
Live Demonstration:

Behavioural Emulation of Event-Based Vision Sensors
M. L. Katz

1
, K. Nikolic

1
, T. Delbruck

2

1
 Centre for Bio-Inspired Technology, Dept. of Electrical and Electronic Engineering, Imperial College London, UK

2
Institute of Neuroinformatics, UZH-ETH Zurich, Switzerland

Abstract— This demonstration shows how an inexpensive high

frame-rate USB camera is used to emulate existing and

proposed activity-driven event-based vision sensors. A PS3-Eye

camera which runs at a maximum of 125 frames/second with

colour QVGA (320x240) resolution is used to emulate several

event-based vision sensors, including a Dynamic Vision Sensor

(DVS), a colour-change sensitive DVS (cDVS), and a hybrid

vision sensor with DVS+cDVS pixels. The emulator is integrated

into the jAER software project for event-based real-time vision

and is used to study use cases for future vision sensor designs.

Associated Track 11.1: Sensory Systems: Image and Vision

Sensors

I. DEMONSTRATION

Recent developments in activity-driven, event-based vision

sensors have opened up a promising alternative to

conventional frame-based vision. By outputting a sparse and

variable-rate stream of data originating asynchronously from

pixels with local gain control, these sensors reduce processing

cost and latency, while increasing dynamic range. Except for

[1], these vision sensor developments have been preceded by

silicon chip developments. We thought that it would be useful

to develop a behavioural emulator of such chip architectures

that would allow us or others to study how to use a proposed

vision sensor in application scenarios, and to allow us to

model, in software, non-idealities such as fixed pattern noise

and temporal noise. In particular, we needed an emulator that

is fully integrated into our host-side software

infrastructure [3]. In this demonstration, we show how this

emulation allows us to model several existing and proposed

vision sensor architectures.

II. DEMONSTRATION SETUP

The demonstration setup consists of a laptop, a webcam

(Playstation PS3-Eye), and a DVS128 Dynamic Vision

Sensor [4]. A large monitor or beamer shows the output.

III. VISITOR EXPERIENCE

Visitors see how the emulator models an existing DVS128,

how the improved resolution of the QVGA emulation will

benefit applications in wide-area surveillance, and how the

emulation models the cDVS sensor we are developing to

simultaneously detect colour change and brightness change

[5] . By using a high speed rotating stimulus, visitors also see

the limitations of the conventional camera in terms of time

resolution (8ms for the PS3-Eye compared with 1us for the

DVS128), and in terms of dynamic range (<50dB for the

PS3-Eye, compared with 120dB for the DVS128).

IV. DEMONSTRATION READINESS

The demonstration is fully functional (see Fig. 1). We can

simultaneously run the emulation and a real event-based

sensor, record data, and play it back. We can display data in a

variety of formats such as the spatial histogram shown in

Fig. 1 or in 3D space-time, and we can control parameters of

the model interactively through the model GUI.

REFERENCES

[1] Address-Event Imagers for Sensor Networks: Evaluation and Modeling,
T. Teixeira, E. Culurciello, E. Park, D. Lymberopoulos, A. B. Sweeney

and A. Savvides, Proceedings of Information Processing in Sensor
Networks (IPSN), April 2006, pp. 458 - 466.

[2] Activity-Driven, Event-Based Vision Sensors, T. Delbruck, B. Linares-
Barranco, E. Culurciello, C. Posch, IEEE International Symposium on

Circuits and Systems, 2010. ISCAS 2010, Paris, France, pp. 2426 -

2429.

[3] Welcome to the jAER Open Source Project. Retrieved 10.10.2011.

Available: jaer.wiki.sourceforge.net

[4] Dynamic Vision Sensor (DVS) - asynchronous temporal contrast silicon

retina. Retrieved 10.10.2011. Available: siliconretina.ini.uzh.ch

[5] Event-Based Pixel Sensitive to Changes of Color and Brightness, (2011)
R. Berner, T. Delbruck, IEEE Transactions on Circuits and Systems I

(TCAS I), 58:7, pp 1581-1590.

Fig. 1. Vision sensor emulation demonstration. The output of jAER
simultaneously shows the emulated DVS+cDVS and the raw PS3-

Eye camera. Left window shows output of jAER [3]. The emulated

pixels respond both to brightness change (black and white pixels)
and mean wavelength change (red and blue pixels). The right

window shows the control panel which allows camera and

emulation parameter control, and also shows the raw PS3-Eye
camera output from the colour patch stimulus, which is moved to

generated the output events.

Behavioural Emulation of Event-Based Vision Sensors
M. L. Katz

1
, K. Nikolic

1
, T. Delbruck

2

1
 Centre for Bio-Inspired Technology, Dept. of Electrical and Electronic Engineering, Imperial College London, UK

2
Institute of Neuroinformatics, UZH-ETH Zurich, Switzerland

Abstract— Recent advances in activity-driven, event-based

vision sensors have demonstrated a need for behavioural

emulation tools to explore sensor architectures and applications

scenarios in advance of silicon design. This paper describes the

technical details behind a live demonstration of the Vision

Sensor Behavioural Emulator (VSBE). The VSBE can be used

for behavioural software emulation of any event-based vision

sensor architecture and functionality, such as for example bio-

mimetic silicon retina designs, before the fabrication of sensors.

The VSBE uses an inexpensive PS3-Eye camera, which runs at

up to 125 frames/second with QVGA (320x240) resolution and

mono or colour output. It is used to emulate several event-based

vision sensors, including a Dynamic Vision Sensor (DVS) and a

colour-change sensitive DVS. The emulator is integrated into the

open-source jAER software project which does real-time event-

based sensor processing, where we use it to evaluate future

vision sensor designs.

I. INTRODUCTION

Recent developments in event-based vision sensors have

opened up a promising alternative to conventional frame-

based vision [1]. By outputting a sparse and variable-rate

stream of data originating asynchronously from the pixels,

these sensors reduce processing cost and latency, while

increasing dynamic range. These vision sensor developments

have generally been led by new silicon chip developments. In

connection with the ongoing SEEBETTER project [2], we

realized that it would be useful to develop a vision sensor

behavioural emulator (VSBE) of such chip architectures that

would allow us or others to study how to use a proposed

vision sensor in application scenarios, and to allow software

modelling of non-idealities such as fixed pattern noise and

temporal noise. Previous work has already shown the utility of

emulation [3], and here we developed a real-time emulation

that is fully integrated into our existing host-side processing

infrastructure [4-5] to allow side-by-side comparison of new

sensors with their emulation in actual application scenarios

such as object tracking and robotics, of which there are

already numerous existing examples.

This paper describes some details of this emulator. It starts

with a description of the hardware camera, driver, and

software framework. Next it describes two vision sensor

pixels circuits which we emulate. Finally the paper concludes

by showing several emulation examples that demonstrate the

utility and limitations of emulation.

a)

b)

Fig. 1. Vision sensor behaviour emulator. (a) Software architecture. (b)
Photo of the emulator setup.

II. IMPLEMENTATION

The VSBE uses a fast conventional imager as its input.

Successive image frames are processed in software to generate

synthetic time-stamped address-events, as though they had

arisen from an event-based sensor. Fig. 1a) shows the

software architecture and Fig. 1b) shows a photo of the

running implementation, where we compare an existing

DVS128 event-based vision sensor with its emulation, using a

spinning fan as input.

For the image sensor we chose the Playstation PS3-Eye

camera [6]. It is widely available for online purchase and costs

about $40. It uses a large-pixel VGA (640x480) Omnivision

CMOS image sensor which is optimized for low-light

capability. It has a high speed USB interface. A closed-source

driver for Windows is available, including a basic Java Native

Interface wrapper [7]. The driver starts a native thread that

acquires frames from the camera and delivers them on demand

to user processes. The driver also supports setting camera

modes such and mono or colour, as well as gain and exposure

time. In our emulator we presently use only the QVGA

(320x240) modes because they provide higher frame rate.

The emulation is integrated into jAER, which is a large

software project (currently with >700 classes) that has been

under development since 2007 and which is our main

workhorse for sensor development and application [4-5].

Several existing event-based vision sensors [8-9] are

integrated into jAER. The PS3-Eye is integrated into jAER so

that events from the VSBE appear to be events from a

standard event-based sensor. In the parlance of jAER, the

PS3-Eye appears to be just another instance of the class

AEChip event-based sensor, with the interface

HardwareInterface that implements the same software

interface as other event-based sensors. The resulting setup

allows direct comparison of event-based sensors with their

frame-based emulation (Fig. 1). To run this emulator, users

obtain a working copy of jAER, start the AEViewer, and select

the chip PSEyeCLModelRetina. After installing the PS3-Eye

USB driver [7], the PS3-Eye camera appears in the Interface

menu and is automatically selected as the sensor input.

III. EMULATION OF THE BRIGHTNESS-CHANGE

DYNAMIC VISION SENSOR

The dynamic vision sensor (DVS) [1, 9] is an address-

event silicon retina that responds to temporal intensity contrast

(Fig 2). The output of this vision sensor (like all such event-

based sensors) is variable-rate asynchronous stream of pixel

addresses. Each output event address represents a quantized

change of log intensity at a particular pixel since the last event

from that pixel. The address includes a sign bit that

distinguishes positive from negative changes (so-called ON

and OFF events). Events occur asynchronously, are arbitered

by on-chip circuits for access to a shared digital output bus,

and are time-stamped to a resolution of 1s on the camera

board. The input to the host PC is a stream of these time-

stamped address events.

To model the DVS, we operate on the sequential image

frames from the camera to compute an approximation to the

events that would have been generated by the DVS. A 2D

memory array holds the sampled brightness values for which

each pixel last generated an event. (Here we use the term

“brightness” to refer to log intensity.) Pseudo code for DVS

event generation for each pixel sample is as follows:

1. Map from the sampled intensity value to its logarithmic

brightness (see later).

2. Check to see if the new brightness differs from the stored

last-event brightness for that pixel by at least the event

threshold. If not, do nothing and go on to step 1 for the

next pixel.

3. Output ON or OFF events (according to the sign of the

difference) according to the size of the difference divided

by the threshold.

4. Store the new sampled pixel value.

The mapping from linear intensity reading (0-255) to log

brightness measure is not useful for discrete sample values

near zero because log is a very expansive function for positive

values near zero, resulting in a high number of events caused

by sensor noise. To handle these small values, we use a “lin-

log” mapping which maps linearly up to some value (typically

20) and then maps logarithmically for the rest of the sample

values, up to 255.

The timestamp assigned to each synthetic VSBE event is

chosen optionally either to be the frame time or a time

interpolated between the last frame and this one. If the time is

set to the frame time, all events generated by that frame are

synchronous, which causes many of the existing event-based

processing algorithms which depend on precise event timing

to fail. Therefore the optional time interpolation assigns a

timestamp to each separate event within a pixel by linearly

interpolating between the last and current frame timestamps

with the total number of events in that pixel. 5 events from one

pixel, for instance, will have timestamps separated by 1/5 of

the frame interval. These timestamps serve to desynchronize

otherwise simultaneous events but do not increase timing

precision, since they are synthetic and the event times are not

related to actual visual input.

The pixel-to-pixel variation of the threshold in a real

sensor is included in the emulator by randomly assigning a

fixed threshold value for each pixel following the normal

distribution with the mean and standard deviation which

correspond to the emulated sensor.

IV. EMULATION OF THE COLOUR-CHANGE CDVS

VISION SENSOR

The colour-change DVS (cDVS) vision sensor [10] is

aimed at dynamic colour vision applications. The cDVS pixels

detect changes of mean colour wavelength by measuring

Fig. 2. DVS pixel architecture and operation. The DVS pixel outputs

events that represent quantized log intensity changes as shown by the

simplified pixel schematic (top). After transmission of the pixel
address (not shown) the differencing circuit is reset to memorize the

new log intensity value. The time course of internal signals (bottom)

shows the internal signals.

changes in the ratio of currents in a buried double junction

(BDJ) photodiode. The possible applications of this sensor

include shadow detection (hue does not change across

shadow borders) and tracking of artificial tags labelled by

colour patches.

Fig. 6 shows a simplified schematic of the pixel

architecture. The switched-capacitor differencing amplifier

outputs changes in the log ratio of IS/IT, which is the ratio of

summed to top photodiode current. This ratio monotonically

increases with mean wavelength, as less photons create

photoelectrons collected by the top diode PN junction

compared with the bottom one.

To emulate the cDVS, we implemented a variety of

different algorithms to extract the mean wavelength of the

light from the RGB pixel samples. We do not know the

spectral sensitivities of the image sensor used in the camera,

nor do we know the post processing that is applied to do

white-balancing, so any such model will be very approximate.

The steps of this algorithm are exactly as for the DVS

(Section III), except that rather than computing a brightness

value, we compute a synthetic “hue” value from

 

where h is the value for which we detect changes to emit

events, and r, g, b are the sampled pixel colours.

V. RESULTS

Several recordings were made to compare the emulator

DVS with a real DVS128, and to see how the emulated cDVS

would respond to colour stimuli.

A qualitative comparison between the real and emulated

DVS is shown in Fig. 4a), where the stimulus was a moving

cloverleaf pattern from a fan. To perform a quantitative

comparison, a moving white bar with linear gradient edges

was generated using a 120 Hz LED monitor. The number of

events generated by the DVS128 and emulation in response to

a single stimulus cycle (0.83s per cycle) is shown in Fig. 5.

As can be seen, the VSBE is able to correctly emulate the

salient features of the DVS behaviour. Both have a

characteristic “top-hat” response with the same delay between

the onset of ON and OFF peaks (corresponding to the leading

and trailing edge of the bar respectively). The VSBE,

however, does not capture the “smoothing” of the initial

response present in the DVS data. This effect arises from

optical distortions due to the lens fitted to the DVS128. We

are currently quantifying these distortions and will be adding

an optical correction function to future versions of the VSBE.

By comparing the total counts for individual pixels across

a single stimulus run the standard deviation of response for the

sensor array was calculated. This again showed a very good

agreement between the real and emulated DVS with inter-

pixel deviations of 13/14% (ON/OFF) and 14/14% (ON/ OFF)

respectively.

The limitations of the VSBE vs. DVS can be illustrated by

using a fast stimulus. We used the input consisting of a black

dot printed on a white disk which spun at 80Hz. This fast

stimulus demonstrates the ability of the DVS to capture fast

(a)

PS3-Eye

 DVS128

(b)

DVS128

40ms

PS3Eye

93ms

Fig. 4. Comparison of VSBE with DVS128 vision sensor for: (a) a

slowly roatating fan, (b) a fast 80Hz rotating black dot.

ON

OFF

Fig. 5. Comparison of normalised total ON and OFF events generated
by the DVS128 (blue) and PS3-Eye emulator (red) in response to a

moving bar stimulus binned by the PS3-Eye capture rate (125 fps)

IS

IT

log

log

Compare Sum + Amplify

VSB = log (IS)

VTB = - log (IT)

VO = A D log (IS / IT)

Buried double

junction

photodiode

A

redder

bluer

reset

REDDER

Fig. 6. cDVS pixel schematic. The BDJ photodiode (PD) currents are

continuously converted to log intensity voltages VSB and VTB. IT is from

the top PD and is more sensitive to blue light. IS is the summed
photocurrent from top and bottom PDs. The Sum+Amplify circuit

amplifies changes in the difference VSS-VTB since the last event. The

Compare circuits asynchronously generate REDDER or BLUER events

on changes in the log of IS/IT.

yet sparse motion, and also clearly demonstrates the

limitations of the frame-based emulator (Fig. 4b). The dot

causes a continuous helix of events in space-time from the

DVS (which are time-stamped to 1us precision), while the

VSBE, captured at a frame rate of 60Hz, blurs out the dot over

most of each frame, so that the generated events are quantized

to the frame times at intervals of 16ms. (The apparent “noise”

outside the helix is actually caused by movement of the edge

of the white disk, which is not perfectly regular.) Because the

frame-based emulation can only generate a single sign of

event from each frame – either ON or OFF but not both – it

generates events only when the dot moves less than cycle per

frame. Otherwise, the dot is blurred into a uniform grey circle.

The DVS generates OFF and ON events from leading and

trailing edges of the black dot and could respond to multiple

dots, for instance.

The operation of the DVS+cDVS emulation is illustrated

in Fig. 6. Here the stimulus consisted of a moving pattern of

colour and grey scale patches in Fig. 6a, and the model output

consists of events of 4 types: BRIGHTER, DARKER,

REDDER and BLUER, shown in Fig. 6b as 2D spatial

histograms over a chosen time period, in this case one frame

of 16ms. The BRIGHTER and DARKER events correspond to

the ON and OFF events from the DVS model in Section III

and are displayed as gray scale output, while the REDDER

and BLUER events are shown in their respective colours.

Because the visual pattern moves diagonally upwards to the

right, the edges of the blue colour patch are outlined with

BLUER and REDDER events at the leading and trailing edges

of the patch. Other parts of the pattern are not labelled with

colour change events because they produce hue changes

(Section IV) that do not exceed the chosen threshold.

VI. CONCLUSIONS

This paper describes a behavioural emulator of activity-

driven event-based vision sensors based on a PS3-Eye camera

coupled to a standard PC. All code is open-sourced in the

jAER project [4]. We believe this emulation platform will be

useful for studying the characteristics of proposed event-based

sensors. For instance, we are currently interested in studying

whether the cDVS colour change output is useful for practical

tasks such as shadow vs. non-shadow edge detection and low-

cost tracking of artificial colour tags in robotics. The

limitations of emulation are also clear: a desktop Core i7

860@3GHz PC runs at a significant load of 40% to emulate

the QVGA sensor at 125 frames/sec compared with 0.5% for

running the DVS128, and if we want to explore the use of

precision event timing, we must drastically slow down the

visual input so that the quantized event times from the frame-

based emulation are meaningful.

ACKNOWLEDGMENTS

Supported by EU FP6 BioICT project SEEBETTER (270324),

Imperial College, the University of Zürich, and ETH Zürich.

REFERENCES

[1] T. Delbruck, et al., "Activity-Driven, Event-Based Vision Sensors," in

Proc. of IEEE International Symposium on Circuits and Systems,
ISCAS, Paris, France, 2010, pp. 2426 - 2429.

[2] SeeBetter. EU STREP project (number 270324) ICT Call 6 (FP7-ICT-

2009-6) in the work programme Brain-inspired ICT. Available:
www.seebetter.eu

[3] T. Teixeira, et al., "Address-Event Imagers for Sensor Networks:

Evaluation and Modeling " in Proc. of Information Processing in Sensor
Networks (IPSN), 2006, pp. 458 - 466.

[4] Welcome to the jAER Open Source Project. Available:

jaer.wiki.sourceforge.net
[5] T. Delbruck, "Frame-free dynamic digital vision " in Proc. of Intl.

Symposium on Secure-Life Electronics, Advanced Electronics for

Quality Life and Society, University of Tokyo, Tokyo, Japan, Mar. 6-7,
2008, pp. 21-26.

[6] PlaystationEye. Available:

http://en.wikipedia.org/wiki/PlayStation_Eye
[7] CodeLaboratories. CL Eye Platform Driver. Available:

http://codelaboratories.com/get/cl-eye-driver/

[8] Dynamic Vision Sensor (DVS) - asynchronous temporal contrast
silicon retina. Available: siliconretina.ini.uzh.ch

[9] P. Lichtsteiner, et al., "A 128×128 120dB 15us Latency Asynchronous

Temporal Contrast Vision Sensor," IEEE Journal of Solid State

Circuits, vol. 43, pp. 566-576, 2008.

[10] R. Berner and T. Delbruck, "Event-Based Pixel Sensitive to Changes of
Color and Brightness," IEEE Trans. on Circuits and Systems I (TCAS

I), vol. 58, pp. 1581-1590, 2011.

Y

a)

B

R
G

b)

Fig. 6. cDVS emulation. a) is the visual stimulus, which moves in the direction of the arrow; patch colours are labelled with letters. The arrow is not part of

the pattern. b) shows the DVS+cDVS output for 16ms (1 frame). The REDDER and BLUER events are labelled with arrows. The person holding the

pattern is wearing a blue shirt so there are BLUER events at the bottom edge of the pattern.

http://www.seebetter.eu/
http://en.wikipedia.org/wiki/PlayStation_Eye
http://codelaboratories.com/get/cl-eye-driver/

