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Engineering

Introductory Course in Neuroscience

Neuromorphic Engineering | Your neuroscience exam question will

based on this lecture and the following

‘Organizing principles’ reading
in neural and neuromorphic electronic 1. Mead, Neuromorphic Electronic Systems, Proc. IEEE,
systems 1990

2. Delbruck & Liu, A silicon visual system as a model

Part 1: Motivation, history, community animal Vision Research. 2004

Part 2: Organizing principles

Part 3: The physiologist’s friend chip 3. Boahen, Mimic the Nervous System with Neuromorphic

Chips, Scientific American, 2005

Tobi Delbruck You can get these slides and papers via the ZNZ
Inst. of Neuroinformatics Neuroscience Course web page.
www.ini.unizh.ch/~tobi
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Technology development has enabled the
=y corer | - conventional approach to computation
. % = 1947 1997

T, i 1 transistor 107 transistors
t’!’*’aﬁ%ﬂf; s g

Anderson et al. 2003

Computer vs. Brain

Pentium 4

At the system level, brains are about 1 million times more power efficient than computers. Why?

Cost of elementary operation (turning on transistor or synapse) is about the same.
It's not some magic about physics.

Computer | Brain
Fast global clock | Self-timed
Bit-perfect deterministic logical state | Synapses are stochastic!

Computation dances:
digital»analog—digital

Memory distant to computation | Memory at computation

1. Moore's law: Number of transistors per chip doubles every 1.5 to

Fast high precision power hungry ADCs | Low resolution adaptive data-driven 2 years
quantization 2.Cost/bit drops 29%/year
Devices frozen on fabrication | Constant adaptation and self- 3.True for last 45 years! Will continue at least another “‘15Y-
modification

How industry thinks of analog design Synchronous logic

Combinational Logic
(ands, ors, inverters)

Logic

Registers
(flipflops, latches, tristates)

UL |

How to design logic (today) styles of processing
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b & multi-stability
Douglas 2001
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Brief history of neuromorphic
engineering

12/7/2009

Physics of Computation Course

1982

1985] Carver Mead

Tt

Jo.hr;-Hopf?eld '

The World of Neuromorphic Engineering
2007

Shih-Chii Liu

Types of neuromorphic systems

Silicon retinas—electronic models of retinas

Silicon cochleas—electronic models of cochleas

Smart sensors (e.g. tracking chips, motion sensors, presence
sensors, auditory classification and localization sensors)
Networks of spiking neurons — with self-modifying adaptive
synapses

Central pattern generators — for locomotion or rhythmic
behavior

Models of specific systems: e.g. bat sonar echolocation,
lamprey spinal cord for swimming, lobster stomatogastric
ganglion, electric fish lateral line

Multi-chip systems that use the address-event representation
(spikes) for inter-chip communication

Accomplishments of neuromorphic
engineering

(c) T. Delbruck, Inst. of Neuroinformatics,
UZH-ETH Zurich

Mahowald, Douglas, 1991
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_ Companies that sprang from neuromorphic engineering
SCIENTIFIC ~ ~ @) synepics -
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MIMIC THE NERVOUS SYSTEM WITH

Neuromorphic
Chips
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The Telluride Neuromorphic Engineering Workshop

* Focus is on
— tutorials, hands-on workgroups
— fostering the neuromorphic community
— establishing long-lasting collaborations

* Running 12 years now, started by Rodney Douglas, Misha
Mahowald, Terry Sejnowski, and Christof Koch.

« Funded by NSF & others, steadily at about $110k/yr.

* 60 people each year, about half invited and half applicants —
you can apply. Housing and part of travel is covered.

« 3 weeks long each July, in the mountains in Colorado, USA.

Google “Telluride Neuromorphic” for more information

The fact that we can build devices that
implement the same basic operations as

Part 2: those the nervous system uses leads to the
What are “organizing principles” as inevitable conclusion that we should be able
applied in neuromorphic engineering? to build entire systems based on the
organizing principles used by the nervous
system.
Mead, 1990

(c) T. Delbruck, Inst. of Neuroinformatics,
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Complementary devices,
amplification

(Example #1)

complementary channels

E.(Na, ..)

Einh(K*r Cl')

The membrane voltage is controlled by

Almost no power is burned when both channels are off!

12/7/2009

_—Dendrite

CMOS (complementary metal oxide semiconductor)
A CMOS inverting amplifier

+voltage 6 G
/( & output 1
S D D S round
i prli 9
holes electrons —

Organizing principle:
Use complementary devices to generate gain
without burning excessive static power
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(c) T. Delbruck, Inst. of Neuroinformatics,

UZH-ETH Zurich

Mechanism of gain

Voltage sensitive channel Transistor current is
conductance is exponential |exponential function of gate
in membrane voltage voltage

Organizing principle:
Use device physics (Boltzman
distributions) to amplify
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Part 3:
Structure and function of the retina, as
expressed in the “Physiologist’s Friend
Chip”

12/7/2009

Ganglion  Honzonal
cell

Hipolar

cell

Amacrine
cell

Retina

Horizontal  Bipolar cells Retinal ganglion eclls
cell

_ Amacrine cell
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S W‘J Dendro-dendritic synapse

Receptors Rodieck 1998

The first steps in seeifig

I

Rodieck 1998

The first steps in seeing

Biological photoreceptors adapt
their operating point and gain

‘ Organizing principle: Use Context to Normalize signal ‘

| N 1
‘Or‘gunizing principlém\adapmﬁon to amplify novelty
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(c) T. Delbruck, Inst. of Neuroinformatics,
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A silicon photoreceptor
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(also hole in overlying metal) Delbruck 1993
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A Typical Visual Physiology Setup

12/7/2009

Chip + Optics

BNC connector

Bipolar/Horizontal cells
Ganglion & Simple cells

..

Synhapses T}

Photodiodes Organizing principle:
Represent signed
quantities by
rectifying into
separate channels that
typically have low
activity

I ON channel
I OFF channel

Photoreceptors

Horizontal cell

A4 4

Organizing principle:

Bipolar cells ===

Ganglion cells

Compute locally in
analog and transmit
long distances using

Organizing principle:
Average over space (&

time) to find good
reference - spikes

ON OFF

Review: Organizing principles

1. Use device physics for computation
1. Sum currents onto nodes
2. Use capacitance to integrate over time
3. Use Boltzman physics to amplify

2. Use complementary devices to amplify without burning
excessive static power

3. Average over space (& time) to find correct context and
reduce noise

4. Use Context to Normalize signal

5. Represent signed quantities by rectifying into separate ON
and OFF channels

6. Use adaptation to amplify novelty, not familiarity

7. Compute locally in analog, communicate remotely using
events
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