Intro to Neuroscence: Neuromorphic
Engineering

11/5/2007

Introduction to Neuroscience
Neuromorphic Engineering

‘Organizing principles’
in neural and neuromorphic electronic
systems
Part 1: Motivation, history, community
Part 2: Organizing principles
Part 2a: The physiologist’s friend chip
Part 2b: The dynamic vision sensor

Tobi Delbruck
Inst. of Neuroinformatics
www.ini.unizh.ch/~tobi

Your neuroscience exam question will
based on this lecture and the following
reading
1. Mead, Neuromorphic Electronic Systems, Proc. IEEE,

1990

2. Delbruck & Liu, A silicon visual system as a model
animal, Vision Research, 2004

3. Boahen, Mimic the Nervous System with Neuromorphic
Chips, Scientific American, 2005

You can get these papers via the ZNZ Neuroscience Course
web page.

Part 1: Motivation for neuromorphic
engineering, history, community
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At the system level, brains are about 1 million times more power efficient than computers. Why?

Cost of elementary operation (turning on transistor or synapse) is about the same.
It's not some magic about physics.

Computer | Brain

Fast global clock | Self-timed

Bit-perfect deterministic logical state | Synapses are stochastic!
Computation dances: digital>analog—digital

Memory distant to computation | Memory at computation

Fast high precision power hungry ADCs | Low resolution adaptive data-driven quantization

Devices frozen on fabrication | Constant adaptation and self-modification

Technology development has enabled this approach

1947 1997
1 transistor 10 transistors

1. Moore's law: Number of transistors per chip doubles every 1.5 to
2 years

2.Cost/bit drops 29%/year

3.True for last 45 years! Will continue at least another ~15y.
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Engineering

How industry thinks of analog design Synchronous logic

Combinational Logic
(ands, ors, inverters)

Logic @ ‘

Registers

(flipflops, latches, tristates)

How to design logic (today) styles of processing
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Physics of Computation Course

1982

Brief history of neuromorphic
engineering

1985| carver Mead
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The World of Neuromorphic Engineering
2007

Shih-Chii Liu

11/5/2007

Types of neuromorphic systems

« Silicon retinas—electronic models of retinas

« Silicon cochleas—electronic models of cochleas

* Smart sensors (e.g. tracking chips, motion sensors, presence
sensors, auditory classification and localization sensors)

* Networks of spiking neurons — with self-modifying adaptive
synapses

« Central pattern generators — for locomotion or rhythmic
behavior

« Models of specific systems: e.g. bat sonar echolocation,
lamprey spinal cord for swimming, lobster stomatogastric
ganglion, electric fish lateral line

« Multi-chip systems that use the address-event representation
(spikes) for inter-chip communication

engineering

Accomplishments of neuromorphic
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(c) T. Delbruck, Inst. of Neuroinformatics,
UZH-ETH Zurich

Companies that sprang from neuromorphic engineering
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The Telluride Neuromorphic Engineering Workshop

* Focusison
— tutorials, hands-on workgroups
— fostering the neuromorphic community
— establishing long-lasting collaborations
* Running 12 years now, started by Rodney Douglas and Misha
Mahowald.
» Funded by NSF & others, steadily at about $110k/yr.
60 people each year, about half invited and half applicants —
you can apply. Housing and part of travel is covered.
» 3 weeks long each July, in the mountains in Colorado, USA.

Google “Telluride Neuromorphic” for more information

The fact that we can build devices that

implement the same basic operations as
Part 2: those the nervous system uses leads to the

What are “organizing principles” as inevitable conclusion that we should be able

app“ed in neuromorphic engineering? to bUl'd enﬁr‘_e SYSTemS based on the
organizing principles used by the nervous

system.
Mead, 1990

_— Dendrite

Complementary devices,
amplification

(Example #1)
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The membrane voltage is controlled by
complementary channels

NevRons

E,., (& ce)

Almost ho power is burned when both channels are off!

11/5/2007

C M OS (complementary metal oxide semiconductor)
A CMOS inverting amplifier

+voltage G G

Organizing principle:
Use complementary devices to generate gain
without burning excessive static power

Mechanism of gain

Voltage sensitive channel Transistor current is
conductance is exponential |exponential function of gate
in membrane voltage voltage

Organizing principle:
Use device physics (Boltzman
distributions) to amplify

Part 2a:
Structure and function of the retina, as
expressed in the “Physiologist’s Friend
Chip”

Ganglion  Horizonial
cell :

Amacrine
cell

Oiprac
nerve
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Receptors Rodieck 1998

The first steps in seeiflg
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The first steps in seeing
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gain

Biological photoreceptors adapt their operating point and

Responses
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Norman & Perlman 1979

d(logX)=dX/X

A logarithm is self-normalizing

Organizing principle: Normalize by value of signal

A silicon photoreceptor

Adaptive

Feedback [

<10um
In today's
technology

(also hole in overlying metal)

Feedback transistor

Delbruck 1993
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Biological photoreceptors adapt their operating point and
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Organizing principle: Use adaptation to amplify novelty,
not familiarity

A Typical Visual Physiology Setup

Several communicating machmes cusTom soffware
j» Months 6f developmenf and debugging... 2
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Physio Friend Chip Layout

Chip + Optics

SN
i :

BNC connector

Bipolar/Horizontal cells
Ganglion & Simple cells

Photodiodes Photodiodes Organizing prmciple:
Represent signed

quantities by
rectifying into
separate channels that
typically have low
activity

b4 4

Organizing principle:
Compute locally in

analog and transmit
long distances using
spikes

CION channel
1 OFF channel

I ON channel
I OFF channel

Photoreceptors Photoreceptors

Horizontal cell Horizontal cell

Bipolar cells — === Bipolar cells ===

Ganglion cells —— Ganglion cells ———

Organizing principle:
Average over space (&

time) o find good
- reference &

ON OFF ON OFF

Dynamic vision sensor
1. This silicon retina
asynchronously outputs

K pixel addresses

Part 2b: (spikes).
L 2. The pixels respond to
The dynamic vision sensor temporal contrast . like
T - TMPDIFF128 6t o 350 4M 2P CMOS p A !
(asynchronous temporal contrast silicon retina) | || N pecmmmmmm transient ganglion cells.

SAMMM LSS,

s \
Lichtsteiner et al. ISSCC 2006
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CAVIAR

Temporal Convolution ‘Object’ Learning
contrast chips chip system
retina

Achieves 550 "FPS™ and 3 ms reaction time at

Robot Goalie
4% processor load

dynamic vision sensor

Event
processing
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7. Compute locally in analog, communicate remotely using events
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