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Abstract— This demonstration shows a natural gesture interface 

for console entertainment devices using as input a stereo pair of 

dynamic vision sensors. The event-based processing of the 

sparse sensor output allows fluid interaction at a laptop 

processor load of less than 3%. 

Associated Track 11.1: Sensory Systems: Image and Vision 

Sensors 

I. DEMONSTRATION 

Natural gesture interfaces have been under intense recent 

development. The Kinect system provides excellent 

performance but its static power consumption of 12W is very 

high for always-on applications. Therefore it is interesting 

from an ecological standpoint to look for passive sensors that 

could do the same task at much lower power consumption, 

without giving up fluid interaction capability. Recent 

developments in activity-driven, event-based vision sensors 

have opened up a promising alternative to conventional 

frame-based vision [1]. By outputting a sparse and variable-

rate stream of data originating asynchronously from pixels 

with local gain control, these sensors reduce processing cost 

and latency, while increasing dynamic range. In this 

demonstration, we show how a stereo pair of event-based 

vision sensors can be used in a gesture control system that 

allows intuitive and fluid control of a mock entertainment 

device. The operation of this demonstration is described in 

the accompanying paper. 

II. DEMONSTRATION SETUP 

The demonstration setup consists of a laptop and a stereo pair 

of event-based DVS128 cameras [2]. A large monitor or 

beamer shows the output. The user interface allows control of 

various modes of operation, such as game selection, volume, 

channel, menu selection, pausing and playing, and training. 

III. VISITOR EXPERIENCE 

Visitors see how the activity-driven event-based sensors 

enable fluid interaction at low computational and power cost. 

In particular they can see how stereo vision is used in this 

application to focus computational effort automatically on the 

nearest moving object and how the stereo disparity is used to 

automatically adjust detection thresholds. After about 2 

minutes of training naïve users can usually operate the 

demonstration with high reliability. 

IV. DEMONSTRATION READINESS 

The demonstration has been fully functional for about 9 

months and has already been shown at an internal meeting.  
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Fig. 1. Gesture demonstration setup. a) shows the stereo DVS sensor output along with tracking markers. b) shows part of the user interface, 

including two games (baloon popping and 3D drumming), the video player controller, and the tutorial screen for the gesture set. 
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Abstract—This paper describes a novel gesture interface based 

on a stereo pair of event-based vision sensors and neuromorphic 

event processing techniques. The motion trajectory of a moving 

hand is detected every 3 ms by spatiotemporally correlating the 

output events of the DVSs by using leaky integrate-and-fire (LIF) 

neurons after the stereo vergence fusion. The trajectory of each 

gesture is automatically spotted by setting the threshold of LIF 

neurons, and, subsequently, sixteen feature vectors are extracted 

from each spotted gesture trajectory. The thresholds of LIF 

neurons are adaptively adjusted based on the disparity obtained 

from the stereovision to achieve distance invariant performance 

of gesture spotting. Gesture patterns were classified by using 

hidden Markov model (HMM)-based gesture models. The 

implemented system was tested with 6 subjects (3 untrained 

subjects and 3 trained subjects) producing continuous hand 

gestures (22 trials of 9 successive gestures for each subject). 

Achieved recognition rates ranged from 91.9 % to 99.5% 

depending on subject. 

V. INTRODUCTION 

Natural and intuitive user interfaces (UI) based on body 

gestures, like Microsoft‟s Kinect, seems to be a promising 

solution for next generation UIs for multimedia devices like 

TVs, computers, game consoles, and mobile devices. The 

availability of the Kinect and of 3D time-of-flight cameras has 

generated a great deal of recent progress in gesture UIs [1]. 

However, these active sensors have several common 

drawbacks like constant high power dissipation, sensitivity to 

bright ambient lighting, and possible interference between 

multiple devices. Event based sensors like “dynamic vision 

sensors (DVSs)” [2] are promising candidates to address these 

problems. Each of these vision sensor pixels outputs a low-

latency sparse stream of asynchronous events representing 

only changes in scene reflectance. Thanks to the sparseness of 

the event-stream outputs from the sensor, fast and efficient 

post-processing is possible. Using these sensors also allows us 

to efficiently solve the more restricted stereo fusion problem 

of tracking moving hands.  

This paper describes a real-time hand gesture UI with 3ms 

response time using a stereo pair of DVSs, combined with a 

novel neuromorphic event processing algorithm for clustering 

moving hands [3]. The paper describes technical details on the 

gesture recognition process, consisting of clustering and 

tracking of a moving hand, gesture spotting, and gesture 

pattern classification. The paper concludes with experimental 

results and discussion. 

 

VI. ALGORITHMS 

The DVS provides a simple but powerful way to detect 

moving objects. Since it outputs events only from the pixels 

which sense temporal dynamics of the scene, all stationary 

background images (i.e. non-moving objects) are blocked out. 

Detecting and tracking of moving objects is done by a novel 

method for spatiotemporally correlating the output events of 

the DVSs. We achieved this by using leaky integrate-and-fire 

neurons (LIF neurons) as shown in Fig. 1. The LIF neuron is a 

commonly used mathematical model of biological neurons. Its 

internal state (i.e. membrane potential) increases as it receives 

spikes (i.e. events) from presynaptic neurons, and fires a spike 

when the membrane potential exceeds the predefined 

threshold. After firing a spike event, its membrane potential 

jumps down by a certain amount or to a fixed level. The 

spatial correlation (i.e. intra-neuronal spatial correlation) is 

considered by defining the receptive field of the LIF neuron as 

shown in Fig. 1(a). The receptive field of a neuron is a region 

of space in which the pixels of the DVS make synaptic 

connections with the neuron. If there is strong enough 

spatiotemporal correlation between input events (i.e. if the 

pixels in the receptive field fire spikes at nearly the same time), 

 

Fig. 1. (a) Illustration of correlating events using LIF neurons. (b) Receptive 

field (RF) of LIF neurons on DVS pixels. A pair of neighboring neurons is 
set to have overlapping region of their RF to create spatial correlation 

between them [3].  
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the LIF neuron will fire a spike. Thus, by detecting the firing 

LIF neurons, we can easily find the active regions which 

contain highly spatiotemporally correlated events. Fig. 1(a) 

illustrates this process in which LIF neurons correlate output 

events from the DVS and detect the active regions. We set the 

LIF neuron to overlap half of its receptive field with each of 

its neighbors in all 4 directions to create spatial correlation 

between LIF neurons (i.e. inter-neuronal spatial correlation) as 

illustrated by the solid and dotted squares in Fig. 1(b). 

Clustering of events from the moving hand is achieved 

directly by grouping the firing LIF neurons „linked‟ with 

overlapping receptive fields as shown in Fig. 2(a). Any two 

adjacent LIF neurons are defined as „linked‟ if they have 

common receptive field and fire events within a certain time 

window. The location of the cluster is calculated by averaging 

the locations of all firing neurons in the group weighted by 

their average firing rate. The trajectory of the moving gesture 

is obtained by tracking the clusters as shown in Fig. 2(b). 

Although the event processing in LIF neurons is done 

asynchronously by the sensor input events, the trajectory 

information is sampled at fixed intervals (here every 3ms) 

during processing to be manipulated for gesture recognition. 

Fig. 3 shows an example of clustering and tracking of a 

moving hand based on LIF neurons. A large number of events 

(~50k per second) are generated by the DVS pixels seeing the 

moving hand, which stimulated the LIF neurons with the RF 

on the pixels to fire. On the other hand, only few events are 

observed from the pixel area of the stationary body, which is 

not enough to make LIF neurons fire.  

Gesture spotting is a process to detect the start and the end 

points of a motion gesture. Spotting gestures is hard because 

the hand makes continuous trajectories even when it does not 

produce any meaningful gesture patterns. Previously, it has 

been shown that the threshold model or garbage model based 

on hidden Markov models (HMM) were effective to detect the 

spatiotemporal characteristics of gesture trajectories [4]. 

However, these models can be computationally expensive due 

to their large number of states with an ergodic transition 

matrix and frame-based calculation. In this paper, we utilize 

the properties of the spatiotemporal correlators (i.e. the LIF 

neurons) to spot the gesture trajectories, which practically 

adds no additional computational cost. By appropriately 

setting the threshold of LIF neurons, we can naturally segment 

the trajectory of hand movement whenever the hand moves 

slowly, stops, or abruptly changes its moving direction. The 

DVS generated much less events in such conditions for a 

moment (thus, LIF neurons did not fire), and we can easily 

and accurately detect this moment. 

Stereo vision is a standard way to detect the distance 

between the sensors and an object. It is also useful for filtering 

out background noise by using the measured distance. In this 

paper, background noise is suppressed by using the stereo 

vergence fusion technique which combines events from the 

stereovision DVSs as shown in Fig. 4. The disparity (i.e., the 

positional difference between two images of a given point 

seen by the left and right eyes) is measured to achieve stereo 

vergence fusion by cross-correlating 1D fading event 

histograms of the left and the right eyes, where columns are 

summed into histogram bins, and finding the peak shift, which 

represents the dominant disparity. When we make a hand 

gesture in order to give a command, the events from the DVSs 

are mainly caused by the moving hand. Thus, stereo vergence 

based on the disparity significantly enhances the evidence of 

the moving hand by concentrating the events for this object. 

On the other hand, the events from the background movement 

do not overlap precisely by stereo vergence fusion. As a result, 

the stereo vergence significantly improves the performance of 

clustering in the environment of background movement noise. 

The clustering and tracking of the moving hand in the 

stereovision is achieved by using the LIF neurons after the 

stereo vergence as shown in Fig. 4(c). In this stage the 

background movement noise is further suppressed by using a 

stereovision association algorithm. We classified the events 

from the left and right DVSs based on their origin (i.e., left or 

right DVS) and polarity (i.e., ON or OFF event) when they 

were input to the LIF neurons for clustering. The LIF neurons 

adaptively adjust the synaptic weight for the left DVS based 

on the event rate for the same polarity from the right DVS 

inside its receptive field and vice versa. For example, if there 

is no event with ON polarity coming from the right DVS, the 

synaptic weight for ON events between the LIF neuron and 

the left DVS becomes zero and, as a result, the events from the 

left DVS no longer contribute to the membrane potential of 

the LIF neuron. This way, correlating events contribute 

multiplicatively to tracking rather than just by summing. The 

disparity of stereovision is also used for adaptive control of 

the threshold values of LIF neurons. The threshold values of 

 

Fig. 2. (a) Clustering and (b) tracking of moving object by detecting 

active LIF neurons.   

Fig. 3. Screen captures of moving hand clustering and tracking. a) Stereo 

DVS input over 20ms; grey represents no events, red pixels have events 
from right DVS, and green from left DVS. b) Yellow filled rectangles 

are RFs of linked active neurons, and the sky blue hollow rectangle 

represents the cluster defined by these neurons. Sky blue dots are the 
trajectory of the hand.  
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the LIF neurons are used for automatic gesture spotting. The 

performance of the gesture spotting depends on the threshold 

values of the LIF neurons. Thus, it is important to adaptively 

adjust the threshold value by considering the distance to 

achieve distance-invariant performance of gesture spotting. 

Fig. 5 shows the block diagram of the proposed gesture 

recognition technique. After tracking the moving hand and 

spotting the gesture trajectory, a sequence of 16 feature values 

is extracted from each spotted trajectory (Fig. 3). We defined 

each feature as one out of 16 quantized directions of 

movements. We achieve size and space-invariant gesture 

recognition by cutting every spotted section into a fixed 

number of subsections (i.e. 16 sections in this paper) with 

equal length, and obtaining a fixed number of features for 

every trajectory regardless of its length. The sequence of 

features is sent to the pattern recognition module.  The pattern 

of hand gesture is classified by using HMM-based gesture 

models. Since the trajectory of a hand gesture can be spotted 

during tracking, spatial pattern classification is sufficient for 

gesture recognition. The HMM-based gesture models are 

trained by using the Baum-Welch algorithm [5].  

The gesture UI system for the live demonstration has two 

operating modes, graphical user interface (GUI) mode and 

gesture command mode. In the GUI mode, the position of a 

cursor on the screen is controlled based on the position of the 

moving hand just like a mouse interface in PC. On the other 

hand, in the gesture command mode, gesture patterns are used 

as a set of commands like buttons on a remote controller for 

TV. The major difference between the two modes is the 

capability of gesture spotting and continuous feedback to the 

users. In the gesture command mode, gesture spotting is 

essential for gesture pattern classification while it is not 

necessary in the GUI mode in which smooth and endless 

tracking of a moving hand is required. In the GUI mode, it is 

often difficult to track a slowly moving hand since it produces 

events at a rate that is  too low to stimulate LIF neurons to 

fire. Thus, in this case, there is no firing neuron to detect for 

clustering and tracking. We solved this problem by a 

subthreshold tracking technique, in which a cluster is tracked 

based on membrane potentials of LIF neurons instead of their 

firing rate. If there is no linked neuron group detected to 

update a cluster during tracking (due to slow hand movement), 

the next position of the cluster is obtained from a virtual 

group of neurons, which virtually represents a group of firing 

neurons. The virtual group is created based on the current 

position and size of the cluster. All neurons in the area of the 

cluster are assigned as members of the virtual group. The 

location of the virtual neuron group is calculated by 

averaging the locations of all member neurons in the group 

weighted by their membrane potentials.  

 

VII. EXPERIMENTAL SETUP 

Fig. 6(a) shows the experimental setup we used to evaluate 

the proposed gesture UI system. Two DVSs were fixed 

horizontally above a computer monitor to create a stereovision, 

pair and were connected to a computer via USB cables. The 

DVS chip used here consumes 23mW and has 128×128 pixels 

with a pixel size of 40µm×40µm [2]. The focal length and the 

maximum aperture ratio of the lenses used for the DVSs were 

12mm and 1:1.4, respectively. Each HMM model was trained 

with 30 training gestures. Subsequently, we evaluated the 

gesture system for six subjects using the same models. Two of 

them (Subject-1 and Subject-2) had experienced the gesture 

systems several times before participating in the evaluation 

process. Another person (Subject-3) was exposed to the 

gesture system for around 20 minutes before the evaluation. 

The other three subjects (Subject-4, Subject-5, and Subject-6) 

were not allowed to experience the gesture system at all. The 

gesture sequence used in the test is shown in Fig. 6(b). The 

subjects were asked to produce these gestures continuously in 

order with hand motion as clear and natural as possible. No 

feedback about the classification result or the trace of hand 

motion was given to the subjects during gesture recording. 

The sequence of gestures in Fig. 6(b) was tried 22 times by 

each subject. Thus, 198 gestures were tested for each subject. 

 

Fig. 4. Procedure of stereovision processing consisting of (a) disparity 
detection (b) stereo vergence fusion, and (c) stereovision association 

and clustering [3]. 

 

Fig. 5. Functional block diagram of overall gesture recognition procedure. 
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VIII. RESULTS AND DISCUSSION 

The result of the evaluation for the 6 subjects is 

summarized in Table 1. The recognition rate was higher than 

97% for the group of trained subjects (Subject-1,2,3). The 

recognition rate ranged from 91.92 % to 98.48 % for the 

group of untrained subjects (Subject-4, 5, 6). Except for 

Subject 5, we obtained good hit rate (better than 94 %) for the 

untrained subjects even though they were not exposed to the 

proposed gesture system at all. For Subject-5, we observed 

large distortions in motion trajectories of its hand. We found 

that this was mainly due to the black and white stripe patterns 

on the shirt of Subject-5. Significant artifacts were observed, 

caused by these stripe patterns. We also evaluated  the 

performance of the proposed gesture system as a function of 

the distance between the DVSs and a subject. Distance 

invariant performance was achieved by automatically 

adjusting the LIF threshold  based on the disparity, so that for 

subjects who are further away, who create smaller visual 

motion and hence fewer events, have a smaller threshold to 

cross to activate the gesture pattern. The recognition rates of 

the proposed technique were robust to scene illuminance 

conditions. Two decades of dynamic range from 10 to 1000 

lux could be achieved by using only two threshold settings of 

LIF neurons. (10 lux represents dim indoor lighting and 

1000 lux was the limit of our setup.) Scene illuminance 

invariant performance can be easily achieved by detecting 

and using the light intensity for adjusting LIF neurons in the 

future version of DVS. More than 50% of the computing 

power in the gesture recognition part was consumed by the 

clustering algorithm based on LIF neurons. Peak processor 

load on the PC was 3%. Such bio-inspired systems could in 

the future be efficiently implemented in dedicated 

neuromorphic hardware chips [6], which could be readily 

integrated with the DVS. 

 

IX. CONCLUSION 

This paper describes a gesture system based on an event-

based vision sensor, the DVS, and an event-driven processing 

technique based on LIF neurons. The result shows that the 

recognition rate was better than 91 % regardless of user 

experience. Extracted dominant stereo disparity is used to 

verge the stereo inputs in order to concentrate activity onto 

LIF integrator neurons. Distance invariant performance and 

operation over a large dynamic range of 2 decades of 

illumination were achieved by automatically controlling the 

LIF neurons‟ threshold based on measured disparity. 
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Fig. 6. (a) Experimental setup. (b) Sequence of test gestures [3]. 

 

Table 1. Recognition accuracy. 
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