Intro to Neuroscence: Neuromorphic Engineering

Introductory Course in Neuroscience

Neuromorphic Technology

Tobi Delbruck Inst. of Neuroinformatics http://www.ini.uzh.ch/~tobi

What is neuromorphic technology?

It consists of embodying *organizing principles* of neural computation in electronics, with the aims of

- 1. Building more efficient electronic systems
- 2. Understanding brain computation

IBM used a supercomputer to simulate a cat-scale model (10⁹ neurons, 10¹³ synapses) with 24,576 processors, burning 20MW and running at 1700X slower than real time

Computer	Brain
Fast semi-global clock (>1 GHz)	Self-timed, data driven (~1-100Hz)
Bit-perfect deterministic logical state	Synapses are stochastic! Computation switches digital→analog→digital
Memory distant to computation	Synaptic memory at computation
Power consumption (100W/cm^2)	Power consumption (10mW/cm^2)
Sequential computation	Parallel computation

(c) S. Liu and T. Delbruck, Inst. of Neuroinformatics, UZH-ETH Zurich

Computers are built from synchronous logic

Types of neuromorphic systems

- Neuromorphic sensors —electronic models of retinas and cochleas
- Smart sensors (e.g. tracking chips, motion sensors, presence sensors, auditory classification and localization sensors)
- Central pattern generators for locomotion or rhythmic behavior
- Models of specific systems: e.g. bat sonal echolocation, electric fish lateral line
- Multi-chip large-scale systems that use the address-event representation (spikes) for inter-chip communication and are used for studying models of neuronal (cortical) computation and synaptic plasticity for learning

Neurons 10¹⁰ Synapses 10¹⁵

Synapses / mm³ 10⁹ Axon/dendrite length/mm³ ~1km Power consumption 20W Energy per synaptic operation 10⁻¹³J Average spike rate 0.1Hz

The world of neuromorphic labs (2016)

9/55

The Physiologist's Friend chip

Simple electronic model of early visual processing

Retina model on Physiologist's Friend Chip

Biological photoreceptors adapt their operating point and gain

14

Biological photoreceptors adapt their operating point and gain

A logarithmic (or self-normalizing) representation of intensity is useful for representing object reflectance differences, rather than the illumination conditions.

- · Two objects of different reflectance produce a ratio of luminance values.
- · The difference of two log values represents this ratio, independent of the illumination.

Norman & Perlman 1979

(c) S. Liu and T. Delbruck, Inst. of Neuroinformatics, UZH-ETH Zurich

17

Intro to Neuroscence: Neuromorphic Engineering

HI horizontal cells labeled following injection of one HI cell (*) ×300 20 after Dacey, Lee, and Stafford, 1996

22

24

(c) S. Liu and T. Delbruck, Inst. of Neuroinformatics, UZH-ETH Zurich

Intro to Neuroscence: Neuromorphic Engineering

The dynamic vision sensor silicon retina

Dynamic Vision Sensor Silicon Retina (DVS)

1. The DVS asynchronously transmits addressevents. 2. The events represent temporal contrast, like transient

Lichtsteiner et al. ISSCC 2006

Achieves 550 "FPS" and 3 ms reaction time at 4% processor load

(c) S. Liu and T. Delbruck, Inst. of Neuroinformatics, UZH-ETH Zurich

27

31

Examples of organizing principles of neuromorphic technology demonstrat

- 1. Averaging over space & time to control noise and find signal context
- 2. Using context to normalize signals
- 3. Representing signed quantities by rectifying into ON and OFF channels, again to avoid burning power to represent zero
- 4. Using **adaptation** to **amplify novelty** to overcome noise and imprecision
- 5. Computing **locally in analog** and **communicating remotely using events** to optimize use of power and reliably transmit information

Resources (hyperlink)

Background reading:

- C. Mead (1990) <u>Neuromorphic Electronic Systems</u>, Proceedings of the IEEE, vol 78, No 10, pp 1629-1636.
- S.C. Liu, T. Delbruck (2010) <u>Neuromorphic Sensory Systems</u>, Current Opinions in Neurobiology
- Demonstrations
 T. Delbruck, S.C. Liu (2014), <u>A silicon visual system as a model animal</u>, (2004). Vision Research, vol. 44, issue 17, pp. 2083-2089 About the
- electronic model of the early visual system. • <u>Dynamic Vision Sensor</u> - Describes the dynamic vision sensor silicon retina demonstrated in the lecture.

32