn = 0 will remove the dependence of g on V. Note that this expression is valid for
arbitrarily large values of δ, provided that the assumption of ohmic-regime operation is not
violated. This large-signal effect will be evident in a later experiment (Figure 4.19), where
the voltage drop across transmission gates in series is divided equally between those gates.

50

We can be even more effective, however, by incorporating a standard model for threshold
dependence on substrate bias [Allen and Holberg, 1987]:

VTn = VTn0
+ γn(

√

V + φn −
√

φn)

VTp = VTp0
+ γp(

√

Vdd − V − δ + φn −
√

φp)

where

φ =
2kt

q
log

(

Nmaj

ni

)

γ is in the range [0.1, 1.0]

Minimizing the effect of variations in V on Equation 4.3 gives

∂

∂V

(

1

R

)

= −Zknγn
1

2
(V + φn)−1/2 − kpγp

1

2
(Vdd − V − δ + φp)

−1/2 + kp − Zkn

Setting this derivative to 0, and solving for Z, gives

Zmin =
kp

kn





1 + γp

2
√

Vdd−v−δ+φp

1 + γn

2
√

V +φn





Taking process parameters from a typical MOSIS process:

VTP0
= 0.852 Volts

VTN0
= 0.938 Volts

φP = 0.6 Volts

φN = 0.6 Volts

γP = 0.5 V1/2

γN = 1.109 V1/2

κN = 2.15 × 10−5 A/V2

κP = 9.22 × 10−6 A/V2

and setting the derivative to 0 at V = 2.5 V, gives Zmin = 0.372. The simple analysis, which
ignored the back-gate effect, would set Zmin = kp/kn = 0.429. The results are plotted in
Figure 4.5.

4.5.3 A High-Density Nonvolatile Switch Technology

In keeping with our approach of fabricating using the MOSIS baseline CMOS process, we
have pursued a different strategy for attaining the objectives of high switch density and low
switch resistance: postfabrication laser configuration of a stock MOSIS die.

The work presented in this section is the result of a collaboration with Jack Raffel and
Matthew Rhodes of the Restructurable VLSI group at M.I.T. Lincoln Laboratory. Their

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 51

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Terminal voltage (V)

-20

-15

-10

-5

0

5

10

1
5

R
el

a
ti
v
e

er
ro

r
fr

o
m

av
er

a
g
e

(%)

kp compensation only

kp and body-effect

compensation

Figure 4.5: Transmission gate small-signal resistance varia-
tion. Zero-order compensation is obtained by scaling both
devices inversely with their majority carrier mobilities (and
hence kp). A slightly different scaling can be used to mini-
mize the variation caused by the first-order threshold voltage
changes due to the body effect.

52

Figure 4.6: Layout of 4×4 laser-programmed switch matrix.
The design rules are: laser-programming area = 3µ × 4µ,
and spacing to other geometry = 2µ. The total area for the
4 switches is 18µ× 16µ.

process permits cutting of both first- and second-level metal lines, and linking of adjacent
diffusion areas (separated by a minimum geometric design-rule spacing). The linking process
consists of melting an area of the substrate, thereby permitting the dopant ions present in
the degenerately doped implanted areas to diffuse together, producing a low-resistivity path
(typically several hundred ohms per square). The attractive feature of this process is the
ability to cut or link structures without the prior removal of the protective overglass from
the die.

Because the PROTOCHIP architecture lends itself to programming by closing a few
switches (rather than by opening a large number of previously closed switches—or shorted
metal lines), and because the laser-programming fixture has a physical limit of approxi-
mately 10 reposition–zap cycles per second, the link approach was taken. Figure 4.6 illus-
trates the basic interconnect cell; four switches occupy an area of 18λ× 16λ, corresponding
to 72λ2 per switch (compared to 1911λ2 per switch for the CSRL–transmission-gate switch
of Section 4.5). The laser-link process has been tested down to λ = 1µ. Such small switches
could permit construction of PROTOCHIP systems with 4000 or more leaf cells on a
standard MOSIS die.

To test these ideas, we fabricated a prototype analog leaf cell, and modified the netlist em-
bedder to generate the laser-programming description data file [Garverick and Frankel, 1986].
Several circuits were tested; Figure 4.7 shows the results of programming the inverter of
Figure 4.18. The transfer characteristic of the inverter is shown in Figure 4.8, and the

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 53

measured switch resistance is shown in Figure 4.9.

In summary, laser-configurable interconnect switches are attractive because they are non-
volatile, and denser than reconfigurable RAM-based interconnect switches. Electrically, the
performances of the two switch technologies are comparable, in terms of both resistance
and capacitance. The primary disadvantages of the laser-programmed interconnect are
the need for specialized programming equipment (laser, optical microscope, high-precision
motor-driven stage, control software), the relatively slow rate of programming, and the
“write-once” nature of the programming.

4.6 Compiling a PROTOCHIP

Three issues still need to be resolved: the specification of internal contents and organiza-
tion of the leaf cells, the physical placement of leaves and interconnect on the silicon (the
structure of the chip), and the implementation of a suitable interconnect element.

These issues have been deferred until now because they represent degrees of freedom (num-
ber and kind of leaves, matrix branching factor, and Rent’s rule exponent) that are bound at
fabrication time, whereas the network to be embedded is dynamically configured at runtime
by the network compiler described in the previous section. This sequence opens the possi-
bility of designing a metacompiler, with which a user fabricates a custom PROTOCHIP

with parameters and components optimized for the end application. As specialized exam-
ples, leaf cells containing photoreceptors and simple analog circuits could be configured into
image-processing surfaces [?, ?], and leaf cells containing bit-serial adders and multipliers
allow implementation of configurable data-flow architectures [?].

We have designed a simple metacompiler, using the WOL composition system and design
tool [?]. The user provides a leaf cell, which must satisfy simple size constraints (both height
and width must be integer multiples of certain constants), and hierarchical composition
parameters (fanout at each level, which is more general than the Rent’s rule model presented
in Section 4.2). The system generates a PROTOCHIP ready for fabrication, and produces
a programming file of topology parameters needed by the network-embedding compiler.

4.6.1 Leaf Cells

One approach to maximizing the versatility of the PROTOCHIP while maintaining a
uniform hierarchy is to make the leaf cells themselves programmable. To illustrate this
technique, we shall describe the design of a transistor-level leaf intended for prototyping
low-level analog circuits and for designing new logic families, and consider a possible imple-
mentation of a leaf cell for constructing digital logic.

54

Figure 4.7: Photographs of laser-programmed interconnect
matrix. The upper photograph shows the laser-controlled
linking of adjacent diffusion areas; the lower photograph
shows the same interconnect matrix, obtained by cutting
metal2 lines.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 55

0 1 2 3 4 5

Inverter input voltage (V)

0

1

2

3

4

5

6

O
u
tp

u
t

v
o
lt
a
g
e

(V)

0

1

2

3

4

5

6

In
v
er

te
r

cu
rr

en
t

(1
0
−

4

A)

Vtop

Vbot

Vout

Iinv

Figure 4.8: Transfer characteristic for poor inverter design of
Figure 4.18. The inverter has two diffusion switches in series
with high-current path.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Inverter input voltage (V)

1.0700

1.0725

1.0750

1.0775

1.0800

1.0825

1.0850

1.0875

1.0900

1.0925

1
.0

9
5
0

R
sw

it
ch

(∆
V

/
I
)

(k

Ω)

Figure 4.9: Resistance of laser-programmed link.

56

9
8
7
6
5
4
3
2
1
0

01234567

Figure 4.10: Programmable analog leaf cell. Each circle in
the 10×8 matrix is a single programmable switch, which,
when closed, connects the vertical and horizontal wires at
that point.

Analog Leaf Cell

The analog leaf (Figure 4.10) consists of two blocks of partially preconnected n-transistors
and p-transistors. Each programming switch connects a horizontal wire, which is connected
to at least one transistor gate, to a vertical wire, which is connected to at least one of a
p-drain and an n-drain. Commonly used analog building blocks, such as current mirrors
and differential pairs, are prewired in an attempt to reduce the complexity and size of the
programming matrix. If a full crossbar were used to interconnect seven three-terminal p-
transistors to an equal number of n-devices, (3 × 7)2 = 441 switches would be required;
with the merged devices, only 80 switches are used. Yet the compact design is sufficient
to construct a rich set of analog circuits, including wide-range transconductance amplifiers
(Figure 4.11), and horizontal resistors, as well as more conventional NAND/NOR and sim-
ilar gates (Figure 4.12). In addition, a leaf cell is capable of configuring a fully independent
floating three-terminal transistor.

If strictly digital combinational logic is desired, alternate approaches yield a higher density
of gates per leaf. Our primary research interest has been the development of analog circuits,
but the analog leaf can be usefully applied to the prototyping of new digital logic forms (for
example, delay-insensitive asynchronous circuit elements or complementary set/reset logic
(CSRL) [?]). In addition, the hierarchical architecture permits hybrid PROTOCHIPs,
in which digital leaves containing gates or PLD-type devices are interleaved with analog
elements.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 57

OutV+V−

Vbias

9
8
7
6
5
4
3
2
1
0

01234567

V−

V+

Vbias

Gnd

Out
Vdd

Vdd

Figure 4.11: Wide-range transconductance amplifier. Apply-
ing the appropriate gate bias voltage disables the transistors
that are not utilized.

9
8
7
6
5
4
3
2
1
0

01234567

A ·B
A

B

Gnd
A
B
Gnd
A · B

Vdd

B
Vdd

Vdd

A

Figure 4.12: NAND gate implemented with analog leaf.

58

1 2 3 4 5 6 7 8

Number of logic functions (k)

6

7

8

9

10

1
1

N
u
m

b
er

o
f

I/Os

Figure 4.13: Tradeoff between inputs and outputs in digital
leaf.

Digital Leaf Cell

In addition to the obvious technique of providing one (or more) hard-wired (nonconfigurable)
gates (NAND, NOR, etc.) per cell, it is possible to exploit the programmable nature of
the leaf cells. Instead of using the RAM array in the previous leaf to connect elements,
we could use it for the explicit storage of Boolean truth tables. For a H × V array of
storage (corresponding to A = log2(HV) address bits or inputs to the logic gates), a simple
tradeoff is possible between the number of Boolean functions (of the same inputs) that
can be evaluated, and the number of inputs. Furthermore, we can make this tradeoff
programmable (i.e., the N pins on the leaf cell could be dynamically divided between inputs
and outputs), thereby making a wide variety of logic cells possible.

For k outputs, the maximum number of input bits is A − log2 k, and the total number of
I/Os is then

P = A− log2 k + k

This expression is plotted in Figure 4.13 for a typical value (A = 6, corresponding to a 8×8
array of RAM); the flexibility of this approach is clearly demonstrated by the large variety
of options that exists within the PL = 10 pinout limit. This logic array has the additional
advantage of being easy to lay out, for outputs numbering less than min(H,V), as it requires
only a multiplexor to generate the combinations corresponding to the higher-order bits.

In addition to the obvious static logic applications of this cell (e.g., one cell can implement
a one-bit full adder, equivalent to 9 three-input NOR gates), the possibility of external

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 59

Level
3

Leaf

Level

Level

Level

LevelLeaf 1

2

1

4

Figure 4.14: Binary H-tree hierarchical interconnect struc-
ture. The area of the silicon is divided between (1) leaf cells,
(2) crossbar interconnect switches (shaded), (3) routing wires
with optional buffer stages (arrows), and (4) space for pro-
cessing elements interleaved in hierarchy.

feedback permits simple state machines (e.g., SR latches) to be constructed.

4.6.2 Physical Placement of Leaves and Interconnect

The first version of the PROTOCHIP contained a binary tree of interconnect laid out as
an H-tree (Figure 4.14), in order to maximize the density of the switches and to simplify
their programming. This structure permits the placement of the leaf cells on a regular grid.
Address lines to set the switches are on a uniform mesh, with decoders located around
the perimeter of the chip. We chose this approach over a hierarchical decoder because
it is simpler. The mapping between hierarchical interconnect matrix coordinates and flat
Cartesian coordinates is performed by the embedding compiler.

The first PROTOCHIP was fabricated on MOSIS run M75A, in 3µ CMOS; a photomicro-
graph is shown in Figure 4.15. Sixteen analog leaf cells (Figure 4.10) were included, with
a leaf pinout of PL = 10, and a Rent’s rule exponent of b = 0. We chose this low fanout
because the analog circuits of interest have a considerably smaller number of connections
at the system level than do conventional digital circuits. The entire chip was generated
recursively by the metacompiler.

60

Figure 4.15: Photomicrograph of first PROTOCHIP.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 61

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Input voltage DC offset (V
)

R
sw

it
ch

(kΩ)

1.0 2.0 3.0 4.0

Figure 4.16: Transmission gate small-signal resistance. The
experimental data describe the small-signal resistance of a
scaled transmission gate. Unfortunately, we did not com-
pensate for the shortening of the channel due to diffusion of
the source–drain implants under the gate.

4.7 Experiments with the PROTOCHIP

Preliminary testing of the PROTOCHIP yielded encouraging results. To test the perfor-
mance of the interconnect, we constructed a three-inverter ring oscillator; it ran at just
over 2 MHz, with 10 pF of external capacitive load applied to all three internal electrical
nodes. The experimentally measured capacitance of the interconnect was 500 fF/switch,
due primarily to the diffusion sidewall capacitance of the transmission-gate drains. The
ON resistance of the switches was 2.5 kΩ; the resistance as a function of terminal voltage
is shown in Figure 4.16.

Because this version of the chip was intended for development of subthreshold analog cir-
cuits, the resistance of the switches was considered to be unimportant. The capacitance,
however, was extremely critical, as it determined the effective time scale of the operation of
the circuit. To try to minimize the effect of the capacitance, we scaled the transistors in the
leaves such that the ratio of their total drain capacitance (diffusion capacitance plus leaf
interconnect matrix capacitance) to transconductance was the same as that for an ordinary
minimum-sized device (Figure 4.17). Compensation for capacitances in higher levels of the
matrix could be provided by buffer stages inserted in the signal-routing channels (under the
arrows in Figure 4.14).

The resistance of the switches becomes important for high-current digital networks, the

62

Z = 3, CD = 1 Z ≈ 16, CD = 5

Figure 4.17: Ring transistors with small drain diffusion areas
are used to maintain a constant ratio of current drive to
capacitive load. The load in the case of the leaf cell comprises
both diffusion (sidewall) capacitances of the transmission-
gate switches, and wire capacitances.

transistors of which have relatively high drain conductances. As an artificially arranged
example, a leaf cell configured as an inverter with two switches between n- and p-drains
(Figure 4.18) exhibits the transfer function shown in Figure 4.19; the corresponding switch
resistance is shown in Figure 4.20. For a correctly designed circuit, the transfer curve is
more conventional (Figure 4.21).

Particularly for subtle leaf cells such as the analog leaf, sophisticated design may be required
at this low level. Consequently, the network-embedding compiler searches a library of
commonly used, predefined, and pretested leaves. The library currently contains simple
and wide-range transconductance amplifiers, current mirrors, horizontal resistors, single
transistors, two-input NAND and NOR gates, inverters, analog multipliers, and CSRL
stages. It is being expanded constantly.

A test of the electrical performance of the hierarchical interconnect was performed by con-
figuring a well-understood system: the follower–integrator analog delay line described in
Chapter 9 of [?]. In theory, a delay line consisting of cascaded first-order sections (see
Figure 4.22) will exhibit a transfer function

Vn

Vin
=

e−jnωτ

1 + n
2 (ωτ)2

where Vn is the output at the nth tap, τ is the time constant of a single stage, and ω is
the frequency component of the signal in question. Hence, at the cutoff frequency ωc (the

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 63

Vtop

Vout

Vbot

Vin

Figure 4.18: Inverter with transmission gates in series with
high-current path.

0 1 2 3 4 5

Inverter input voltage (V)

0.0

1.0

2.0

3.0

4.0

5
.0

O
u
tp

u
t

v
o
lt
a
g
e

(V)

Vtop

Vbot

Vout

Figure 4.19: Transfer curve for inverter in Figure 4.18. A
nonnegligible voltage drop across each transmission gate is
clearly visible.

64

1.0 2.0 3.0 4.0

Inverter input voltage (V)

3.0

4.0

5.0

6.0

7
.0

R
sw

it
ch

(∆
V

/
I
)

(kΩ)

Figure 4.20: Effective large-signal resistance of transmission
gates in Figure 4.18.

0 1 2 3 4 5

Inverter input voltage (V)

0.0

1.0

2.0

3.0

4.0

5
.0

O
u
tp

u
t

v
o
lt
a
g
e

(V)

Figure 4.21: Transfer curve for an inverter designed with no
transmission gates in series with high-current path.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 65

Tap 1 Tap 2 Tap 3 Tap 4

Tap 5Tap 6Tap 7Tap 8

In

Figure 4.22: A follower–integrator delay line constructed of
first-order sections (see [?]).

frequency at which the output amplitude is half the input amplitude), the delay-bandwidth
product of the delay line is

ωcτ =

√

2

n

Consequently, we expect the total phase delay to be a linear function of the distance along
the delay line, and the rise-time of a step edge (tr is approximately the reciprocal of the
bandwidth ωc) to be

t2r =
τ2n

2

or, alternately, t2r ∝ delay.

Experimental data are plotted in Figures 4.23 and 4.24, illustrating the correct electrical
behavior of a follower-integrator delay line constructed using the PROTOCHIP.

4.8 Summary

The test PROTOCHIP has demonstrated the workability of a dynamically configurable
array for prototyping analog circuits. The system described in this chapter is easy to use,
provides fast turnaround (from schematic to ready-to-test chip in under 1 minute), and
good performance and simulation accuracy, and is able to handle networks of interesting
size.

66

1 2 3 4 5 6 7 8

Tap along delay line

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0
.7

A
g
g
re

g
a
te

d
el

ay

(ms)

Figure 4.23: Waveform delay as a function of distance down
the delay line of Figure 4.22.

0.10 0.20 0.30 0.40 0.50 0.60

Aggregate delay (ms)

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5
.2

5

(R
is

e
ti
m

e)
2

(1
0
−

8
s2

)

Figure 4.24: Waveform risetime as a function of delay for the
follower–integrator delay line of Figure 4.22.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 67

The ability to specify and instrument a circuit interactively and to perform a simulation
is a great convenience to the user. We are currently integrating the network compiler and
PROTOCHIP into a schematic capture/software simulator [?, ?] environment. As the
schematic editor is already part of our VLSI tool suite (for netlist generation and network
comparison), this project is a step toward a truly unified design environment.

Future design iterations of the PROTOCHIP could provide a binary H-tree laid out as
a hexagonally tesselated structure, intended for experiments on our retinal-model image-
processing architectures. These designs would include dedicated local routing, and will inter-
sperse processing elements in the interconnect hierarchy. Also, we are considering alternate
interconnect technologies (in particular, a nonvolatile switch based on UV-programming of
a floating gate in a standard CMOS process), driven by performance and density require-
ments.

Finally, we are exploring new applications of this methodology. For example, we are con-
sidering using the metacompiler to generate a system to model the analog computations
that take place in the dendritic arborization of biological neurons, and to generate a system
of interconnected neurons to facilitate experiments on models of biological central pattern
generators.

68

Chapter 5

Specification of Netlists,

Testing of Graph Isomorphism,

and Embedding of Circuits onto

the PROTOCHIP

Computers are useless. They only give you answers.

Pablo Picasso (1881-1973)

This chapter discusses three diverse subjects, tied together by their use of circuit netlists,
and by their inclusion in a single design tool. In reverse order of treatment, these subjects
are:

Embedding of circuits on a PROTOCHIP. We discuss several embedding algorithms,
and reexamine the significance of Rent’s rule in the context of hierarchical circuit graph
partitioning. Then, we develop two algorithms to embed graphs. One is a dynamic-
programming approach that operates bottom up; it is particularly suited to efficient
embedding of small, difficult graphs. The other is a fast, greedy algorithm that oper-
ates top down; it is primarily useful for quickly embedding large, sparse systems. For
completeness, these approaches are compared with a traditional simulated-annealing
algorithm. All three approaches are supported within the PROTOCHIP software.
Any combination of them can be used to embed subsections of a particular circuit.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 69

Testing of graph isomorphism. A useful and often-underutilized VLSI design-validation
approach is to compare a netlist extracted from layout to one specified independently,
typically by circuit schematic. This technique is particularly valuable for validating
automated layout generators. We have developed an efficient algorithm for netlist
comparison; we discuss its implementation, and make general observations regarding
its use over the last 5 years.

Specification of netlists. Because circuit netlists are essential to the two processes al-
ready mentioned, and because all popular netlist-specification formats have limita-
tions or impose artificial restrictions on the user, the PROTOCHIP system employs
a general mechanism to specify netlists. Built around a universal representation,
NETGEN provides a versatile interface, allowing simple transformations between
popular and commercial netlist formats.

5.1 NETGEN: A Netlist-Specification Language

Embedding a circuit onto a PROTOCHIP requires prior specification of the circuit. For
generality, netlists are accepted from various sources, including LOG, anaLOG, WOL, and
Magic. Many netlist formats exist in academia and industry. Four of the most popular are
the following:

NTK: [Bryant et al., 1982] This format originated within the Caltech community. NTK
is generated by (ana)LOG [?] and WOL [?], and is parsed by netcmp, mossim
[Bryant et al., 1982], and cosmos [Beatty et al., 1989].

ext, sim: [Ousethout and et al., 1985] These formats are generated by the Berkeley design
tools. Ext is the hierarchical extractor output format; Sim is a flat netlist format
with limited electrical information, used primarily for switch-level simulation of digital
circuits.

EDIF: [EIA88, 1988] This format is the emerging industrial standard. EDIF is a general
purpose, LISP-like language capable of specifying schematics, layout, netlists, simula-
tion vectors, and a host of other design-related data. Its versatility is also its greatest
liability, as EDIF-based systems require embedded interpreters; this complexity has
delayed EDIF’s acceptance into the market.

SPICE: Spice “decks” are a ubiquitous netlist format, due to their use in a popular circuit
simulator [?].

Unfortunately, all these formats suffer from shortcomings, generally related to their heritage
as simulator inputs, extractor outputs, and so on. Furthermore, translation between one
format and another has been inconvenient, and has spawned a large set of filters (ext2ntk,
ext2sim, etc.). The opportunity thus exists for a simple, yet general, netlist-specification
language.

70

NETGEN permits syntax-independent specification of connectivity by defining an inter-
nal representation (data structure) and a versatile interface to this representation, and by
providing powerful primitive operators to manipulate this representation.

NETGEN is restricted to connectivity specification. That is, only the topology of a circuit
is maintained; electrical properties of nodes or circuit elements are suppressed. However,
many of these properties can be reintroduced as attributes of specific elements. For example,
transistors of various sizes may be considered as different elements, instead of as variations
within a single class. Other properties, such as node capacitance, may be reintroduced
explicitly by lumped-element models. This flexibility allows the designer to identify the
significant components of the circuit in question, and to abstract the rest.

5.1.1 Natural Support for Common Design Styles

It is imperative that any netlist tools be (1) convenient to use, and (2) useful for netlists
of large scales. The degree of convenience is directly related to the speed with which the
designer’s intent can be captured.

It is now widely accepted that a structured design methodology is imperative to VLSI design
[?]. An essential component of this methodology is hierarchical design; hierarchy is useful
both as an abstraction and as an inheritance mechanism. A conservative and elegant
design style in VLSI layout is that of a separated hierarchy in which a cell is either a layout
cell or a composition of other cells [Rowson, 1980]. If we further restrict interconnectivity
of cells to their perimeter (composition by abutment), it is then clear that the contents of
each cell comprise its definition (i.e., there are no global wires that interact with the cell by
being placed over it) [?].

On the other hand, strict hierarchy is often inconvenient when we are specifying large
systems. Global signals, such as power buses and clock lines, are often suppressed for
clarity. Signals of intermediate scope are often present (e.g., bit lines and word lines in a
RAM).

NETGEN provides general hierarchical specification of netlists, with dynamic scoping rules
that govern the visibility of objects. An optional topology-driven front end provides auto-
matic connectivity between cells, according to a composition-by-abutment paradigm.

5.1.2 NETGEN’s Internal Representation

The basic unit in defining a circuit is a cell. A cell, in turn, can contain any number of other
cells, called instances. A cell has some special elements, called ports, that are the connections
that can be made to the cell when that cell is instanced. After a cell is instanced, these
ports are called pins within the context of the cell being constructed. The ports (of the
current cell) and pins (of previously defined cells) may connect together directly, or through

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 71

source

gate

drain

drain

gate

source

input

output

gnd

bias

Instance: n1 of Cell: n

Instance: n2 of Cell: n

n1/drain

n1/gate

n1/source

n2/source

n2/gate

n2/drain

Definition of cell: imirror

Figure 5.1: The components that comprise the NETGEN in-
ternal representation: cells, instances, ports, pins, and nodes.
Ports actually come in several varieties: simple ports are
shown in this figure, global ports and unique-global ports
will be discussed later.

optional nodes; see Figure 5.1.

NETGEN has a uniform internal representation with a single operator: connect. Within
a cell, the three kinds of elements (ports, nodes, and pins) are manipulated identically
by connect. In defining a cell, the user connects ports, nodes, and pins as required to
construct the desired circuit. In particular, there is no direct equivalent of a “wire” within
NETGEN; we can accommodate situations where named signal lines would be useful by
using named internal nodes.

The connect operator is actually considerably more powerful, as it accepts as arguments
two lists, whose components are then connected element by element. This behavior simplifies
operations on structures such as buses. The list constructors can include general regular
expressions; see Figure 5.2 for an example.

5.1.3 A Simple Model for Placement and Interconnect

NETGEN provides a simple model for VLSI cell placement: cells are rectangular and have
ports along the perimeter on four sides (N,S,E,W). Composition is by abutment and can
occur in either the horizontal or vertical direction. When two cells are placed such that
they share an edge, the port lists along that edge of the respective cells are generated, and

72

CellDef A

EndCell

a0

a1

a3

a4

a5

a6

a7

a2

a

b

c

d

e

f

g

h

A

CellA CellB

B

port a
port b
port c

port h

port a7

port a2
port a1
port a0

CellDef B

EndCell

CellDef C
instance A as CellA
instance B as CellB
connect CellA/*, CellB/a*

EndCellC

Figure 5.2: The connect operator can be applied to lists of
elements. Regular expressions (and wildcards) can be used to
generate these lists, providing a means to structure elements
into buses, arrays, etc.

the connect operator is invoked on them. Ports along the orthogonal edges are propagated
as ports of the cell being defined. The order of ports along all sides is preserved.

This model is supported by the place operator; place may be considered a variation on the
instance operator, with the side effect of “sealing” ports of adjacent cells. See Figure 5.3
for an example.

This placement system is layered upon the instance / connect paradigm discussed in Sec-
tion 5.1.2. The choice of rectangular cells is arbitrary; triangular or hexagonal composition
could be accommodated easily (the placement system is written in under 50 lines of C code,
using the embedded-language interface to the NETGEN internal operators).

5.1.4 Scoping Rules for Identifiers

The requirement that we continually declare high-connectivity nodes (e.g., power rails,
bit/word lines) explicitly as parameters to each cell often is inconvenient. Also, the number
of ports of generated cells (see Figure 5.3) must be kept manageable.

The solution to these difficulties takes the form of scoping rules for element names; when a
cell is instantiated within the context of a calling cell, particular elements within the called

cell are implicitly connected to elements in the parent cell. This binding process is exactly

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 73

CellDef row

hcompose

place A

place A

EndCell

CellDef array

vcompose

MakeArray row, 2

EndCell

row

row

array

S.b

S.A1.S.b S.A2.S.b

S.row1.S.A1.S.bS.row1.S.A2.S.b

W.b

W.aE.c

E.d E.d
E.row2.E.A2.E.d

A A

AA
E.c

E.row2.E.A2.E.c

row1

row2

A1

A1

A2

A2

Figure 5.3: Using the NETGEN place operator to connect
a row of cells. A direction of cell placement is specified by
hcompose / vcompose. The MakeArray operator is simply a
shorthand operator for multiple calls to place.

analogous to local/global variables within nested PASCAL procedure declarations, but the
process is reversed: instead of declaring local variables, and assuming all others to have
global visibility, particular ports are declared global and obey certain implicit connection
rules.

Semantically, a global port A in cell B is a port that connects itself automatically when cell
B is instanced. In particular, element A in cell B will automatically connect itself to any
element named A that exists in the parent cell. If element A does not exist in the parent
cell, instantiation of B will cause a global A to be defined in the parent. The result is that
the unbound variable A is propagated to the next level of the hierarchy.

This dynamic scoping permits cell B to be declared before its parent cell (in contrast, this
order is not possible with statically scoped languages such as PASCAL). An example of this
feature is shown in Figure 5.4.

Naming Conventions for Ports

1) Ports, called pins in the context of the calling cell:

<instance name> "/" <port name>

2) Ports - Oriented:

74

CellDef A
global gnd
global word
port S.bit

EndCell

CellDef row

hcompose
MakeArray A, 2

EndCell

row

array

row1

row2

S.bit

global word

W.word

A A

gnd

port W.word
node word
connect W.word, word

S.row1.S.A1.S.bitS.row1.S.A2.S.bit

CellDef array
vcompose
MakeArray row, 2
connect S.row1.S.A*.S.bit,

EndCell

AA

W.word

global word

S.bit

global gnd

global gnd

S.row2.S.A*.S.bit

Figure 5.4: Dynamic scoping of identifiers.

<side> {"." <instance name> "." <side>}* "." <port name>

where side is one of (N, S, E, W)

3) Ports - Global:

<port name> - name propagates unchanged, but is bound

to locally-declared identifier of same name.

4) Ports - Unique Global:

<my class name> "#" <instance name> "/" <port name>

5.1.5 Summary

NETGEN provides a versatile data structure for netlist representation, and a policy-free

procedural interface. This interface allows simple interfacing to popular netlist formats
(typically in either net-major or element-major order), and conversion between them.

Powerful netlist operators, including various flattening operators, permit convenient trans-
formations required by various tools. Dynamic scoping of ports’ visibility allows concise
specification of large systems.

As a practical matter, NETGEN runs on a variety of platforms, and provides graphical
(under the X Window System) and command-line interfaces, as well as an embedded-
language interface in the form of a C language subroutine library.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 75

Figure 5.5: A screen dump of the X Window System inter-
face to NETGEN. User commands are entered via pull-down
menus; arguments are specified in the text-entry subwindows.

76

5.2 Netlist Comparison for Validation of VLSI Systems

As VLSI systems continue to grow in scope and scale, increasing demands are placed on
design tools. An effective but often underutilized design-validation technique is the com-
parison of the connectivity specified by a circuit netlist extracted from mask geometry to
that of an independently specified netlist (typically obtained through a schematic-capture
path). This technique has the intrinsic advantage of validating the entire set of design tools,
as well as the design itself.

Furthermore, as designs increase in complexity, static validation techniques become more
attractive than traditional dynamic techniques. Exhaustive switch- or even mixed-level
simulation of a design is becoming increasingly impractical, and brings with it the well-
known difficulty of designing a test-vector set with reasonable fault coverage. Indeed, as we
shall see, the process of verification of circuit connectivity is applicable even for technologies
and designs for which no corresponding simulation capability exists.

The objective of this section is to document an efficient algorithm for testing graph isomor-
phism, developed specifically for VLSI application, and to compare it to existing approaches.
In addition, this section describes operational results of using this validation methodology
over several years, in an academic environment.

5.2.1 Previous Work

The idea of connectivity verification has existed for some time. However, insufficient at-
tention has been paid to development of algorithms for VLSI circuits. In general, most
commercially available systems derive their origin from gate-level design of circuit boards,
and are embedded within a suite of proprietary design tools. A notable exception is the
WOMBAT system [?]. Like its predecessor LIVES [?], WOMBAT operates by assigning
to each element a signature (ideally, a unique identifier based on an element’s type, con-
nected neighbors, fanin, fanout, and any other distinguishing characteristics the designer
can identify). Element pairs (one from each netlist) with the same signature are bound; the
algorithm proceeds with waves of elements bound by successive iterations. WOMBAT has
demonstrated an ability to compare circuits comprising nearly 10,000 elements, although its
internal data structures (and algorithms) are somewhat complex and memory-inefficient.

Our algorithm differs from this approach in five respects: (1) the concept of a signature is
replaced by an equivalence class; (2) classes of indistinguishable elements are successively
refined (we do not have to wait until we can bind a single pair of elements unambiguously);
(3) the circuit is represented as a bipartite graph, with elements connecting to nodes; (4)
a more efficient data structure permits substantial savings in both memory and execution
time; (5) an efficient probabilistic algorithm has been developed to determine set equality.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 77

PI1

PI2

PO2

PO1

NOR1

NAND2

NAND1

INV2

INV1

PI2

PI1

INV2

INV1

NOR1

NAND1

NAND2

PO2

PO1

NOR2

NOR2

Figure 5.6: Transformation of a circuit into a graph. This
representation is not unique unless there is only one driving
pin per node (e.g., the output of an inverter), and that pin is
known. In general, a node would have to be represented by
a complete graph, which is wasteful of memory. Circuit and
graph taken from [?].

5.2.2 Testing of Graph Isomorphism

A circuit can be represented as a graph (Figure 5.6), where elements (gates, transistors,
etc.) are vertices, and edges imply connectivity. We immediately encounter two difficul-
ties: (1) the fanout of circuit elements has structure (elements have distinct pins, some of
which may be logically equivalent), and (2) electrical nodes are not uniquely represented
by this transformation (all spanning trees are logically equivalent, but are not necessarily
isomorphic). Both these problems are resolved with the graph shown in Figure 5.7; a bi-
partite graph of pins and nodes, with sets of pins grouped into elements (the problem of
pin permutability is deferred until Section 5.2.3).

The problem of verifying connectivity is now cast as one of determining isomorphism be-
tween two graphs. That is, given two graphs G1(V1, E1) and G2(V2, E2), we wish to know
whether a permutation exists such that the one-to-one correspondence between vertices in
the two graphs that it defines has the following property: For every edge between two ver-
tices in the first graph, there is an edge that connects the two corresponding vertices in
the second graph. Determination of graph isomorphism in the general case is possibly in-
tractable (although it is not known to be NP-complete, either) [?]; intuitively, the difficulty
is due to the need for complete enumeration of nearly identical parallel paths. In practice,
such structures rarely arise in circuit design, and we report here an efficient algorithm that

78

PI1 PI2INV1

OUT

INV2

OUT

NAND1 NOR1

OUT OUT

PO2 PO1

INV1 INV2NAND1 NAND2 NOR1 NOR2

Figure 5.7: Representation of the circuit in Figure 5.6 as
a bipartite graph of elements above and nodes below. This
graph is unique for the circuit, and does not depend on knowl-
edge about the elements and their pins.

has effectively linear running time in the number of elements in the graph.

Our algorithm is derived from the vertex-encoding procedure described in [?]. Initially, a
graph is partitioned, using vertex invariants, into equivalence classes (sets of elements that
cannot be distinguished, based on current information). We then refine these equivalence
classes iteratively, by grouping members whose neighbors are indistinguishable. A simplified
form of the algorithm is described in Figure 5.8.

The initial conditions are simple: All nodes are grouped into a single class, and all elements
are partitioned according to their type (n-channel or p-channel MOSFET for typical CMOS
processes). The first iteration then serves to fragment nodes according to their fanout.

In addition, we can incorporate into the initial conditions a user-specified explicit equiva-
lence between a pair of nodes or elements, simply by creating an equivalence class containing
only the two specified components.

The termination condition corresponds to three possible situations: (1) the graphs are
isomorphic, and a unique correspondence has been found (i.e., the circuits are identical,
and all elements and nodes in each have been labeled); (2) the graphs are different, and
the difference has been identified; or (3) the algorithm was unable to determine that either
case 1 or case 2 exists. It is instructive to consider the final equivalence classes in each of
these cases.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 79

repeat

for each element class,

for each element within the equivalence class,

calculate a signature based on the node

classes of the pins of this element

group all elements with the same signature

into new, separate equivalence classes

for each node class,

for each node within the equivalence class,

calculate a signature based on the element

classes of the pins contacting this node

group all nodes with the same signature

into new, separate equivalence classes

until no new equivalence classes were created

Figure 5.8: The simplified graph isomorphism algorithm. In
practice, the loop is continued until any further refinement
would create an illegal partition (an “equivalence class” with
unequal numbers of components from each circuit). Termi-
nation is assured, since each iteration creates at least one
new equivalence class, and classes are never re-combined.

In case 1, the algorithm terminates with E element equivalence classes and N node classes.
Each class contains exactly two items, one from each graph, and encodes the correspondence
explicitly. In case 2, the algorithm terminates with at least one equivalence class containing
an odd number of elements. There can be no one-to-one pairing of elements within this
class; hence the graphs are nonisomorphic.

Case 3 is the interesting situation, as the potential intractability of the problem is captured
here. In its most benign form, this condition corresponds to automorphism in the parent
graph (i.e., the graph is isomorphic to itself under some permutation of the vertices). In
circuits, this situation arises most commonly due to parallel structures, such as parallel
transistors in pad drivers. There is no unique labeling for such structures, but all labelings
are equally good. In its pathological form, however, case 3 may conceal differences in the
graphs. This result is most likely to occur in near-regular graphs (see Figure 5.9 and [?]); in
practical terms, we observed this behavior only once in hundreds of test cases (documented
in Section 5.2.4). Even so, the vertex-encoding algorithm makes a useful first pass, reducing
the size of the subgraphs that can be subsequently test-labeled exhaustively. Furthermore,
the number and kind of such potential automorphisms is logged, thereby giving the user a
starting point for specifying explicit element equivalences.

At this point, it is useful to discuss several broad classes of common errors made in VLSI

80

A

B

C

DE

F

G

1

2

3

45

6

7

Figure 5.9: Two graphs that are different yet are in-
completely partitioned. The algorithm terminates with the
equivalence classes {A,1}, {B,C,D,E,F,G,2,3,4,5,6,7}. How-
ever, exhaustively trial-matching all elements of the sec-
ond equivalence class yields no self-consistent partition, and
hence the graphs are not isomorphic.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 81

design and layout. The most common errors are shorts or opens; that is, a single electrical
node in one graph corresponds to two (or more) nodes in the other graph. The algorithm
easily identifies these errors, reporting upon convergence, a single “equivalence” class con-
taining the nodes in question. Furthermore, a quick examination of the nodes’ connectivities
immediately indicates the problem (see Figure 5.10). The analogous error for elements is
the omission or addition of a single element, usually in a long chain of identical structures.
We can often determine the presence of a single defect of this type simply by comparing
the total number of elements and nodes in the two circuits. Another easily identified error
is the substitution of an incorrect gate type.

Parsing file: csrltest.NTK

Found: 212 N Transistors, 212 P Transistors, 424 Total Transistors,

164 Non-orphan Nodes, 2 Orphans, 166 Total Nodes.

Parsing file: csrltcell.lntk

Found: 212 N Transistors, 212 P Transistors, 424 Total Transistors,

163 Non-orphan Nodes, 0 Orphans, 163 Total Nodes.

*********** results of fixed-point iteration **************

(1) Node: 55 fanout: pg=1 ng=0 ps=1 ns=1

(1) Node: 74 fanout: pg=0 ng=1 ps=0 ns=0

(2) Node: CHIP/DELAY.3/TCAMP.5/IN fanout: pg=1 ng=1 ps=1 ns=1

1 difference found.

Figure 5.10: Typical output from NETCMP, illus-
trating an open node in the layout. The num-
ber of gates and source/drains connecting to node
CHIP/DELAY.3/TCAMP.5/IN in circuit 2 is the sum of
those connecting to nodes 55 and 74 in circuit 1.

A more subtle error occurs when symmetric elements are composed incorrectly (see Fig-
ure 5.11). These errors are typically difficult to isolate, since subgraphs are isomorphic,
and only these subgraphs’ connection through otherwise correct elements causes problems.
The ability to equivalence particular nodes and elements explicitly is invaluable in tracking
down this sort of problem. This procedure allows “waves” of binding to proceed outward
from the near-symmetrical cell, rather than inward from the external environment.

82

φ1 φ2

Figure 5.11: If the crossover indicated by the hatched line
is absent, this CSRL [?] 1-bit counter becomes a latch! Un-
fortunately, the high degree of symmetry of this circuit make
this difficult to detect. Typically, an error is reported at all
four pass transistors, as well as their source / drain nodes.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 83

5.2.3 Enhancements to the Algorithm

Computation of Set Equality

The most time-consuming part of the algorithm described in Figure 5.8 is the computation
of set equivalences. In a computer, sets are represented by lists, and the order of elements
within the list makes comparison of such sets difficult. For the purposes of this discussion,
we define two lists L1 and L2, the elements of which are taken from a universe set U .
Furthermore, let S1 be the set of elements in L1, and S2 be the set of elements in L2.

In the simple case of no pin permutations, testing equality for element sets is simple: We tra-
verse the pin lists of two elements, and determine whether the node classes of the contacted
node are the same. Unfortunately, this procedure is inadequate for node classes, since the
order of the pins is not guaranteed to be the same between the two graphs. Prior solutions
include radix sorting, which requires O(| U |) memory for each element [?], and in-place
sorting (implemented in an early version of NETCMP [?]), which requires O(|S | log2 |S |)
time.

An alternative procedure to component-by-component comparison is the computation of an
ensemble property of the list. We define a hashing function F such that

S1 = S2 ⇒ F (L1) = F (L2)

We can construct F by first defining a mapping f : U → Zn, where Zn = {0, 1, 2, · · · , (n −
1)}, and choosing ⊕ to be a commutative, associative operator over the elements of Zn.
Then,

F (L) = f(x1)⊕ f(x2)⊕ · · · f(xn) (5.1)

L = [x1, x2, · · · , xn]

As a straightforward choice, assigning to each element of U some random integer (through
the function f), and defining ⊕ as the addition operation modulo n, yields a mapping F
with the desired behavior.

Consequently, in time O(|S |), we can test the hypothesis S1 = S2, and possibly reject it.
In fact, we can make this procedure necessary and sufficient by assigning unique integers
to the members of U , and iterating the process log2 | S | times (appropriately relabeling
particular elements with each iteration). Of course, this complexity is equivalent to sorting
the sets, then sequentially comparing them.

It is interesting to consider the probability of failure—that is, of incorrectly identifying two
sets as equal when they are not. If n is a power of 2, and f assigns random odd integers
from Zn, this probability is

P (F (S1) = F (S2) | S1 6= S2) =
1

n

84

Proof (sketch): Consider the difference sets S′
1 and S′

2 defined by:

C = S1 ∩ S2

S′
1 = S1 \ C

S′
2 = S2 \ C

By Equation 5.1,

F (S1) = F (S′
1)⊕ F (C)

F (S2) = F (S′
2)⊕ F (C)

Since ⊕ is invertible, we can ignore the contribution due to F (C), and observe

F (S1) = F (S2) ⇔ F (S′
1) = F (S′

2)

However, F(S) is a uniform random variable on Zn, which we have guaranteed by selecting
the range of f to be those elements that are generators for the cyclic group Zn under
the operator ⊕ = +, namely the odd integers in Zn (proof omitted). Thus, the equality
F (S′

1) = F (S′
2) occurs with probability 1

n .

As a practical matter, 32-bit words offer more than adequate confidence (1
n ≈ 2.3× 10−10).

For memory efficiency (see Section 5.2.3), even 16 bits are sufficient, especially in light of
the possibility of testing for set equality by sorting and comparing, after the probabilistic
algorithm has converged.

Pin Permutability

We are now ready to address the issue of pin permutability. Many VLSI structures provide
terminals that are functionally equivalent, at some level of abstraction. A trivial example is
the source–drain diffusions that contact a MOS transistor’s channel; in a self-aligned gate
process, these terminals are physically equivalent. A more complex example is an AOI gate
(Figure 5.12), which has two pairs of logically equivalent inputs. In general, the problem of
permitting pin permutability consists of allowing sets of terminals to have arbitrary order,
while retaining the significance of other terminals’ place in the pin list.

The solution to this problem is to extend the set equivalence metric described in the previous
section to make order in the set significant. We can achieve this behavior by modifying the
identifier associated with each set element based on its position in the list. The complete
data structure for netlist comparison is shown in Figure 5.13; the set hash function for pin
lists is then

F (element) =
∑

i∈PinList[]

place(PinListi) XOR f(class[node[PinListi]])

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 85

A
B

C
D

(A · B) + (C ·D)

Figure 5.12: A typical and-or-invert (AOI) gate. Here, pins
A and B are logically interchangeable, as are pins C and D.

Pins that are permutable are given identical place entries, in every instance of that element.
(In this notation, a[] denotes dereferencing pointer “a”, and x() denotes the value of an
element in a structure.)

Similarly, the node hash function uses the PLACE field to ensure that the correct pin of an
element has been contacted.

F (pin) =
∑

i∈ElementList[]

place(pin[ElementListi]) XOR f(class[pin[ElementListi]])

Efficiency Considerations

We can obtain a further optimization by recognizing that the partitioning of node and
element equivalence classes proceeds in waves: Only classes containing elements connected
to nodes that are members of recently partitioned classes are themselves candidates for
partitioning in the next iteration. These candidates are referred to as activity regions.

In addition, since the ⊕ operator is invertible, it is possible to compute the new hash
function for a set without retraversing all of the set’s elements:

F (S)← F (S) ⊖ fold(class[node[PinListi]])

⊕ fnew(class[node[PinListi]])

where ⊖ is defined by (x = z ⊖ y) ≡ (z = x⊕ y).

Finally, to generate useful diagnostics in the case of nonisomorphic graphs, the partitioning
of equivalence classes is continued until all remaining fractures would create an illegal par-
tition (“equivalence” classes containing unequal numbers of components from each graph).

86

next
class

name element
place

node

PinList[]

f

elements
next

next
elements

f

f

nodes
next

pin

name

class
next

ElementList[]

next
class

name

pin

ElementClass NodeClass

node
place

elementname

class
next

Element Node

Figure 5.13: The datastructure for NETCMP, implementing
a bipartite graph of the type shown in Figure 5.7. On the
left, Elements are grouped into element equivalence classes.
Each element contains a list of Pins, which point to Nodes.
Similarly, on the right, Nodes contain lists of pointers back
to pins. For clarity, not all pointers are shown. The “name”
field is external to the algorithm, and is maintained for the
user’s convenience.

5.2.4 Implementation and Experience

The netlist-comparison procedure described in Section 5.2.2 has formed the core of our
design-validation process for the past four years. Over that period, approximately 100
full-scale designs, and several hundred test-structure chips, have been verified, including
all the systems described in [?]. Most of these projects contained analog components,
making validation-by-simulation impossible. Validation by netlist comparison, coupled with
geometric DRC, assured each project was at least testable on first silicon.

Extraction from the mask-level specification by the WOL layout editor [?], and a hierarchical
schematic generated by LOG [?], provides the two independent netlists for comparison. In
four years, over 5100 chip extractions were made, and the number of netlist comparisons is
approximately the same. Unlike most previous algorithms, the NETCMP algorithm requires

no explicit equivalencing of labels between the two circuits; this feature was most convenient
for the user community, who were seldom willing to invest more than one person-day into
the validation process.

A more recent version of NETCMP, implementing the probabilistic algorithm and features
described in Section 5.2.3 has been incorporated into a system providing an embedded-
language for netlist specification that supports a simple composition-by-abutment paradigm.
Our objective is to integrate this netlist generator into the chip assembler tools, thereby
producing a netlist simultaneously with the chip layout.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 87

Performance of the algorithm is measured in terms of convergence time and memory usage.
Typical performance data is shown in Table 5.1. Running time is approximately linear
in circuit size; restricting partitioning to classes adjacent to recently partitioned classes
provides a substantial speedup.

Circuit Elements CPU Time (sec)
Without activity regions With activity regions

8,400 21 9

51,100 140 52

Table 5.1: Performance of the NETCMP algorithm.

Comparison of Transistor Netlists

In the case where comparison of MOS transistor netlists is the only intended application,
several simplifications to the algorithm are available to increase its performance. Transistor
pins can be stored in fixed-length arrays, and the source/drain pin permutability can be
hardwired into the algorithm, rather than the data structure. These simplifications reduce
the structures in Figure 5.13 to use only 88T +34N bytes of memory to compare two circuits
of T transistors and N nodes each. For most CMOS circuits, N ≈ T/2 (see the next section),
giving a total memory usage of 105 bytes per transistor. This result, in conjunction with the
execution time performance of Table 5.1, demonstrates the feasibility of netlist comparison
as a validation technique, as a 100,000 transistor chip fits comfortably in a (typical) 16Mb
workstation. It is worth noting, however, that the performance of the algorithm degrades
substantially when physical memory is exhausted, due to the effectively random references
within the connectivity graph.

Node vs. transistor count for CMOS circuits It is interesting to note that for several
common CMOS design styles, the number of electrical nodes N in a circuit is (almost
exactly) one–half the number of transistors T . In practice, the actual number of nodes is
likely to be lower, due to regular structures (such as PLAs and ROMs), and tri-state busses.

1. Restored logic gates with dual pull-up trees.

Consider a n-input NOR gate, containing T = 2n transistors.

3(2n) total pins
− 2n gates are driven by other nodes
− 2(n− 1) pull-ups share output and power nodes
− 2 global power nodes
− n drains in the pull-down chain connect to sources

n nodes (n− 1 internal, and 1 output)

88

A1

A2

A1

A2

A1 A2

Mi

Mi

Figure 5.14: A general AOI gate. Each input gate has Mi

inputs. The output NOR gate is actually a wired-NOR, and
requires no additional transistors.

Of course, the same is true for n-input NAND gates, and for the 1-input degenerate
form (the inverter). Consequently, any circuit comprised simply of such gates will
have (counting external inputs and power nodes):

N =
T

2
+ (inputs) + 2

2. Transmission gates, driven by restored logic.

Each transmission gate adds two transistors and one node. Since their gates generally
connect to global clock lines, at most a small (finite) number of global nodes is added
to the system.

3. AOI gates.

Consider the gate in Figure 5.14, with transistor count Ti = 2Mi. Each gate con-

tributes
(

Ti
2 − 1

)

nodes to the pull-down chain, and 1 node to the pull-up chain.

Hence,

N =
∑ Ti

2
=

T

2

A Failure Case for the NETCMP Algorithm

In four years of use, the only observed failure of the algorithm to identify non-isomorphic
circuits is illustrated in Figure 5.15. It is instructive to examine this case, to understand

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 89

K1 K2

I1
I2 I2

K1 K1

K2

O

K2
K1K1

I2I2

I1

K2K1

O

A

A′

A′′

B

B′

B′′

Figure 5.15: A real circuit for which the graph isomorphism
algorithm fails. The circuit is not laterally symmetrical, be-
cause of the connection of the nodes marked K1 and K2. The
algorithm groups the n-channel devices into 4 classes.

the limitations of the partitioning algorithm. Essentially, partitioning consists of applying
a first-order predicate: do graph components A and B share the same set of connected
elements? To correctly identify the difference between these two circuits, one must apply a
second-order predicate: does A connect above to an element A′ which connects above to A′′,
while B connects eventually to B′′ (clearly, A′′ and B′′ are not equivalent, and so neither
are A and B). It should be noted that the high symmetry of the circuit could have been
broken by a single labeling of a pair of inputs or transistors, which would have allowed the
partitioning algorithm to correctly find the difference between the two circuits.

Automorphism Resolution by Trial Matching

To reduce the effect of the problem illustrated in Figure 5.15, we added a heuristic algo-
rithm that is executed upon convergence of the NETCMP vertex-encoding algorithm. The
heuristic consists of making a single trial match of two components within a single equiva-
lence class, and then iterating the vertex-encoding algorithm to convergence. At this point,
if no illegal “equivalence” classes have been detected, and if other automorphisms exist, the
trial matching is repeated with another pair of components. This process is repeated until
no automorphisms remain, or until an illegal partition of an equivalence class is made. In
the former case, we report that the two original graphs were isomorphic, because we have
obtained a self-consistent labeling of all their components. In the latter case, all we have
shown is that the initial trial match was incorrect. Nonetheless, we report this as a dif-

90

ference between the graphs, primarily to encourage the user to examine the problem more
closely (and perhaps consider trying some explicit specification of equivalent components,
as an aid to the vertex-encoding algorithm).

5.2.5 Summary

Working with a large user community over a period of several years, we have observed netlist
comparison to be an effective design validation procedure. It is an efficient static check that
avoids the difficulties of dynamic validation (simulation is slow, and good test vectors hard
to find). Also, netlist comparison provides a basic validation even for technologies that
are not amenable to simulation (e.g., analog VLSI). As designs become more complex, the
importance of fast validation increases.

The algorithm presented in this section is very fast, and, perhaps more importantly, is very
efficient with regards to memory. The objective of operating on VLSI-scale circuits was
designed-in from the start. The fundamental graph isomorphism algorithm was modified
extensively by constraints of the VLSI environment (e.g., pin permutability, and the ability
to iteratively compute the equivalence class hashing function F). Although the general
graph isomorphism problem is hard, we have observed that the difficult cases rarely arise
in real circuits.

It is important to note that validation techniques such as netlist comparison supplement

automated layout systems (silicon compilers, module generators, etc.), and are not made
obsolete by “correctness by construction.” In fact, as silicon compilers are becoming an
enabling technology for non-VLSI experts, the need to validate the compiler is actually
more critical than that of validating individual designs.

Similarly, the value of mask-level extraction cannot be over-stated. In addition to validating
the layout generator, mask–analysis tools are capable of identifying many common design
errors, including floating nodes (e.g., CMOS wells that have not been connected to power
rails), and yield-impact geometry (e.g., implant mask spacing rules that are missing from
many DRCs).

In summary, netlist comparison provides a fast, easy, and efficient mechanism for identifying
many catastrophic design errors.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 91

5.3 A Bottom Up Graph-Embedding Algorithm

This section describes an algorithm to embed a flat circuit network on a k = 2 (binary)
hierarchical interconnect network. For simplicity of description, all processing elements are
considered to be at the leaves of the tree, and all leaves are assumed to be identical. In prac-
tice, we partially accommodate diversity among leaves by making the leaves programmable.
In addition, the algorithm can be modified easily to accommodate a nonuniform hierarchy.

This graph-embedding problem is similar to the standard-cell place-and-route problem,
with one significant difference: In the PROTOCHIP, the routing-channel resources are
predefined and fixed, as is the structure of the interconnect. The basic approaches, however,
remain the same. A top-down partitioning [?, ?] attempts to divide a graph into two nearly
equal parts, while approximately minimizing the number of wires crossing between them.
A bottom-up technique considers candidate groups of elements for merging, based on some
cost metric of amalgamating these cells into one [?, ?]. Both of these approaches can be
extended to incorporate the constraints of the hierarchical interconnect to prune the search
tree of candidates for subdivision and merging, respectively. A third approach, based on
simulated annealing [?], also is possible, but has not yet been explored in application to a
hierarchical interconnect.

We selected a bottom-up approach employing dynamic programming for several reasons.
First, a concise mathematical description of the algorithm provided a direct implementation,
and facilitated an analysis of the problem complexity. More generally, the bottom-up ap-
proach can be applied easily to nonuniform hierarchies, and permits the use of cell libraries
to take advantage of previously solved embeddings.

It is useful to view a circuit as a bipartite graph with two sets of vertices, corresponding
to elements and electric nodes. Edges between these sets indicate the connectivity of the
circuit. The nodal connectivity matrix C is defined by Cij = 1 if circuit element Ej connects
to Ei.

Two elements are candidates for merging if they share at least one common node. The
element adjacency matrix A is computed from

A = CTC

Aij = number of nodes shared by elements i and j

A lower bound on the fanout of the element obtained by merging elements i and j is given
by

Fmin = Aii + Ajj − 2Aij

If Fmin is greater than the fanout of the hierarchical interconnect matrix, elements i and j
cannot be merged, at least at this level.

An upper bound on the fanout is

Fmax = Aii + Ajj −Aij

92

Clearly, if Fmax is less than the matrix fanout, elements i and j can be merged. Any
intermediate cases must be judged on the basis of the actual fanout of the metaelement and
the interconnect of the matrix.

If the elements can be joined, the new metaelement’s fanout is computed, and the new
element is added (as a new column) to the C matrix. The process is iterated until a
metaelement is formed that contains all the elements that were present at the beginning of
execution of the algorithm. To provide a trace of this process, from which a hierarchical
embedding can be determined, an ownership matrix M is maintained, where

Mij =

{

1 if element j contains element i as one of its children
0 otherwise

The termination condition for the algorithm can be stated in terms of M∗, the transitive
closure of M , which may be interpreted as M∗

ij = 1 if element i appears in the tree rooted
by j. This transitive closure can be computed directly from M , because the columns of M
are topologically sorted.

We can improve the algorithm by rejecting as candidates for merger any two cells that have
children in common. A necessary and sufficient condition for such independence is

(M∗ûi)
T (M∗ûj) = ~0 ⇒ (M∗T

M∗)ij = 0

The final criterion for candidates for merger is that they be previously untested. To this
end, two sets of elements are maintained:

N = {all elements currently defined}
N ′ = {elements added in the last iteration of the algorithm}

Clearly, N ′ ⊆ N , and we satisfy the novelty criterion by considering for merging only pairs
in the sets N ×N ′ and N ′ ×N ′.

The operation of this algorithm on the circuit in Figure 5.16 is described in Figure 5.17.

Heuristic modifications can accelerate this algorithm tremendously. In particular, much
time is spent considering nodes of large fanout; dividing elements into equivalence classes
based on their connectivity to global signals frees the algorithm to consider primarily the
short local interconnections, which correspond to nodes that are swallowed when two ele-
ments are merged. Also, in situations where the interconnect has substantial excess routing
resources, it often is adequate to eliminate an element from further consideration after it
has been amalgamated into one (or more) higher-level elements.

Empirically, this algorithm works well for sparsely connected circuits, or for those that
are difficult to embed (in the sense that only a small number of embeddings are possible,
and these usually are not obvious to the human operator). It still works, but becomes
computationally inefficient, for highly connected networks, because the number of elements

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 93

n9n11

n10

n16 n15 n14 n13

n12

p7

p14 p13 p8 p9

p11

p10

p12
CLK

OUT

Figure 5.16: Embedding of a one-phase CSRL toggle flip-
flop. The output from the graph-embedding algorithm is
presented in Figure 5.17.

created becomes very large (in the absence of the simplifying heuristics). In general, these
inefficiencies are a result of the breadth-first search pattern of the algorithm, and occur in
cases when just about any trial embedding will work. These networks usually are easily
embedded with simple operator intervention to the algorithm.

We can gain a rough understanding of the performance characteristics by examining the
complexity of the embedding problem. Consider a simplified network of the form shown
in Figure 5.18. For the first iteration of the algorithm, there are k equivalent neighbors
of the center element to consider for merging. For the second iteration, there are 2(k − 1)
neighbors, but each of these is O(k) organized from possible first-iteration mergers. Thus,
there are O(k2) second-iteration merges. By induction, we can show that the number of
neighbors at merge iteration n is

dn = 2dn−1 − 2 = 2n
(

k

2
− 1

)

+ 2

Each of these neighbors is organized O(kn).

For a graph of height log2 N , the total number of possible merges, adding the N possible
starting points, is

M = N2log2 N
(

k

2
− 1

)

klog2 N =

(

k

2
− 1

)

N2+log2 k

Note that this approximation is a gross overestimate, as the number of eligible neighbors

94

Embedding for csrlntk (level 4):

(

(((n9 p7) (p11 n11)) ((n15 n16) (p14 p13)))

(((n13 n14) (p12 p10)) ((p8 p9) (n12 n10)))

)

Figure 5.17: The embedding of the circuit in Figure 5.16
found by the bottom-up embedding algorithm. This circuit
has a bisection width of eight wires, which happened to co-
incide exactly with the fabrication specification of an early
PROTOCHIP prototype.

k fanout

Figure 5.18: Network model for complexity analysis. Each
of N elements has a fanout of k; for this analysis, wires run
between pairs of elements only.

in the real (i.e., finite) circuit approaches 1 as n → log2 N . Even so, the algorithm has a
polynomial time complexity, due to the finite fanout of the individual elements.

The case of fanout to multiple elements can be handled by the transformation shown in
Figure 5.19, where multiply connected nodes become pseudoelements. For nodes of fanout
less than or equal to k, the previous analysis is unaffected. Nodes with fanout greater than k
are best considered global signals, and are best accommodated explicitly in the allocation of
routing resources. In other words, it is the consideration of elements that connect to large-
fanout nodes (such as power rails and clocks) that makes the simple algorithm inefficient.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 95

Figure 5.19: Transformation from shared node to pseudoele-
ment(s) with bounded fanout.

96

5.4 A Fast Greedy Algorithm for Graph Embedding

In keeping with the objective of providing a rapid turn-around prototyping tool, it is often
desirable to provide a fast, albeit suboptimal, graph-embedding mechanism. Such an algo-
rithm would supplement the bottom-up algorithm described in Section 5.3, and would be
particularly useful for the large number of “easy” circuits (i.e., those circuits that are easily
accommodated by the wiring resources predesigned into any specific PROTOCHIP).

In this section, we describe a simple greedy algorithm for graph partitioning, and compare
its performance to a graph-bisection algorithm based on simulated annealing. A theoretical
model for partitioning random graphs is developed, and experimental results are compared.

5.4.1 Greedy Graph Partitioning

We take a direct approach to graph partitioning by performing a breadth-first traversal
of the graph, terminating when one-half of the vertices of the graph have been visited.
Breadth-first search is described in Figure 5.20.

S = ∅
Q = single vertex chosen at random

while ||S|| < N
2 do

assign the element at the front of Q to V

add V to S

for each vertex P adjacent to V

if not(P ∈ S or P ∈ Q)

add P to the end of Q

Figure 5.20: Breadth-first traversal of the vertices in a graph.
All vertices adjacent to a particular vertex are traversed in se-
quence. Breadth-first searching requires a queue of elements
Q.

In practice, for real circuit graphs, two simplifications increase the effectiveness of this
approach tremendously. First, high-connectivity nodes are not traversed. Empirically, for
N element circuits, nodes with fanout greater than log(N) are best considered global nodes,
and thus are not subject to traversal.

Second, simple optimization by gradient descent is usefully applied after the termination of
the breadth-first search. This procedure is quite fast, as each element is assigned a score
equal to the additional number of wires that would be cut if the element were moved across
the partition. A negative score implies an improvement in the bisection width. Elements
from each side with negative scores are selected and exchanged (a minor correction needs
to be made to the score if the elements share common nodes, to prevent limit cycles). This

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 97

iterative improvement is O(N), and typically reduces the bisection width by 20 percent.

Performance of this greedy algorithm is detailed in the next section.

5.4.2 Analysis of the Greedy Algorithm for Random Graphs

This section examines the performance of the greedy bisection algorithm on random graphs
of fixed degree. Such graphs are intended not to model real circuit graphs faithfully, but
rather to derive an upper bound for the performance degradation caused by simplifying
transformations of the type made in Section 5.3, where high-connectivity nodes can be
(randomly) broken up into a regular tree of pseudoelements.

We encounter two problems in approximating the bisection width of a random graph ob-
tained by the greedy algorithm:

1. We need to compute the expected number of wires that will cross a given partition,
under the random connectivity assumption.

2. We need to estimate the number of elements that these wires will contact.

Expression of the problem in graph terminology is helpful. Our random circuit is expressed
as a regular graph (all vertices have the same degree (or fanout)), where each element
corresponds to a single vertex, and each wire to a single edge. Because an element is
allowed to contact another pin on itself, loops are permitted, and the graph is not restricted
to be simple (simple graphs have all edges connected to different vertices).

In standard graph terminology, the number of vertices V in the graph is equal to the number
of elements N in the circuit, and the degree of the vertices d is equal to the number of pins
P.

Let us consider first the worst-case performance of the greedy algorithm. This case occurs
in the tree structure (Figure 5.21); no children are multiply connected to the root, and
consequently we maximize the number of wires that must be cut after level I.

There are P subtrees, each with branching factor P − 1. At level i, each subtree contains
(P − 1)i elements. Consequently, the total number of elements in the tree, up to level I, is

η = 1 + P

(

I
∑

i=0

(P − 1)i
)

= 1 +
P

P − 2

(

(P − 1)I+1 − 1
)

=
P (P − 1)I+1 − 2

P − 2

98

i = 0

i = 1

Element fanout = P

i = I at leaves of tree.

η(I) = total number of elements in tree.

ηL(I) = P (P − 1)I = number of leaves in tree.

Figure 5.21: Worst-case analysis of greedy algorithm. Each
element has only singly connected children, so a tree struc-
ture exists.

Now, we want to choose I such that η = N
2 . Substituting into the previous expression gives

us

(P − 1)I+1 =
N
2 (P − 2) + 2

P
(5.2)

We can solve for I directly, or simply substitute Equation 5.2 into our first expression for
the number of leaves, to obtain

ηL ≡ P (P − 1)I =
N
2 (P − 2) + 2

P − 1

Each of these leaves has P − 1 pins still to be connected. Now, we need to consider how
many of these pins connect to each other, and how many connect to the other side. In the
worst case, all these pins connect to the other side, resulting in a bisection width

w =
N

2
(P − 2) + 2

Recall that, for a purely random cut through the graph, the expected number of cut wires
is NP

4 . Consequently, the greedy algorithm is guaranteed to be superior to the random-cut

algorithm for all cases where P ≤ 4(N+2)
N .

Suppose, however, that we remove the restriction that all remaining pins of the leaf elements
connect to pins of elements on the other side, and consider the possibility that the pins of

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 99

some of these elements connect to pins of other leaf elements. Every such connection reduces
the bisection width by two wires.

Connecting Pairs of Elements

This task of estimating the number of wires crossing a partition when the number of free
terminals on each side is known is precisely problem 1 in Section 5.4.2. In this section,
we present a solution, assuming that the connectivity of terminals is random, and that all
terminals are unique. Note the subtle departure from conventional graph theory: The pins
of an element are presumed unique (i.e., not permutable), whereas the different out-edges
of a vertex are differentiated by only their other end. As a trivial example, there is only
one way for a vertex of degree 3 to have one self-connected edge and one free terminal, but
there are three ways for a transistor to have two terminals connected (assuming source and
drain are distinguishable).

Lemma 5.1 Given A objects of type 1 and B objects of type 2, with all objects unique, and
given an experiment in which pairs of objects are selected until the initial pool of objects
is exhausted, the expected number of pairs that contain elements of different types is

〈w〉 =
AB

A + B − 1
(5.3)

Proof 1: Without loss of generality, consider the elements of type 1. Since the pairing
process is random and the selection statistics are stationary, the probability of a particular

element of type 1 being paired with an element of type 2 is

P{type 1 paired with type 2} =
B

A + B − 1

Note that the denominator precludes an element being paired with itself. Consequently,
when this process is repeated for all A objects, the expected number of cross-type pairings
is simply AB

A+B−1 .

Proof 2: Consider the number of pairs containing one element of type 1 and one element
of type 2. Clearly, there exist AB such pairs. The total number of possible pairs is

(A+B
2

)

.
The probability that a particular pair will contain two elements of different types is then

P{pair is cross-typed} =
AB
(A+B

2

)

Our experiment consists of selecting A+B
2 pairs, in all. The expected number of cross-type

pairings is then

〈w〉 =

(

A + B

2

)

· P{pair is cross-typed} =
A + B

2
· AB
(A+B

2

)

=
AB

A + B − 1

100

We now return to the analysis of the expected performance of the greedy algorithm, and
consider the expected fanout of the tree of elements. Recall that

ηL ≡ P (P − 1)I =
N
2 (P − 2) + 2

P − 1

The number of free pins on the tree side is A = ηL(P −1); on the other side of the partition,
all pins are available, and all are equally likely to be contacted, so

A =
N

2
(P − 2) + 2

B =
PN

2

Applying Lemma 5.1 gives

〈w〉 =
AB

A + B − 1
=

(

PN − 2N + 4

PN −N + 1

)

PN

4

In the large N limit, we now have 〈w〉 ≈ P−2
P−1

PN
4 , yielding an advantage over the random-cut

algorithm for all values of P . In particular, the interesting case of P = 3 (i.e., transistor-level
schematics), yields a 50 percent improvement.

Determining the Incidence of Cut Wires

The obvious next step is to relax the worst-case assumption of a tree of elements, and
to apply the wiring estimator of the previous section after each iteration of the greedy
algorithm. Unfortunately, this approach requires the solution of another estimator problem:
How do we estimate the number of elements these w wires will contact?

This problem, the second described in Section 5.4.2, is very similar to a problem encountered
in analyzing the performance of a computer hash table. In particular, given w probes into
a table, using a hash function that randomly returns r values, the expected number of
occupied table entries is

n = r

(

1−
(

r − 1

r

)w)

This expression is nearly the solution to our problem, except that a hash table of this sort
(commonly referred to as hashing with chaining) permits an unlimited number of table
entries to occupy a given bin, whereas in our graph problem the circuit elements have a
finite, bound fanout. Also, within each bin all entries are equivalent and the hash table fills
up in order, whereas all the pins of the elements are assumed to be unique.

Lemma 5.2 If a rectangular matrix with N columns and P rows randomly contains w
nonzero elements (with the remaining NP −w elements being zero), the number of columns

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 101

of the matrix that contain at least one nonzero element is probably

〈number of columns that are not all zeros〉 = N

(

1− P
NP−w
P

PNP
P

)

(5.4)

This expression is valid for NP − w ≥ P ⇒ w ≤ P (N − 1). If w > P (N − 1), it is trivial
to show that all N columns must contain at least one nonzero element.

Proof: Again, the statistics are stationary, so consider the probability of a single column
containing all zeros. In all, there are NP − w zero entries to place, so the probability that
the first entry in that column will be zero is NP−w

NP . The probability that the second element
is also zero is NP−w−1

NP−1 . The probability that all P entries in that column are zero is then

P{single column is all zeros} =
NP − w

NP
· NP −w − 1

NP − 1
· · · NP − w − P + 1

NP − P + 1

=
PNP−w

P

PNP
P

The expected number of all-zero columns is then N · P{single column is all zeros}, from
which the lemma follows.

We are now in a position to model the behavior of the greedy algorithm. By starting
with the initial condition of a single contained element with fanout P, and iterating the
application of Lemma 5.1 and Lemma 5.2 to find the number of cut wires and contacted
elements, respectively, we obtain the data tabulated in Table 5.2. These data are compared
to observed experimental data in Figure 5.22.

i Inside Inside Outside Outside Cut Contacted
elements terminals elements terminals wires elements

1 3 999 2997 3 3
0 4 6 996 2988 6 6
1 10 12 990 2970 12 12
2 22 24 978 2934 24 24
3 46 48 954 2862 47 46
4 92 91 908 2724 88 85
5 177 167 823 2469 156 146
6 323 282 677 2031 248 219
7 542 409 458 1374 315 248
8 790 429 210 630 255 166
9 956 243 44 132 86 42

10 998 40 2 6 6 2

Table 5.2: Iteration of the greedy algorithm model equations
for a random graph of 1000 elements of fanout 3.

102

0 100 200 300 400 500 600 700 800 900 1000

Contained elements

0

50

100

150

200

250

300

3
5
0

C
u
t

wires

Figure 5.22: Graph bisection width found by greedy algo-
rithm, as a function of number of contained elements. The
graph contained 1000 elements of degree 3, with random con-
nectivity. The curves represent the average bisection width
(top curve), the best bisection width found (bottom curve—
given 100 iterations with random initial element selection),
and the predictions of the model (open circles represent data
taken from Table 5.2).

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 103

5.4.3 Summary

The greedy algorithm for graph partitioning presented in this section is very fast and rea-
sonably efficient. It has successfully embedded many networks, including large networks of
several hundred components1.

For comparison, experimental data for the performance of graph partitioning by simu-
lated annealing [?] [Kernighan and Lin, 1970] [Dunlop and Kernighan, 1985] are presented
in Figure 5.23. Although the final result is superior to that obtained by the greedy algo-
rithm, the long running time required can make simulated annealing inappropriate for a
fast-turnaround prototyping system. The PROTOCHIP run-time environment supports
both approaches, thereby providing both fast embedding of easy circuits, and efficient em-
bedding of more complex circuits.

1Thanks to D. Johannsen of Silicon Compilers for generously supplying several netlists generated by a
high-level logic synthesis tool.

104

100 101 102 103 104 105 106 107

Simulated annealing iterations

0

100

200

300

400

500

600

700

8
0
0

B
is

ec
ti
o
n

w
id

th

(wires)

Figure 5.23: Minimum graph-bisection width found by sim-
ulated annealing, as a function of annealing algorithm itera-
tions. The graph contained 1000 elements of degree 3, with
random connectivity.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 105

Chapter 6

Novel Circuits

A little inaccuracy sometimes saves tons of explanation.

H.H. Munro (Saki) (1870–1916)

The evolution of a new design discipline requires two components: the characterization of
bottom-level components (i.e., the existence of a toolkit or library), and the specification
of composition rules to interconnect these components. In digital systems, composition
rules typically take the form of clocking disciplines and some electrical interface rules (e.g.,
buffered drivers matched to load capacitances).

In neural analog designs, the composition rules tend to be primarily topological, reflecting
both the connectivity limits inherent in a (2 + ǫ)-dimensional implementation technology,
and the geometry of the problem in question (e.g., processing of two-dimensional visual
images). Certain tasks, such as spatial averaging, lend themselves to solution in the volt-
age domain, via resistive networks. Other aggregating systems employ the natural sum-
ming property of currents [DeWeerth and Mead, 1988, Umminger and DeWeerth, 1988].
Still others utilize statistical properties of “neural” pulse trains for various computations
[Tomlinson et al., 1990]. A comprehensive description of several system-level architectures
is presented in [?].

In parallel with the development of such systems has been the development of component
circuits. This section describes several such elements, and discusses potential applications.
Descriptions of certain of these circuits have been published previously, and indeed the

106

circuits have been used as core components in several systems [?]. Other circuits are still
relatively new and have not been explored fully.

The circuits discussed in this chapter are

1. A novelty filter that performs O(N2) multiplications with only O(N) transistors

2. A low-noise sampling switch utilizing gated transconductance amplifiers, suitable for
high-gain discrete-time differentiators

3. A digital logic family operating on a single-phase clock; we describe a toggle flip-
flop cell, and its application to a fully asynchronous up–down counter suitable for
integration of bipolar neural pulse trains

4. A composable two-input arbiter, applied to a self-timed retina design frame

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 107

6.1 An Isotropic Novelty Filter

An essential component of the computation occurring in biological early vision systems
is the compression of information. This compression is required to reduce the bandwidth
needed to transmit retinotopic data to higher visual centers. Note that this requirement is
independent of the parallel need to encode visual data, such that spatiotemporal correlations
can be reconstructed later.

In this section, we describe a circuit that functions as a “novelty filter” in that it generates
a response based on activations within its “receptive field.” When the stimulus is uniform
(i.e., all inputs are equal), a minimum response is produced. When the activation deviates
(in any way) from uniform, the circuit produces a response.

This circuit is interesting on two counts. First, it exhibits a spatially isotropic, or nondirec-
tional, response. Second, it implements an O(N2) operation with only O(N) devices (where
N is the number of inputs in the receptive field).

Spatial isotropy is typically not observed in biological systems, which tend to be orga-
nized into antagonistic center–surround receptive fields at the retinal level, and these fields
are combined into directionally selective receptive fields (edge detectors) in visual cor-
tex. There is considerable evidence to suggest that these structures arise developmentally
[Linsker, 1986b] [Linsker, 1986a]. as a result of local wiring considerations. It is interesting
to note that, without raising the dimensionality of this interconnect, we can perform a much
more subtle computation (at the expense, however, of increased specificity of wiring).

6.1.1 Series MOS Transistors with Back-Gate Effect

The heart of the novelty detector is a series chain of MOS transistors, the gates of which
are independently biased by current mirror inputs (Figure 6.1). In the subthreshold regime
[?], an MOS transistor can be modeled by:

Id = e
κVg
VT

(

e
− Vs

VT − e
−

Vd
VT

)

where all voltages are referred to the substrate (bulk), and VT = kT/q is the thermal-
equivalent voltage of the environment. The back-gate effect is captured by κ; namely,
variations in the gate potentials do not appear in their entirety in the channel potential.

Applying this model to Figure 6.1, we obtain

I1 = e
κV1
VT

I2 = e
κV2
VT

Iout = e
κV1
VT

(

1− e
− Vx

VT

)

= e
κV2
VT e

− Vx
VT

108

V1 V2

Vx

Iout I2I1

Figure 6.1: Analysis of a series chain of MOS transistors,
used in the novelty filter. A subthreshold MOS model incor-
porating the back-gate effect will be used.

Eliminating Vx, and solving for Iout gives

Iout =
I1I2

I1 + I2

In the general case of N transistors in series, an identical analysis yields the result

1

Iout
=

N
∑

i=1

1

Ii

6.1.2 Multiple Differential Pair Circuit

The novelty filter is obtained when this circuit is combined with a multiple differential

pair circuit. A general novelty filter circuit is illustrated in Figure 6.2. The analysis of
this circuit is based on the observation that the current bias I0 is partitioned between the
various branches:

I0 =
N
∑

i=1

Ii =
N
∑

i=1

e
κVi
VT

(

e
− V

VT

)

This expression may be written as

Ii

I0
=

e
κVi
VT

∑N
i=1 e

κVi
VT

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 109

I

INI2I1

Iout

V1 V2 VN

Vb

V

Figure 6.2: Novelty filter circuit. Combining a multiple in-
put differential pair circuit and the series-MOS coincidence
circuit described in Section 6.1.1 results in a novelty filter
scalable to arbitrary input dimensions.

Connecting the multiple differential pair to the coincidence detector of Figure 6.1 yields

1

Iout
=

N
∑

i=1

1

Ii
= e

V
VT

N
∑

i=1

1

e
κVi
VT

=
1

I

N
∑

i=1

e
κVi
VT

N
∑

i=1

e
−

κVi
VT

We can express this equation in terms of differences between pairs of input voltages:

1

Iout
=

1

I

N
∑

i=1

N
∑

j=1

e
κ(Vi−Vj)

VT

It is useful to rewrite this expression in terms of the symmetric hyperbolic sine function
(sinh), using the identity sinh2 x = 1

4(e2x − 2 + e−2x):

1

Iout
=

1

I





N
∑

i=1

N
∑

j=i+1

4 sinh2 κ∆Vij

2VT
+ 2

(

N

2

)

+ N





Observing that 2
(N

2

)

+ N ≡ N2, we have

1

Iout
=

1

I





N
∑

i=1

N
∑

j=i+1

4 sinh2 κ∆Vij

2VT
+ N2





For the case N = 2 (reported by Delbrück, [Delbrück, 1990]), this expression reduces to
1

Iout
= 4

I cosh2 κ∆V
2VT

.

110

6.1.3 Summary

A novelty filter has direct applications in systems that apply an energy-based metric for
evaluation of image complexities, such as Delbrück’s autofocus system [Delbrück, 1989]. It
is also likely to be useful in systems such as the retina [?], where some evaluation of regional
activity can usefully precede image transfer down a bandwidth-limited channel.

In this section, we have ignored the effect of interdevice variations. It is clear that systems
employing this circuit will have to be self-calibrating to the extent of “learning” the response
of the circuit to various input stimuli. Such a design strategy is common in large-scale
neuromorphic systems, and is especially important in the case of reduced dimensionality
circuits (e.g., the winner-take-all circuit and this novelty filter), because of the increased
importance of individual devices.

Nonetheless, a circuit that performs the equivalent of O(N2) multiplications with approxi-
mately 3N devices (and, more important, lays out in O(N) area) is of considerable interest,
and merits careful consideration in many diverse applications.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 111

6.2 A Low-Noise Sampling Circuit

Hybrid analog-digital systems have become increasingly popular in recent years. They
combine the speed and area efficiency of analog circuits with the ease of design and interface
typical of digital systems. Furthermore, they lend themselves to particular design disciplines

that permit general principles to be applied to different applications of widely varying scale.

In this section, we shall discuss one small aspect of one such discipline, and shall consider
a component useful to clocked analog designs. Such systems are characterized by analog
processing elements (i.e., elements whose inputs and outputs are continuous state variables,
such as current or voltage) operating on data that are sampled in time. Examples include
sample-and-hold circuits, switched-capacitor circuits, and, in our case, a discrete-time dif-
ferentiator circuit.

Discrete-time circuits are also used at the component level. Primary applications include
frequency compensation of amplifiers by “chopper” stabilization [Hsieh et al., 1981], offset
voltage nulling of differential amplifiers [?] [?], and circuits for interfacing to a time-sampled
(and perhaps digital) environment (such as sample-and-hold circuits).

6.2.1 Estimation of Time Derivatives Using Discrete Differences

An example of a circuit employing time-sampled continuous variables is the Caltech RET20

retina [?]. A focal-plane parallel analog processing surface calculates spatial and temporal
derivatives of an image. One particular application for these systems required maximum
sensitivity to small signals on a spatially varying (but locally constant) background. Because
an external synchronization signal was available, the natural solution involved computing
a derivative approximated by the difference between the present value of a signal, and a
previously sampled value (see Figure 6.3).

For a transconductance amplifier (Iout ∝ ∆Vin), the output signal from this circuit is

Vout =
1

C

∫ T

0
i dt + Vhold

=
1

C

∫ T

0
I0(v − Vhold) dt + Vhold

=
I0T

C
(〈v〉 − Vhold) + Vhold

If the output were sampled at the end of time T , the change in output voltage (Vout−Vhold)
would approximate the derivative of the input.

112

Vin

Vout

Vout

Vhold

Vin

φ

φ

(a) (b)

Vhold

I0 C

0 T

Figure 6.3: Discrete-time derivatives. We obtain an approx-
imation to the derivative of a waveform by comparison of
a sampled value with the current value. Typically, we as-
sume that the derivative is constant during the window of
integration.

6.2.2 Established Circuits for Sampling of Voltages

Considerable work has been done in the area of bilateral analog switches, primarily for
switched-capacitor applications [McCharles and Hodges, 1978] [Allen and Sanches-Sinencio, 1984].
The basic operational principle is that gating charge on a capacitor between nodes at dif-
ferent potentials produces a current that is proportional to the potential difference (i.e., the
system emulates a resistor).

A popular analog switch is a single MOS transistor. Although this system has the virtue of
simplicity, it has a considerable drawback: The sampled voltage is in error, due to injection
of channel charge onto the holding node. A simple model for this channel charge (in the
above-threshold region in which such devices typically operate) is

Q = Cox(VG − VTE)

A reasonably accurate approximation [Maher, 1989] is that this channel charge is equally
divided between the source and drain, when the gate clock goes low. This injected charge
gives rise to a voltage error that is multiplied by the open-loop gain of the amplifier in
Figure 6.3.

Many attempts have been made to reduce this injected charge. Several approaches are
illustrated in Figure 6.4. The primary technique is to use MOS devices of opposing polarity

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 113

φ

φ

φ
φ

W/L

φ
φφ

φ
φ φ

(a)

(d)

(b)

(c)

1

2
W/L

φ φ

Figure 6.4: Four approaches to reducing injected charge
noise. (a) A device of the opposite polarity is clocked with an
inverted clock signal, in an attempt to annihilate the noise
charge. (b) Compensation with a device of the same po-
larity, based on the assumption of equipartition of channel
charge. (c) A layout for the circuit in (b), showing matching
of overlap capacitances. (d) Combination of all of these ap-
proaches. In addition to occupying large area and requiring
complementary clocks, such systems suffer the disadvantage
of limited input ranges of operation, and sensitivity to clock
skew.

to cancel the channel charge. Because such devices are poorly matched, geometric effects
must also be used to minimize the injection of charge onto the sensitive node; dummy
transistors with matched overlap capacitances are used.

A careful analysis [?] reveals that the behavior of the system is complicated by the need
to consider the capacitance on both sides of the switch (see Figure 6.5). The geometric
charge-compensation strategies of Figure 6.4 are, in general, accurate only when Ci and C
have the same value. Otherwise, the details of the wave shape of the clock signal become
important, as does the operating voltage V. Of course, a solution that requires a large Ci is
unattractive because of its inefficient use of silicon area.

114

Ci Ci

C C

Rsource gm(VG(t))

VG(t)

Vs aCox
2

aCox
2

(a) (b)

Figure 6.5: A model for MOS channel-charge injection [?].

6.2.3 A Circuit for Reduced Charge Injection

A traditional approach to increasing noise immunity is the use of differential input circuits.
In fact, most switched-capacitor filters use single transistors as switches for both inputs,
thereby using the virtual ground at the input of an operational amplifier to compensate for
any injected noise charge.

The approach we have taken retains the differential component, but uses it to partition the
injected noise charge equally between the two sides of the switch. The circuit is illustrated
in Figure 6.6; it is simply a transconductance amplifier [?] with a clock signal applied to the
bias device. When this bias current is reduced to zero, the output capacitor is effectively
isolated from the input. To first order, no noise charge is injected onto C, because the
channel charge in Q1 is symmetrically divided between both branches of the differential
pair (which have identical operating points in the follower configuration).

In addition, the clock does not need be rail to rail, thereby decreasing dV
dt even further.

Also, a single-phase, unipolar clock is attractive from the system interface perspective (i.e.,
there is no need to generate nonoverlapping phases, and no need to worry about clock skew
in distributing these multiple phases).

Also, any capacitive clock feedthrough is decreased by the cascode connection of the differ-
ential pair. As a worst-case approximation that ignores the differential nature of the circuit,
we can consider the capacitive feedthrough due to overlap capacitances from clock gate to

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 115

Vin

φ

Vout

Q2

Q5

Q1

Q4

Q3

Figure 6.6: Low-noise sample-and-hold circuit.

output capacitor (see Figure 6.7). It is easy to show that

∆VC = ∆Vφ

(

C2
ov

CC1 + 2CCov + C1Cov + C2
ov

)

< ∆Vφ

(

C2
ov

CC1

)

where C is the sampling capacitor, C1 is the capacitance of the common node of the differ-
ential pair, and Cov is the transistor gate–drain overlap capacitance. For typical values of
C = 0.2 pF, C1 = 0.015 pF, Cov = 0.0005 pF, and a clock voltage change of ∆Vφ = 0.5 V,
we obtain a coupled-noise voltage change of 42 µV. Assuming that C is the input to an
open-loop stage of 50 dB gain, this capacitive-coupling noise will contribute a mere 13 mV
error at the output.

The principal disadvantage of this circuit is that we no longer have a bilateral switch, but
rather have a unidirectional one. Also, this “switch” is actually an active system, not merely
a passive charge-transfer system as required by switched-capacitor systems (to emulate
resistances). It is, however, ideally suited for sample-and-hold systems of the sort required
for a RET20-style discrete-time differentiator [?]. It is also appropriate for video-speed
amplifiers and multiplexors, of the sort found in the retina chips’ scan circuitry. Finally, it
could be incorporated into Vittoz’s dynamic current mirror [Wegmann and Vittoz, 1989] to
eliminate the single largest remaining source of error in an otherwise high-precision current
mirror design.

A second limitation is that the input offset voltage of the differential pair within the switch
is propagated to the output (after all, we are using a transconductance amplifier in a unity-

116

Cov1
Cov2

C1 C

∆VC

∆Vφ

Figure 6.7: Analysis of clock feedthrough in the low-noise
sample-and-hold circuit of Figure 6.6. Because Q2 and Q3 are
identically biased, any noise charge injected by the bias de-
vice Q1 will be equally divided between the two branches, re-
sulting in no net charge at the output (due to current mirror
Q4–Q5). In this figure, Cov1 corresponds to the gate–drain
overlap capacitance of Q1, Cov2 is the gate–source overlap
capacitance of Q3, C1 is the diffusion capacitance of the com-
mon node in the differential pair, and C is the capacitance
of the output node.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 117

φ

Vbias

C

Vin

Vout

Figure 6.8: The discrete-time differentiator.

gain configuration). This behavior is not a problem in our discrete-time differentiator,
because this offset appears inside a negative feedback loop with reasonably high gain. In
an open-loop sample-and-hold application, this offset would need to be corrected, perhaps
through sampled-offset techniques, by laser-trimming, or by programming floating nodes
with ultraviolet light.

6.2.4 A Low-Noise Discrete-Time Differentiator

If we apply the low-noise sample-and-hold switch to the discrete-time differentiator of Fig-
ure 6.3, we obtain the circuit shown in Figure 6.8. It is interesting to note that the circuit
is identical to the continuous-time differentiator described in Chapter 10 of [?] (the “diff2”
circuit).

In the diff2 circuit, a constant bias voltage is applied to the φ input, and the “switch”
transconductance amplifier acts as a low-pass filter, effectively storing a smoothed, delayed
version of the input. In the discrete-time mode of operation, we sacrifice this smoothing
for better control over the delay. The discrete-time circuit also avoids the potential second-
order instability of the diff2, that is due to the additional time constant introduced by the
capacitance of the Vout node. Consequently, the storage capacitor C of the discrete-time
differentiator can be quite small.

Experimental data from the discrete-time differentiator are presented in Figure 6.9. We
have tested circuits with over 70 dB signal-to-noise ratio.

118

Input

Output

Figure 6.9: Operation of the low-noise discrete-time differen-
tiator. A 1 kHz 1 Vp-p sine wave was applied to the φ input
of the discrete-time differentiator. An asymmetric 100 Hz
40 mVp-p triangle wave was applied to the input; the output
waveform scale is 0.5 V/division. In practice, systems with
a signal-to-noise ratio of over 70 dB have been implemented
using this technique [?].

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 119

In summary, the low-noise switch described in this section is a valuable addition to the
system designer’s toolkit. The circuit provides a useful interface between continuous- and
discrete-time subsystems, and can be used to construct compact, high-performance compo-
nents, such as differentiators and dynamic current mirrors.

120

6.3 A Single-Phase Latch

An essential component of traditional sequential logic design is the synchronous latch, a
storage element whose state changes only at clock transitions. Typically, such latches are
placed between logic elements that are strictly combinational; clocking the latches with a
single-phase clock provides a hazard-free design discipline.

Unfortunately, at the transistor level, devices are level sensitive, not edge sensitive. In
conventional digital VLSI design, this constraint has given rise to design disciplines involving
multiple clock phases. Typically, each clock phase enables resynchronization registers. In
practice, these registers are often as simple as dynamic state-storage nodes gated by pass
transistors. This explicit pipelining gives rise to constraints on each of the clock phases;
this procedure often places severe demands on the design tools (since the clocking discipline
becomes an integral part of the specification of the interface between circuit subsystems).
Also, there are serious practical difficulties involved in distributing multiple phases (i.e.,
limiting clock skew), and additional circuit overhead involved in computing derived clocks.

Thus, although level-sensitive clock disciplines are very flexible, and ultimately hold the
promise of maximum performance, they are needlessly complicated for many applications.
In particular, novice designers would find extremely attractive the ability to apply familiar
design techniques involving edge-triggered latches.

In Sections 6.3.1 to 6.3.2, we describe a new single-phase latch design. It is relatively small,
comprising 14 transistors, yet can be designed to be risk-free. Although similar to master–
slave designs, it is a true edge-sensitive implementation: The output becomes available
immediately, and is not delayed until the complementary clock transition, as in traditional
master–slave designs. This cell can be employed as either a D flip-flop or a T flip-flop.
It has been used successfully in various systems, including scanning and self-timed retina
design frames, and an asynchronous up–down counter for neural integrators.

6.3.1 A Level-Sensitive Latch

The edge-sensitive latch is based on complementary set–reset logic (CSRL) (see Figure 6.10
and [?]). A CSRL stage consists of two cross-coupled inverters, with a power-up transistor
Q3, and two access devices Q1 and Q2. In the following discussion, complementary inputs
are assumed. When the clock φ is high, the flip-flop is disconnected from the Vdd rail,
and the internal state is imposed by the environment through the access devices. In this
condition, that the inverter pair is able to restore one of its internal state nodes, because
the Q6 and Q7 devices are always connected to ground, and hence can pull down one of
nodes Q and Q. This ability plays an important role in our discussion of the operation of
the edge-triggered latch.

When the clock goes low, the access devices are disabled, and the power-up device Q3 turns
ON, making the latch fully static. The conventional application of CSRL [?, Wawrzynek, 1987]

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 121

Q

Q

Q6 Q7

Q2

Q1

Q5Q4

Q3φ

D

D

Figure 6.10: A single CSRL stage. When power is removed
from the cross-coupled inverters Q4/Q6 and Q5/Q7, the ac-
cess devices Q1 and Q2 are enabled, and can drive the exter-
nal state D/D into the latch. When the clock goes low, the
drive from the access devices is removed, and Q3 turns ON,
making the latch fully static.

122

D

D

φ

Q

Q

Q2

Q6 Q13Q7 Q14

Q5

Q4

Q3

Q9 Q12Q8 Q11

Q1

Q10

A

B

C

D

Figure 6.11: An edge-sensitive CSRL latch.

employs pipeline stages of CSRL latches, clocked by a two-phase nonoverlapping clock. The
principal virtues of this approach are (1) only two clock phases are required (no locally gen-
erated complements are needed), (2) operation is fully restored and fully static, and (3)
dense computational primitives are available that exploit the dual-rail signal inputs (and a
general switching form described in [?]).

6.3.2 An Edge-Sensitive Latch

Instead of the use of two identical CSRL stages clocked by two nonoverlapping clock
phases, we propose the use of two complementary stages clocked by the same clock (see
Figure 6.11). This strategy is similar to the π-latch–µ-latch approach proposed by Denyer
[McGregor et al., 1987]; the key difference is that when we employ CSRL stages we require
only 14 transistors for fully static operation, instead of the 32 Denyer’s design uses. In fact,
our transistor count is quite competitive with the 10 transistors used in their dynamic de-
sign, especially considering the concomitant advantages of dual-rail signal representations.

The operation of the latch is conceptually simple: When the clock is low, the right-hand
stage is powered, and is isolated from the left-hand stage. The left-hand stage, on the other
hand, is driven by its inputs. When the clock goes high, the influence of the inputs is
removed, and the left-hand stage latches its state. Furthermore, pass transistors Q3 and Q4

permit the new state to be propagated to the right-hand latch (and to the outputs); when
the clock goes low, the outputs are restored to the rails, and the left-hand stage becomes
sensitive to its inputs again.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 123

6.3.3 Analysis of the Edge-Sensitive Latch

A more careful analysis is required to guarantee the direction of data transfer described
in Section 6.3.2. A potential difficulty arises because pass transistors are inherently bidi-
rectional elements, and the current state latched in the right-hand latch could corrupt the
“next-state” data to be latched from the left, during the conduction overlap period as the
clock rises with a finite rise time. The crucial observation that facilitates the analysis of the
system is that, although CSRL stages can be thought of being powered down, they are, in
fact, always capable of full current drive toward one of the power rails.

Referring again to Figure 6.11, we observe that, as φ rises, Q3 and Q4 begin to turn ON.
There are four state variables we must consider; without loss of generality, suppose the
initial conditions are VC = 5 V, VD = 0 V, VA ≈ VT , and VB = 5 V. Consequently, Q8

drives node VB high, just as Q13 pulls node VD low. Thus, we can limit our consideration
to nodes VA and VC , whose drives are a function of the clock voltage. Initially, VC is driven
high by Q10–Q12. Node VA is the critical node: It is pulled up by Q3, and pulled down by
Q7–Q5 (it is also pulled down by Q1, but, to be conservative, we ignore this current).

Q3 is always saturated, so above threshold we have [Vittoz, 1989]

IQ3 =

(

W

L

)

Q3

kn(φ− VTn − nVA)2

Assuming Q7 is ON and is ohmic, the current out of node VA is limited by the current
through Q5:

IQ5 =

(

W

L

)

Q5

kn

(

2(φ − VTn)VA − V 2
A

)

Clearly, a conservative sufficient condition for the correct operation of the latch is

IQ5 > IQ3

⇒ (W/L)Q5

(W/L)Q3

>
(φ− VTn − nVA)2

2(φ− VTn)VA − V 2
A

(6.1)

We select a noise margin for safe operation (e.g., we allow VA to rise to 1.5 V), and we
consider the range of possible voltages for φ. For a typical 2µ CMOS process, Figure 6.12
indicates safe values for the access-transistor geometry ratio.

Clearly, this analysis is conservative in several respects. First, no provision is made for
decreased current drive from the right-hand stage as the clock rises (and the drive of Q10

decreases). Second, a conservative noise margin of approximately 1 V has been chosen for
VA (in practice, VA could be allowed to rise to about 2.5 V before failure; only when VA

and VB cross over does actual failure occur). Third, no account was taken of the additional
current drive through access device Q1, which acts to decrease the likelihood of failure.

This analysis also presents an attractive intuitive explanation of why the single-phase latch
works: The conflict is between transistors of the same type. Thus, we can guarantee safe

124

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

M
i
n
i
m
u
m

t
r
a
n
s
i
s
t
o
r

Z

r
a
t
i
o

f
o
r

s
a
f
e

o
p
e
r
a
t
i
o
n

Clock voltage (V)

Figure 6.12: Minimum geometry factor for safe operation
of the edge-sensitive latch. These values assume a typical
CMOS process with VTn = 1 V, and n = 1.4. The dashed
line is for Equation 6.1; the behavior at low voltages is an
artifact, as the assumption of above-threshold saturation op-
eration is violated. The solid line is obtained by applying
a continuous model (above and below threshold, ohmic and
saturation regimes) developed in [Vittoz, 1989], and repeat-
ing the analysis of Section 6.3.3. No account is taken of
capacitive coupling between the access devices’ gate–source
overlap capacitance with the diffusion capacitance of node VA

(typical geometries reveal less than 0.2 V coupling, however).

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 125

n9n11

n10

n16 n15 n14 n13

n12

p7

p14 p13 p8 p9

p11

p10

p12

φ

Q

Figure 6.13: A toggle flip-flop cell using the single-clock
CSRL discipline. The output inverter is included for in-
creased drive, sharpening the output signal, and isolating
the electrical environment within the cell. A typical T-flop
would have two such buffered outputs (Q and Q).

operation, effectively independent of fine details of process parameters and variations, simply
by elongating the access pass transistors (a ratio of (W/L)Q5/(W/L)Q3 = 4 is typically
chosen, and has been observed experimentally to be safe over the current range of MOSIS
processes). Finally, because only transistors of the same type are ever in conflict, it is safe
to alternate n-CSRL with p-CSRL stages (e.g., to construct shift registers).

6.3.4 Single Phase Toggle Flip-Flops

We can exploit this closure property, which allows composition of alternate n- and p-CSRL
stages, in a more direct way: By connecting the D and Q (and D and Q) nodes of a single

stage, we obtain a toggle flip-flop (see Figure 6.13). To maintain the electrical symmetry of
the nodes within the T-flop, we buffer the outputs of the cell with inverters. The analysis
for correct operation is essentially unchanged from that in the previous section. We have
observed experimentally that, with the addition of the buffer inverters, a T-flop stage output
can reliably drive the toggle-clock input of a subsequent stage (see Figure 6.14). In fact,
the operation of the toggle cell is so robust that even very small clock signals can be used
to toggle the cell (see Figure 6.15).

126

CH1 DC 2V 1ms AVG; CH2 DC 2V 1ms AVG;

Figure 6.14: Two-bit binary counter implemented with toggle
flip-flop cells. These experimental data are the outputs of the
first two stages of a binary ripple counter.

CH1 DC 2V 5us AVG; CH2 DC 2V 5us AVG;

Figure 6.15: Nonrestored clock applied to toggle flip-flop cell.
These experimental data illustrate the robustness of the tog-
gle flip-flop cell against variations in clock rise- and fall-time,
and in amplitude of clock waveform. The output is from the
second stage of a binary ripple counter.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 127

6.3.5 Asynchronous Up–Down Counters

A direct application of the edge-triggered toggle flip-flop cell is a binary ripple counter.
Either an up-counter or a down-counter can be constructed, by selecting the Q or Q output
(respectively) of a stage to drive the clock input of the next stage. In this section, we
describe two interesting extensions to this procedure, to construct a universal cell for Gray
code counters, and for combining two binary up-counters to provide an asynchronous up–
down counter.

A Scalable Gray-Code Counter

A well-known disadvantage of binary ripple counters is their passage through spurious states
as the carry signal propagates down the chain. For example, in going from the 0111 state
to the 1000 state, a ripple counter will (probably) pass through the states 0110, 0100, and
0000. This behavior is unattractive for asynchronous systems (e.g., D/A converters) that are
always sensitive to transitions in their inputs. Note that this behavior is independent of the
counting rate, and is fundamentally different that the high count-rate dynamic instability
of multiple carries propagating simultaneously down the chain.

Systems that depend on noise-free transitions between successive states, such as shaft-
encoders, rely on Gray-code encodings, where adjacent states differ by exactly one bit.
Figure 6.16(a) illustrates this code; Gray code can be converted to binary by exploiting the
reflected-binary nature of the code (Figure 6.16(b)).

We can construct a Gray-code counter by observing the following property of the Gray-
code sequence: At every clock transition, we flip the least-significant bit that takes us
to a state that has not been already visited. Figure 6.17 shows an even more direct
interpretation: The bit that changes is the one that describes the extent of carry propagation
in the corresponding binary ripple counter. Figure 6.17b shows a direct implementation of
this architecture; the result is an arbitrarily scalable Gray code counter, in which each
stage is identical to the preceding stage (except for the last stage, which generates the
most significant bit (MSB)). Sample output from a fabricated test structure is shown in
Figure 6.18.

An Asynchronous Up–Down Binary Counter

We can synthesize an asynchronous N − 1-bit up–down counter from two (N − 1)-bit up-
counters. Each (N−1)-bit counter can count in the range [−M−1,M], where M = 2N−2−1.
The problem we must solve is how to handle the wrap-around that occurs when each of
these counters overflows.

Let U be the state of the up-counter, and u = UN−2 be the value of the MSB of the
up-counter. Similarly, D and d refer to the down-counter’s state and MSB value. Let X

128

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 0 0 0
1

1
1

1
1 1
1
1

1
1
1
1
1
1
1
1

1

000
0
0
0
0
0
0

0
0
0

0
0 0

b3 b2 b1 b0

g3 g2 g1 g0g3 g2 g1 g0

1
0

1

0
0 0

1
1

1
1
1 1 1

11
1
1 1

1

0
00

0
0 0

00 0

(a) (b)

Figure 6.16: The Gray code. (a) Adjacent codewords differ
by exactly one bit, thereby preventing spurious states be-
tween adjacent codewords. (b) Conversion of Gray code to
binary, exploiting a recursive interpretation of the Gray code:
If the most significant bit (MSB) of a subword is set, we must
invert the remaining bits in the subword before interpreting
the result.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 129

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 0 0 0
1

1
1

1
1
1
1

1
1
1
1
1
1
1
1

000
0
0
0
0
0
0

0
0
0

g3 g2 g1 g0

T T

TT

T

TT

g0

g1

g2

g3

φ

1
0

1
1 1

10
0 0

1 0 0
01 1

111
1 1 0

010
0 1 1

10 0
00 0

(a) (b)

Figure 6.17: A scalable Gray-code counter. (a) A general
algorithm for selecting which bit to toggle, when counting in
a Gray code. (b)Use of a binary ripple up-counter to generate
the toggle signal for that particular bit.

CH1 DC 2V 2ms NORMAL; CH2 DC 2V 2ms NORMAL;

00 01 11 10

Figure 6.18: Sample output from a Gray-code counter. Both
signals are logically inverted, and g0 is displayed above g1.

130

C

B

Au = 0

u = 1

u = 0 F

E

D d = 0

d = 1

d = 0

UP DOWN

UP DOWN x ≡ XN−1

A

A

B

B

B

C

D

E

D

E

F

E

x = XN−2 (sign-extend)

x = 1

x = 0

x = 0

x = 1

x = XN−2 (sign-extend)

(a) (b)

Figure 6.19: Synthesis of an up–down counter from two up-
counters. We can interpret the difference between two up-
counters uniquely, if we also keep track of in which subrange
(u = {0, 1}, d = {0, 1}) the two up-counters are operating.
In the worst case, the dynamic range of the synthesized dif-
ference output is [−M,M], corresponding to (N − 1) bits of
precision.

be the difference between U and D, computed by a standard two’s-complement (N − 1)-
bit subtraction (defined by X = U+ ~D + 1, where “~” is the bit-wise logical negation
operator).

We use an (N−1)-bit subtracter, and synthesized the MSB by a finite-state machine with u
and d as inputs. For any given value in the up-counter, we can identify uniquely the correct
difference if the down-counter’s value lies in the range illustrated in Figure 6.19. If the down-
counter’s value lies outside this range, additional bits of state information are required—it
would be simpler to extend the counters. Figure 6.19 also describes the interpretation that
must be assigned to the (N − 1)-bit difference X (i.e., the value of the MSB (x = XN−1)
required for the correct interpretation of the difference, in two’s-complement notation).

We can reduce the state-transition diagram (Figure 6.20) to a Huffman flow table (Fig-
ure 6.21). If we ignore the possibility of overflow errors, and assume that only fundamental-
mode operation is allowed (i.e., only single transitions of u, d, or x are permitted), this flow
table collapses to that shown in Figure 6.22, where A is the union of states 1, 2, and 3, and
B is the union of states 3, 4, and 5.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 131

B/E

B/D A/E

A/D

C/E B/F1 2

3

4 5

0

MSB=0 MSB=0

d : 0→ 1

u : 0→ 1

u : 1→ 0

MSB=1 MSB=1

d : 0→ 1

u : 0→ 1

d : 1→ 0

d : 1→ 0

u : 1→ 0

d : 0→ 1

u : 1→ 0

d : 1→ 0

u : 0→ 1

Sign Extend

Sign Extend

OVERFLOW

OVERFLOW OVERFLOW

OVERFLOW

Figure 6.20: State-transition diagram for up–down counter.
Transitions in the most significant bits (u and d) of the two
up-counters are monitored; in conjunction with the current
MSB (x), they determine the next state.

At this point, state encodings can be assigned, and Boolean logic minimization can be
applied to obtain the following finite-state machine. For S = {A,B} = {0, 1},

snext = u · d + u · spresent + d · spresent

xnext = u · d · xpresent + u · d · s + u · d · xpresent + u · d · s

If we want to detect overflow, the state flow table can be collapsed only to four states, and
an additional state variable (w) is required:

snext = u · d + u · spresent + d · spresent

wnext = d · s + u · d + u · s
xnext = u · d · xpresent + u · d · xpresent + u · d · s + u · d · s

OVERFLOW = u · d · w + u · d · w

Thus, we have constructed an N − 1 bit up–down counter with a guaranteed range of
[−M,M] by subtracting two (N − 1)-bit counters. Because two independent up-counters
are used, the resulting up–down counter is free to accept asynchronous UP and DOWN

inputs. This property makes this up–down counter attractive for neural integrators of the
sort used in bidirectional servomotor control [DeWeerth and Mead, 1988].

132

0

1

2

3

4

5

0 , 0

(0,0)

0,0

0,0

0 ,0

(0,1)

0,1

0,1

2,1

(4,0)

2 ,1

4,0

4 ,0

(2,1) (2,1)

4 ,0

4,0

2 ,1

(4,0)

2,1 (3,0)

3,0

3,0

3 ,0

(3,1)

3,1

3,1

3 ,1

1,0

1 ,0

(5,1)

5,1

(1,0)

5 ,1 5 ,1

(1,0)

5,1

(5,1)

1 ,0

1,0

000 001 011 010 110 111 101 100

(0,0)

(1,0)

(0,1)

(1,1)

(0,1)

(1,0)

STATEpresent

(u, d)

u, d, xpresent

STATEnext, xnext

Figure 6.21: Huffman flow table for up–down counter. This
table captures all the transitions of Figure 6.20, as a function
of the inputs u, d, and x. Transitions in boxes represent fixed
points, whereas transitions in brackets constitute violations
of the fundamental-mode assumption (i.e., only one input is
permitted to change at a time). The dark circles correspond
to the detection of an overflow condition (i.e., a state that
cannot be represented with only a single bit of additional
information (x)).

A ,0

A,0

A ,1

000 001 011 010 110 111 101 100
STATEpresent

u, d, xpresent

STATEnext, xnext

A

B

A ,1 A ,1 A ,0 A ,0B,0 B,1

A,1 B ,0 B ,0 B ,1B ,0 B ,1 B ,1

Figure 6.22: Simplified Huffman flow-table for up–down
counter. We no longer attempt to detect the overflow condi-
tion.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 133

Analog Switches / Multiplexers

Horizontal shift register

Vertical

Shift

Register

φH1

φH2

Hin

Vin

φV2
φV1

Output

Figure 6.23: First-generation retina design frame.

6.4 A Self-Timed Retina Design Frame

An objective of the retina (focal-plane image processing array) research project has been
the separation of the design responsibilities for the core processing cells and the external
video interface. To facilitate experimentation with a wide variety of processing core cells,
we adopted a design frame approach, with a standard peripheral frame providing all the
communication support functions, as well as the data-sampling mechanism.

The first generation retina chips [?] employed the scanning design frame illustrated in
Figure 6.23. Later generations of retinas incorporated the one-phase shift register described
in Section 6.3, and were self-contained to the extent of requiring only an external crystal
in order to generate NTSC video. Unfortunately, direct video requires pixel rates in excess
of 106 pixels per second for moderate sized imaging arrays (typically less than 100 by 100
pixels). Such high data rates present a challenge for both the on- and off-chip analog
electronics.

More importantly, serially scanned images, although very convenient for initial testing of
image processing surfaces, are ultimately unsatisfying: They fail to reduce the dimen-

sionality of the data. Such extraction of higher-order correlations (ultimately constructs
such as edges, velocities, and objects) was one of the principal attractions of multiple level
biologically-inspired visual systems. The eventual objective of such a vision system would
be to reduce the quantity and rate of data present in a time-varying scene, condensing these
data into abstractions acceptable to other systems that must interpret the information.

In this section, we describe an approach to overcome the practical limitation of excessive

134

pixel-data rates, as well as address the aesthetic concern regarding fully scanned images.
The fundamental observation we make is that transmitting reduced-dimensionality data
requires transmission of smaller quantities of spatially nonlocal information. For example,
tracking a moving object probably requires monitoring its imaged perimeter as a function of
time; however, even if the whole extent of the object has to be transmitted, less bandwidth
is required than to transmit the entire visual scene.

We retain the concept of a design frame for imaging arrays, but replace the sequential
scanning protocol with a data-driven process: Individual pixel communicate their data
after first requesting permission to transmit, and waiting for that permission to be granted.

6.4.1 Designing An Efficient Arbiter

The heart of this data-driven communication channel is the arbitration between multiple re-
questers. For maximum scalability and flexibility, we have chosen a hierarchical arbitration
strategy: Requests from two sources are resolved, and a single request is propagated. Like-
wise, a single acknowledge signal (representing the granting of the shared communication
channel) is partitioned to the appropriate requester.

Two measures of efficiency of implementation are appropriate here. One is the actual size
and performance of the arbiter cell. The second, and arguably most important, metric
is the additional overhead required at the pixel cell to accommodate the asynchronous
request–acknowledge protocol. To minimize this overhead, a simplified four-wire protocol
was chosen (see Figure 6.24); because only single transitions are significant, the logic to
decode the current state is extremely simple. Also, by specifying the removal of all requests
after the granting of a single acknowledge, issues of fairness are eliminated without the
introduction of additional state information (in practice, an external agent intervenes to
temporarily withdraw all the requests—the individual pixels do not need to honor this
requirement themselves).

The design frame takes the form of Figure 6.25. A transmitting cell makes a request in the
horizontal direction. When an acknowledge signal comes back from the horizontal arbiter,
a second request is made, this time in the vertical direction. Only the cell that receives both

acknowledges is permitted to transfer its data.

In the general case, the addressed cell would now assume control of the shared resource.
When it is finished using the resource, the cell communicates this fact by driving the global D
line high, at which point an external agent drives the global reset line Z. The Z line controls
two operations. First, the request signals are withdrawn at the perimeter of the array,
permitting the resetting of the arbiter state. Second, the internal state of the addressed cell
is reset, reflecting the fact that its data has been communicated.

In actual practice, an abbreviated form of the handshaking protocol is possible, in which
there exists no global resource, but rather the very act of obtaining a pair of acknowledge
signals constitutes the communication of information. As a concrete example, consider the

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 135

Request: R

Acknowledge: A

Done: D

Reset: Z

Global

Figure 6.24: The self-timed retina asynchronous communi-
cation protocol.

R

CELLA

Rx

Ax

RyAy

Routx

Ainx

Ainy
Routy

Z

Figure 6.25: Self-timed retina design frame.

136

Ay Ry

Rx

Ax

Iin

M1

M4

M2

M3

C

N1

Figure 6.26: Delta-modulation cell.

delta-modulation cell in Figure 6.26: The “neuron” [?] cell integrates charge on C1 until
the inverter threshold voltage is reached, and node N1 goes low. At this point, a horizontal
request is made, and the integration of input charge is stopped by M1. When the vertical
(second) acknowledge signal arrives, the internal state of the neuron is reset completely
(to Vdd) by M2 and M3. Series transistor M4 prevents draining any input charge after the
neuron changes state. Thus, this circuit generates a single request–acknowledge cycle for a
particular fixed quantity of input charge.

A Compact Arbiter Cell

In addition to an efficient handshaking protocol, the self-timed retina design frame requires
a small, fast arbiter. To maximize ease of scalability, we have chosen to construct a binary
tree of 2-input arbiter cells (see Figure 6.27). Such a tree can be constructed of O(N) width
(for an N × N array), if O(log N) horizontal wiring channels are permitted. Mahowald
[Mahowald, 1990] has implemented a WOLCOMP [?] module generator to construct ar-
biters to interface with arbitrary arrays.

The design of the arbiter cell itself is shown in Figure 6.28. In its minimum form, the cell
consists of 14 transistors. Transistors M1 through M6 comprise a mutual-exclusion element:
two cross-coupled inverters that can only drive to ground when at least one input request
is present. The output corresponding to the nonrequesting input is kept high by one of M7

and M8. The output request signal is generated by the NOR of the two input requests. In
fact, this signal is available as the node Rout in the mutual-exclusion element.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 137

R1A1 A2R2

R A

AiRi

Rout Ain

Figure 6.27: Binary tree of 2-input arbiters.

R2

A1

R′

2

R1

R′

1

A2

Rout

R′

2

R′

1

Ain

(a) mutual-exclusion element (b) acknowledge partition element

M3

M5 M8M6M7

M4

M1 M10

M12

M2 M11

M13

M9

Figure 6.28: The 2-input arbiter cell.

138

Aout

k W
L

W
L

Vm

M5/6 M12/13

M3/4 M10/11

Figure 6.29: Equivalent circuit for arbiter in metastable
state.

The second function performed by the arbiter is the partitioning of the incoming acknowl-
edge signal to the acknowledge line corresponding to the requesting input (i.e., the input to
which the mutual-exclusion element has awarded the request). This operation is performed
by the circuit in Figure 6.28(b). This circuit is fundamentally equivalent to two AND gates
generating A1 = R′

1 ·Ain and A2 = R′
2 ·Ain, but shares components to reduce the transistor

count to 6 devices. In addition, this circuit guarantees that no acknowledge signal propa-
gates backward until any metastability in the mutual-exclusion element has been resolved.
This behavior makes it safe to generate the request signal Rout immediately upon receipt
of any input request, thereby “pipelining” the request and accelerating the operation of the
system.

To determine the constraints required to obtain this safe behavior, we consider Figure 6.29,
which depicts the equivalent circuit to the mutual-exclusion element and acknowledge-
partition circuit in the case of simultaneous input requests. In the absence of noise or
inter-device variation, this worst-case scenario produces unbounded metastability.

By symmetry, the internal nodes of the mutual-exclusion element are at identical voltages
(R′

1 = R′
2); furthermore, this voltage is precisely the inverter threshold voltage (defined to

be the voltage where Vin = Vout). Typically, VLSI processes adjust transistor thresholds
to produce inverter threshold voltages near Vdd/2 for n- and p-channel devices of identical
geometry. Since both devices are in saturation, this inverter threshold voltage (Vm) is given
by:

Zp(Vdd − Vm − VTp)
2 = Zn(Vm − VTn)2 (6.2)

Suppose that we scale the p-channel device by k in order to shift the inverter threshold

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 139

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

Figure 6.30:

k

(√
k
−

1)
/√

k

Guaranteeing safe operation of arbiter by scal-
ing transistors. The plot describes the function (

√
k−1)/

√
k;

the second term in Equation 6.5 is
√

Zn√
Zn+
√

Zp
(Vm − VTn) ≈

1
2

(

Vdd
2 − 1 V

)

≈ 0.8 V. Consequently, we see that only mod-

est geometry factors (k = 6) are sufficient to shift the inverter
threshold voltage by half a volt, an amount that is more than
adequate to keep the output inverter in Figure 6.29 from
propagating the acknowledge signal.

voltage of the mutual-exclusion element by δ, thereby disabling the gate that partitions the
returning acknowledge signal. Then we have (taking the square root of both sides)

√

kZp(Vdd − Vm − δ − VTp) =
√

Zn(Vm + δ − VTn) (6.3)

We can bound the effect of k on δ by observing that, for k > 1,

(Vm + kδ − VTn) > (Vm + δ − VTn)

Substituting into Equation 6.3, we obtain

√

kZp(Vdd − Vm − δ − VTp) <
√

Zn(Vm + kδ − VTn) (6.4)

Solving for k, and substituting the square root of Equation 6.2, we obtain the bound

δ >

√
k − 1√

k

(√
Zn√

Zn +
√

Zp
(Vm − VTn)

)

(6.5)

We plot typical values of Equation 6.5 in Figure 6.30.

140

It is important to note that this analysis is conservative on two accounts. First, the proba-
bility that the mutual-exclusion element is still “hung” after the request has propagated all
the way to the external environment and has returned is exceedingly slim. Secondly, the
additional transistors in the actual circuit (transistors M1 and M2 in the mutual-exclusion
element and device M9 in the acknowledge partition circuit) both act in a manner to increase
the inverter threshold offset; these transistors are ignored in the analysis of the arbiter safety
margin. Consequently, we observe, in practice, that the circuit functions reliably without
any explicit scaling (i.e., k = 1). This observation is the result of both detailed circuit
simulation and measurements made on a working circuit.

6.5 Summary

The hierarchical arbiter is a part of the second-generation retina project currently under
way at Caltech. A prototype chip with a 98× 74 array of delta-modulation pixels has been
fabricated, and is currently being tested. The arbiter occupies a region 500λ wide at the
perimeter of the array. Preliminary tests indicate that data rates of 2× 106 pixels/sec are
attainable.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 141

Chapter 7

Conclusions

This thesis has presented a topology-based wiring partition function, obtained by consid-
ering the intrinsic dimensionality of the interconnection medium. This result is consistent
with an empirical wiring partition function known as Rent’s rule. In addition, it is possi-
ble to take the general form of Rent’s rule, and compute from it the expected wire length
probability density function. Combining this result with several physical parameters that
characterize the interconnect technology, we have derived another physical limit on the
connectivity of regular VLSI systems.

We have seen the importance of taking wiring connectivity into account. This concern
is particularly valid for analog VLSI, where neurally-inspired architectures require large
component counts (and hence scalable designs), and the communication topology is dictated
by the algorithm.

As implementation considerations become more important, many networks, such as the
fully-connected Hopfield net and the fully-connected (within layers) feed-forward net (typi-
cally trained by back-propagation) become impractical. Rather, locally-connected networks,
and hierarchically organized limited-connectivity networks will be required. Since only min-
imal work has been done in developing training algorithms for such networks, this endeavor
must become a high priority if neural networks are to gain practical viability. To achieve
this goal, we will probably need to attain a deeper understanding of, and attach a greater
importance to, intermediate representations within neural networks. The currently popu-
lar model of considering a neural network as a “black box” that is presented with inputs
and “taught” the corresponding output is far too simplistic, and does not transfer well
to multi-layer networks, or networks intended for complex applications. This inadequacy
argues strongly in favor of simultaneous research into established (i.e., biological) neural
systems, in order to understand the representation (and, for that matter, connectivity and
communication) issues relating to neural computations.

Essentially all of the hardware implementations of analog networks to date have been either
of the fully-interconnected type (e.g., the Hopfield-style network of Chapter 2), or of the

142

local-connectivity type (e.g., retinas, cochleas, etc.). These endeavors have been fruitful,
having identified tasks that are amenable to solution by such networks, or by identifying
reasonable practical limits on the sizes of such networks.

However, it is now time to explore intermediate-connectivity networks. It is for this task
that the hierarchically-interconnected PROTOCHIP architecture was developed.

Engineering has traditionally comprised two disciplines: analysis and synthesis. Unfortu-
nately, analog circuit design is a particularly difficult endeavor, in large measure because
it depends on the interaction of complex, non-linear elements, and the behavior of the re-
sulting circuit often depends critically on higher-order effects or even parasitic components
within the circuit. Consequently, the most common analysis technique (software circuit sim-
ulation) is becoming progressively less adequate to the task. Novel circuit structures (e.g.,
floating gate structures), wide operating regimes (e.g., subthreshold CMOS), and hybrid
circuits (e.g., circuits containing both analog and digital subsystems) place extreme de-
mands on the development environment. These accuracy requirements, in conjunction with
the performance penalty associated with software simulation, are limiting the development
of analog design innovation.

A hardware accelerator, such as the PROTOCHIP, avoids these difficulties by directly
exercising the actual components, thereby bypassing the issue of modeling their behavior.
Also, this approach is intrinsically parallel, and high performance can be obtained. Another
advantage of this approach is the direct electrical interface to the circuit under tests, thus
permitting the circuit to be exercised in an environment similar to that of its ultimate
application, and, in the process, of simplifying the specification of the system’s inputs. For
example, the large-signal instability behavior of the second-order section [?] is not revealed
by traditional small-signal Fourier analysis, and would require extensive exploration of the
input signal space to discover. Many other systems, intended to accept real-world signals,
are difficult to simulate, because of the difficulty of capturing and specifying these input
signals.

With the removal of the execution performance bottleneck of conventional simulators, we
must rate field-programmable networks instead on their ease of use, and their universality.

The universality issue has been addressed by the connectivity analysis, and the selection of
a hierarchical interconnect structure with appropriate fanout. The ease-of-use requirement
has been satisfied by providing a versatile netlist-manipulation tool that includes several
different graph-embedding algorithms. These algorithms, which include a bottom-up algo-
rithm (most efficient from the perspective of efficient use of routing resources), a simulated-
annealing graph-partition algorithm (a compromise between time- and resource-efficiency),
and a fast, greedy routing algorithms that has proven itself sufficiently efficient to satisfy
a majority of circuit embedding applications. Of course, a variety of these techniques can
be combined within a single design; the embedding tool permits individual embeddings of
different sub-cells within a hierarchical design, as well as providing utility functions for ma-
nipulating the hierarchy itself. Finally, the ability to efficiently specify netlists, and to verify
graph isomorphism, is a useful technique to validate the final design of a system (typically
a full-custom layout).

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 143

These efficient graph-embedding algorithms, in conjunction with an external schematic-
capture graphical interface, contribute to creating an efficient design environment. It is
envisioned that one of the principal short-term contributions of the field-programmable
network approach is pedagogical: researchers will be able to quickly develop a familiarity
with analog design techniques. This familiarity will be gained by design and experiment
with actual circuits; at the same time, an understanding of integrated circuit handling and
test procedures is obtained.

A longer-term contribution of the design approach presented in this thesis is the opportu-
nity for researchers to custom-tailor PROTOCHIPs, by combining their own bottom-level
leaf circuit cells with an automatically-generated hierarchical interconnect network. This
approach permits direct utilization of the graph-embedding tools, and chip-programming
interface, thus combining the advantages of programming speed and versatility and the pos-
sibility of chip re-use (and consequent savings in time and manufacturing costs (also due, in
part, to the possibility of higher fabrication volumes)) with the specificity of interconnecting
classes of circuits of particular interest.

A design discipline is the combination of specific design instances of fundamental compo-
nents, and composition rules for their combination into systems with predictable behaviors.
At the present time, analog VLSI is primarily in the exploratory stage of considering viable
components, and characterizing their behavior. We have begun to see their application in
large-scale systems, and have added large-system considerations (e.g., inter-component vari-
ations due to process uncertainties, and the effect and compensation of systematic offsets)
to the collection of requirements for effective base components.

The composition rules for analog VLSI are still under development. System development
has given us computational structures such as resistive sheets, and winner-take-all networks.
With time, other powerful and composable analog structures will be developed.

Ultimately, all electronic circuits are analog in their operation. Digital behavior is a conve-
nient abstraction, permitting reliable systems to be designed by analog non-experts. How-
ever, both higher performance and more dense circuits can be obtained, if one has a deeper
understanding of the underlying functionality. Note that pursuit of these objectives does
not necessarily change the level of risk associated with the design; we have seen several
examples in this thesis (e.g., CSRL single-phase latch, two-input arbiter) of circuits that
are safe, and rely on analog operation to provide low transistor-count implementations of
sophisticated functions.

The prototyping system is now ready for the next phase: the transfer of the chip com-
piler and circuit embedder software to a user community that is interested in designing
semi-custom applications. For example, a researcher concerned with early vision could pro-
duce a chip containing photoreceptors and dedicated local interconnect, yet defer issues
related to inter-layer communication and post–image-plane processing structures until trial
configurations are made in the lab.

One potentially fruitful area of future research would be the development of more sophisti-

144

cated graph-embedding procedures. Also, extraction of structure from circuit graphs could
be used to simplify circuits, and provide technology-independent circuit representations.

An additional area of future research is the application of advanced interconnect technolo-
gies, permitting higher performance and densities. Nonvolatile charge storage, in conjunc-
tion with ultraviolet-light programming, could yield a commercially viable reconfigurable
architecture. Commercially available “antifuse” electrically programmable switch technol-
ogy could also be applied, but would require a special fabrication process. Finally, new
high-speed laser-mediated interconnect processes would permit once-configurable systems
of over 100,000 devices, while retaining the advantage of fast-turnaround fabrication time.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 145

References

[Allen and Holberg, 1987] Allen, P. E. and Holberg, D. R. (1987). CMOS Analog Circuit

Design. Holt, Rinehart and Winston.

[Allen and Sanches-Sinencio, 1984] Allen, P. E. and Sanches-Sinencio, E. (1984). Switched

Capacitor Circuits. Van Nostrand Reinhold.

[Beatty et al., 1989] Beatty, D., Brace, K., Bryant, R. E., Cho, K., and Huang, L. (1989).
User’s Guide to COSMOS: A Compiled Simulator for MOS Circuits. Carnegie-Mellon
University.

[Bhatt and Leighton, 1984] Bhatt, S. N. and Leighton, F. T. (1984). A framework for
solving VLSI graph layout problems. Journal of Computer and System Sciences, 28:300–
343.

[Bryant et al., 1982] Bryant, R., Shuster, M., and Whiting, D. (1982). Mossim II: A switch-
level simulator for MOS LSI, user’s manual. Technical Report TR #5033, California
Institute of Technology.

[Delbrück, 1989] Delbrück, T. (1989). A chip that focuses an image on itself. In Mead, C.
and Ismail, M., editors, Analog VLSI Implementation of Neural Systems, pages 171–188.
Kluwer Academic Publishers.

[Delbrück, 1990] Delbrück, T. (1990). private communication.

[DeWeerth and Mead, 1988] DeWeerth, S. P. and Mead, C. A. (1988). A two-dimensional
visual tracking array. In 1988 MIT Conference on Very Large Scale Integration, pages
259–275, Cambridge, MA. MIT Press.

[Dunlop and Kernighan, 1985] Dunlop, A. E. and Kernighan, B. W. (1985). A procedure
for placement of standard-cell VLSI circuits. IEEE Transactions on Computer-Aided

Design, CAD-4(1):92–98.

[EIA88, 1988] EIA88 (1988). Electronic Design Interchange Format Version 2 0 0, Re-

comended Standard EIA–548. Electronic Industries Association.

[Feinstein and Hopfield, 1985] Feinstein, D. and Hopfield, J. J. (1985). private communi-
cation.

[Garverick and Frankel, 1986] Garverick, S. L. and Frankel, B. (1986). LSH User Manual

and Documentation. M.I.T. Lincoln Laboratory.

146

[Gradshteyn and Ryzhik, 1980] Gradshteyn, I. S. and Ryzhik, I. M. (1980). Table of Inte-

grals, Series, and Products. Academic Press.

[Hayes, 1978] Hayes, J. P. (1978). Computer Architecture and Organization. McGraw-Hill.
Sec. 5.3.3.

[Hopfield, 1982] Hopfield, J. J. (1982). Collective processing and neural states. Modelling

and Analysis in Biomedicine.

[Hsieh et al., 1981] Hsieh, K. C., Gray, P. R., Senderowicz, D., and Messerschmitt, D. G.
(1981). A low-noise chopper-stabilized switched-capacitor filtering technique. IEEE Jour-

nal of Solid-State Circuits, SC-16(6):708–715.

[Kernighan and Lin, 1970] Kernighan, B. W. and Lin, S. (1970). An efficient heuristic
procedure for partitioning graphs. Bell System Technical Journal, pages 291–307.

[Linsker, 1986a] Linsker, R. (1986a). From basic network principles to neural architecture:
Emergence of orientation-selective cells. Proc. Natl. Acad. Sci. USA, 83:8390–8394.

[Linsker, 1986b] Linsker, R. (1986b). From basic network principles to neural architecture:
Emergence of spatial-opponent cells. Proc. Natl. Acad. Sci. USA, 83:7508–7512.

[Maher, 1989] Maher, M. A. (1989). A Charge-Controlled Model for MOS Transistors. PhD
thesis, California Institute of Technology.

[Mahowald, 1990] Mahowald, M. A. (1990). private communication.

[McCharles and Hodges, 1978] McCharles, R. H. and Hodges, D. A. (1978). Charge circuits
for analog LSI. IEEE Transactions on Circuits and Systems, CAS-25:490–497.

[McGregor et al., 1987] McGregor, M. S., Denyer, P. B., and Murray, A. F. (1987). A
single-phase clocking scheme for CMOS VLSI. In 1987 Stanford Conference on Very

Large Scale Integration, pages 257–271, Cambridge, MA. MIT Press.

[Mead, 1990] Mead, C. A. (1990). Transactions of IEEE, Special Issue on Neural Networks
(in press).

[Ousethout and et al., 1985] Ousethout, J. K. and et al. (1985). The Magic VLSI layout
system. IEEE Design and Test of Computers, 2(1):19–30.

[Parhami, 1973] Parhami, B. (1973). Associative memories and processors: An overview
and selected bibliography. Proc. IEEE, 61:722–723.

[Rowson, 1980] Rowson, J. (1980). Understanding Hierarchical Design. PhD thesis, Cali-
fornia Institute of Technology.

[Thompson, 1980] Thompson, C. D. (1980). A Complexity Theory for VLSI. PhD thesis,
Carnegie-Mellon University. Technical Report CMU-CS-80-140.

[Tomlinson et al., 1990] Tomlinson, M. S., Walker, D. J., and Sivilotti, M. A. (1990). A
digital neural network architecture for VLSI. In Proceedings of IJCNN-90.

Massimo A. Sivilotti ***DRAFT*** April 12, 2010 147

[Ullman, 1984] Ullman, J. D. (1984). Computational Aspects of VLSI. Computer Science
Press.

[Umminger and DeWeerth, 1988] Umminger, C. B. and DeWeerth, S. P. (1988). Imple-
menting gradient following in analog VLSI. In Advanced Research in VLSI: Proceedings

of the Decennial Caltech Conference on VLSI, March 1989, pages 195–208, Cambridge,
MA. MIT Press.

[Vittoz, 1989] Vittoz, E. (1989). CMOS VLSI design: Analog & digital. Intensive Summer
Course, Course notes, EPFL, Lausanne, Switzerland.

[Wawrzynek, 1987] Wawrzynek, J. R. (1987). A VLSI Architecture for Sound Synthesis.
PhD thesis, California Institute of Technology.

[Weems, 1982] Weems, C. (1982). TITANIC: A VLSI based content addressable parallel
array processor. Proc. IEEE ICCC, pages 236–239.

[Wegmann and Vittoz, 1989] Wegmann, G. and Vittoz, E. (1989). Very accurate dynamic
current mirror. IEEE Electron Letters, 25:644–646.

