

AVR32765: AVR32 DSPLib Reference Manual

1 Introduction
The AVR®32 DSP Library is a compilation of digital signal processing functions. All
function availables in the DSP Library, from the AVR32 Software Framework. All
the source code (C code and assembly optimized), software example and GCC
and IARTM projects are released in the AVR32 UC3 Software Framework.

The Atmel AVR32 DSPLib is a library which provides a useful set of digital signal
processing functions. All the source code is available and fully compatible with
GCC and IAR. This library provides optimized functions for the AT32UC family but
also target-independent functions. This document is a listing of the functions
currently implemented in the DSP Library and available in the AVR32 Software
Framework.

2 Reference
• AT32UC3 Series Software Framework:

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4192

• AVR32718 : AT32UC3 Series Software Framework DSPLib:

http://www.atmel.com/dyn/resources/prod_documents/doc32076.pdf

32-bit
Microcontrollers

Application Note

Rev. 32120A-AVR32-04/09

2 AVR32765
32120A-AVR32-04/09

3 Overview

3.1 What can I find in this document?
Following are the main sections available in this document.

• Basic APIs: Filtering, Operators, Signal generation, Transforms, Vectors and
Windowing.

• Advanced APIs: Advanced.
• Data: Types, Macros and Constants.
• Configuration options: Optimization options, Q Format and Constant tables.
• A list of all functions available in the DSPLib (DSPLib functions' list).

3.2 Architecture
The DSPLib is divided in 2 parts:

• The basic library: containing the basic functions which are sorted in sub-
groups: filters, windows, vector management functions, operators, transforms
and signal generation functions.

• The advanced library: built on the first one and which contains more complex
functions such as ADCPM encoder/decoder.

Here is the directory architecture of the DSPLib (See /SERVICES/DSPLIB in the
AVR32 Software Framework):

Directory Architecture
of the DSPLib

• The AT32UC directory includes all the source code of the
optimized functions available for the AT32UC targets and provided
by the DSPLib (mainly assembly coded).

• The DOC directory includes the main documentations of the whole
library.

• The EXAMPLES directory regroups a lot of examples showing a
way to use the functions provided by both advanced and basic
libraries.

• The GENERIC directory regroups all the target-independant source
code of the DSPLib.

• The INCLUDE directory includes all the common include files for
the optimized functions and the generic functions.

• The UTILS directory regroups useful tools and scripts for the DSP
library.

• The readme.html file is the entry point of the HTML documentation
of the library. It gives accesses to doxygen documentations and
mainy others useful data about functions, utilities, scripts, etc.

3.3 Fixed Point Format
All DSP types in the DSPLib include the notion of 16-bit and 32-bit fixed-point
formats. It is important to understand this format in order to fastest and/or debug an
application. See Q Format for more details on this format.

 AVR32765

 3

32120A-AVR32-04/09

3.4 Naming Convention
Each function in the basic library of the DSPLib follows this naming convention rule:
dspX_Y_Z(...) Where:

• X is the type used (16 or 32)
• Y is category of the library (op, vect, trans, ...)
• Z is the short name of the function (cos, mul, ...)

Example :

dsp16_vect_mul is a function part of the DSP library. It works
with 16-bit values and is used to multiply vectors.

3.5 Compilation Options
The DSPLIB is made to fit the best the user needs. Therefore, many configuration
constants can be set at the compilation of the library. Here is the list :

• DSP_OPTIMIZATION : used to optimize the algorithmic of the functions. This
optimization can be for speed, size, accuracy or size and accuracy. It can be
set in addition to the one provided by the compiler.

• FORCE_ALL_GENERICS : to use only the generic (target-independant)
functions when you compile the library.

• FORCE_GENERIC_DSP16_Z : to use the 16-bit generic version of a
function. The specified function is defined by replacing the Z letter with the
short name of the function. See Naming Convention for more details on the
short name of a function.

• FORCE_GENERIC_DSP32_Z : to use the 32-bit generic version of a
function. The specified function is defined by replacing the Z letter with the
short name of the function. See Naming Convention for more details on the
short name of a function.

• DSP16_FORMAT: to specify the precision of the 16-bit Q format number
used. (ie: to use Q3.13 numbers, define DSP16_FORMAT with the value 13).

• DSP32_FORMAT: to specify the precision of the 32-bit Q format number
used. (ie: to use Q10.22 numbers, define DSP32_FORMAT with the value
22).

All of these defines can be passed to the preprocessor at the compilation.
Example:

use -D DSP16_FORMAT=12 in command line with GCC to use
formatted Q4.12 numbers.

4 AVR32765
32120A-AVR32-04/09

3.6 Deliveries
Here are the possibilities to use the DSP Library:

• The standalone library contained in the AVR32765.zip file.
• The source code of the inside the Software Framework.
• The AVR32 Studio Software Framework plug-in.

3.6.1 Library form

The AVR32765.zip contains the compiled library with the correct header file to
integrate this one inside a custom application.

3.6.2 Source Code

The complete source code is available inside the zip package of the AVR32 Software
Framework available to download here:

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4192

3.6.3 AVR32 Studio Software Framework plug-in.

The DSPLib library can be easily incorporated inside a custom application through the
AVR32 Studio Software Framework plug-in.

 AVR32765

 5

32120A-AVR32-04/09

4 AVR32 – Fixed point DSP Library Modules
Here is a list of all modules:

• Basic
o Filtering
o Operators
o Signal generation
o Transforms
o Vectors
o Windowing

• Advanced
o IMA/DVI ADPCM
o Signal re-sampling

6 AVR32765
32120A-AVR32-04/09

4.1 Filtering [Basic]
All the filtering functions currently supported by the DSP library.

• Finite Impulse Response Filter
• Infinite Impulse Response Filter
• Partial Infinite Impulse Response Filter
• Least Mean Square Filter
• Normalized Least Mean Square Filter
• Interpolation filter
• Lowpass FIR design

4.1.1 Standard Description

4.1.1.1 Finite Impulse Response Filter

This function computes a real FIR filter using the impulse response of the desire filter
onto a fixed-length signal. It returns a signal of a length equals to (size - h_size + 1)
elements.
Here is the formula of the FIR filter:

Note:

The impulse response of the filter has to be scaled to avoid overflowing
values.
All the vectors have to be 32-bit aligned.

Relative functions:

• dsp16_filt_fir
• dsp32_filt_fir

4.1.1.2 Infinite Impulse Response Filter

This function computes a real IIR filter using the coefficients of the desire filter onto a
fixed-length signal. It returns a signal of a length equals to size elements.
Here is the formula of the IIR filter:

Note:

The data have to be scaled to avoid overflowing values.
All the vectors have to be 32-bit aligned.

Relative functions:

• dsp16_filt_iir
• dsp32_filt_iir

 AVR32765

 7

32120A-AVR32-04/09

4.1.1.3 Partial Infinite Impulse Response Filter

This function computes a real IIR filter using the coefficients of the desire filter onto a
fixed-length signal. It returns a signal of a length equals to (size - num_size + 1)
elements.
Here is the formula of the IIR filter:

Note:

The data have to be scaled to avoid overflowing values.
All the vectors have to be 32-bit aligned.

Relative functions:

• dsp16_filt_iirpart
• dsp32_filt_iirpart

8 AVR32765
32120A-AVR32-04/09

4.1.1.4 Least Mean Square Filter

This function computes an adaptive LMS filter. It returns a (size)-length signal.
Here is the formula of the LMS filter:

Note:

The data have to be scaled to avoid overflowing values.
All the vectors have to be 32-bit aligned.
You can change the value of the mu coefficient of the LMS filter by defying
DSP_LMS_MU, at the compilation, with the desired value. This value defines
mu as follow:

Relative functions:

• dsp16_filt_lms
• dsp32_filt_lms

 AVR32765

 9

32120A-AVR32-04/09

4.1.1.5 Normalized Least Mean Square Filter

This function computes an adaptive NLMS filter. It returns a (size)-length signal.
Here is the formula of the NLMS filter:

Note:

The data have to be scaled to avoid overflowing values.
All the vectors have to be 32-bit aligned. You can change the value of the mu
coefficient of the NLMS filter by defying DSP_NLMS_MU, at the compilation,
with the desired value. This value defines mu as follow:

Relative functions:

• dsp16_filt_nlms
• dsp32_filt_nlms

10 AVR32765
32120A-AVR32-04/09

4.1.1.6 Interpolation filter

This function performs an interpolation over the input signal. It returns a (vect2_size *
interpolation_ratio)-length signal.
Here is the principle of the interpolation:

Note:

The data have to be scaled to avoid overflowing values.
All the vectors have to be 32-bit aligned.

Relative functions:

• dsp16_filt_interpolation_coefsort
• dsp16_filt_interpolation

4.1.1.7 Lowpass FIR design

This function uses a simple algorithm to calculate lowpass FIR filter's coefficients.
Note:

It does not take care of overflowing values.
Relative functions:

• dsp16_filt_lpfirdesign

 AVR32765

 11

32120A-AVR32-04/09

4.1.2 C Description

4.1.2.1 Finite Impulse Response Filter

Description:
16-bit fixed point version of the FIR

Module:
FILTERING

Prototype:
void dsp16_filt_fir
(

dsp16_t *vect1,
dsp16_t *vect2,
int size,
dsp16_t *h,
dsp16_t h_size

);
Arguments:

vect1 : A pointer to a 16-bit fixed-point vector of (size –
h_size + 1) elements corresponding to the output vector.

vect2 : A pointer to a 16-bit fixed-point vector of size
elements corresponding to the input vector.

size: The length of the input vector (must be greater or
equals to 4).

h : A pointer to a 16-bit fixed-point vector of h_size
elements corresponding to the vector containing the impulse
response coefficients.
h_size : The length of the impulse response of the filter
(must be greater than 7).

Return Value:
NONE

Notes:
Due to its implementation, for the avr32-uc3 optimized
version of the FIR,the output vector (vect1) have to have a
length of 4*n elements to avoid overflows. You need the
"Partial Convolution" module

12 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the FIR

Module:
FILTERING

Prototype:
void dsp32_filt_fir
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 int size,
 dsp32_t *h,
 dsp32_t h_size
);

Arguments:
vect1 : A pointer to a 32-bit fixed-point vector of (size –
h_size + 1) elements corresponding to the output vector.
vect2 : A pointer to a 32-bit fixed-point vector of size
elements corresponding to the input vector.
size: The length of the input vector (must be greater or
equals to 4).
h : A pointer to a 32-bit fixed-point vector of h_size
elements corresponding to the vector containing the impulse
response coefficients.

h_size : The length of the impulse response of the filter
(must be greater than 7).

Return Value:
NONE

Remarks:
Due to its implementation, for the avr32-uc3 optimized
version of the FIR,the output vector (vect1) have to have a
length of 4*n elements to avoid overflows. You need the
"Partial Convolution" module

 AVR32765

 13

32120A-AVR32-04/09

dsp32_filt_fir (See fir_example.c and fir_example.sce)
Example:
Using Scilab, compute of FIR low pass filter coefficients and
filter signal:

fir_coef = [-0.01559148806
 -0.00894210585

 …

 -0.00894210585
 -0.01559148806]

y = [-0.18257484962
 -0.09404368788
 …

 0.00000000000

 -0.03599992189]

C source code using the DSPLib with the pre-calculated
coefficients:

A_ALIGNED dsp32_t fir_coef[FIR_COEF_SIZE] = {
 DSP32_Q(-0.01559148806),
 DSP32_Q(-0.00894210585),

 …

 DSP32_Q(-0.00894210585),
 DSP32_Q(-0.01559148806)

}

dsp32_filt_fir(x, y, SIZE, fir_coef, FIR_COEF_SIZE);
y = [- 0.1825

- 0.0940

…
 0

 - 0.0359]

14 AVR32765
32120A-AVR32-04/09

4.1.2.2 Infinite Impulse Response Filter

Description:
16-bit fixed point version of the IIR

Module:
FILTERING

Prototype:
void dsp16_filt_iir
(
 dsp16_t *y,
 dsp16_t *x,
 int size,
 dsp16_t *num,
 int num_size,
 dsp16_t *den,
 int den_size,
 int num_prediv,
 int den_prediv
);

Arguments:
y : A pointer to a 16-bit fixed-point vector of size elements
corresponding to the output vector.
x : A pointer to a 16-bit fixed-point vector of size elements
corresponding to the input vector.
size : The length of the input vector.
num : A pointer to a 16-bit fixed-point vector of num_size
elements corresponding to the vector containing the
numerator's coefficients of the filter.
num_size : The length of the numerator's coefficients of the
filter (must be a multiple of 2).
den : A pointer to a 16-bit fixed-point vector of den_size
elements corresponding to the vector containing the
denominator's coefficients of the filter.

den_size : The length of the denominator's coefficients of
the filter (must be a multiple of 2).

num_prediv : The predivisor used to scale down the
numerator's coefficients of the filter in order to avoid
overflow values.

den_prediv : The predivisor used to scale down the
denominator's coefficients of the filter in order to avoid
overflow values.

Return Value:
NONE

Remarks:
Due to its implementation, for the avr32-uc3 optimized
version of the IIR, the output vector (vect1) have to have a
length of 6*n elements to avoid overflows.

.

 AVR32765

 15

32120A-AVR32-04/09

dsp16_filt_iir (See iir_example.c and iir_example.sce)
Example:
Using Scilab, compute of butterworth coefficients and filter
signal:

num = [0.6537018
 -3.2685088

 …

 3.2685088
 -0.6537018]

den = [1

 -4.1534907
 …

 2.498365

 -0.427326]
y = [… 0.0286757788249646 0.0456197560223300
 0.0505215086706680 0.0420876554669111 0.0226018579517016]

C source code using the DSPLib with the pre-calculated
coefficients:

A_ALIGNED dsp16_t num[NUM_SIZE] = {
 DSP16_Q(0.6537018/ (1 << NUM_PREDIV)),
 DSP16_Q(-3.2685088/ (1 << NUM_PREDIV)),

...

}
A_ALIGNED dsp16_t den[DEN_SIZE] = {
 DSP16_Q(-4.1534907/ (1 << DEN_PREDIV)),

 DSP16_Q(6.9612765 / (1 << DEN_PREDIV)),
...

};

dsp16_filt_iir(&y[DEN_SIZE], &x[NUM_SIZE-1], SIZE, num, NUM_SIZE,
den, DEN_SIZE, NUM_PREDIV, DEN_PREDIV);

y = [… 0.00639704989 0.02903778954
 0.04445382457 0.04819074617

 0.03898097309 0.01909797642];

16 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the IIR

Module:
FILTERING

Prototype:
void dsp32_filt_iir
(
 dsp32_t *y,
 dsp32_t *x,
 int size,
 dsp32_t *num,
 int num_size,
 dsp32_t *den,
 int den_size,
 int num_prediv,
 int den_prediv
);

Arguments:
y : A pointer to a 32-bit fixed-point vector of size elements
corresponding to the output vector.

x : A pointer to a 32-bit fixed-point vector of size elements
corresponding to the input vector.

size : The length of the input vector.
num : A pointer to a 32-bit fixed-point vector of num_size
elements corresponding to the vector containing the
numerator's coefficients of the filter.

num_size : The length of the numerator's coefficients of the
filter (must be a multiple of 2).

den : A pointer to a 32-bit fixed-point vector of den_size
elements corresponding to the vector containing the
denominator's coefficients of the filter.
den_size : The length of the denominator's coefficients of
the filter (must be a multiple of 2).
num_prediv : The pre-divisor used to scale down the
numerator's coefficients of the filter in order to avoid
overflow values.

den_prediv : The pre-divisor used to scale down the
denominator's coefficients of the filter in order to avoid
overflow values.

Return Value:
NONE

Remarks:
Due to its implementation, for the avr32-uc3 optimized
version of the IIR, the output vector (vect1) have to have a
length of 6*n elements to avoid overflows.

 AVR32765

 17

32120A-AVR32-04/09

4.1.2.3 Partial Infinite Impulse Response Filter

Description:
16-bit fixed point version of the IIR

Module:
FILTERING

Prototype:
void dsp16_filt_iir_part
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 int size,
 dsp16_t *num,
 int num_size,
 dsp16_t *den,
 int den_size,
 int num_prediv,
 int den_prediv
);

Arguments:
vect1 : A pointer to a 16-bit fixed-point vector of (size -
num_size + 1) elements corresponding to the output vector..

vect2 A pointer to a 16-bit fixed-point vector of size
elements corresponding to the input vector.

size The length of the input vector.
num A pointer to a 16-bit fixed-point vector of num_size
elements corresponding to the vector containing the
numerator's coefficients of the filter.

num_size The length of the numerator's coefficients of the
filter.

den A pointer to a 16-bit fixed-point vector of den_size
elements corresponding to the vector containing the
denominator's coefficients of the filter.
den_size The length of the denominator's coefficients of the
filter.
num_prediv The pre-divisor used to scale down the numerator's
coefficients of the filter in order to avoid overflow values.
den_prediv The pre-divisor used to scale down the
denominator's coefficients of the filter in order to avoid
overflow values.

Return Value:
NONE

Remarks:
Due to its implementation, for the avr32-uc3 optimized
version of the IIR, the output vector (vect1) have to have a
length of 6*n elements to avoid overflows.

18 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the IIR

Module:
FILTERING

Prototype:
void dsp32_filt_iir_part
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 int size,
 dsp32_t *num,
 int num_size,
 dsp32_t *den,
 int den_size,
 int num_prediv,
 int den_prediv
);

Arguments:
vect1 : A pointer to a 32-bit fixed-point vector of (size -
num_size + 1) elements corresponding to the output vector..
vect2 A pointer to a 32-bit fixed-point vector of size
elements corresponding to the input vector.
size The length of the input vector.
num A pointer to a 32-bit fixed-point vector of num_size
elements corresponding to the vector containing the
numerator's coefficients of the filter.
num_size The length of the numerator's coefficients of the
filter.
den A pointer to a 32-bit fixed-point vector of den_size
elements corresponding to the vector containing the
denominator's coefficients of the filter.

den_size The length of the denominator's coefficients of the
filter.

num_prediv The pre-divisor used to scale down the numerator's
coefficients of the filter in order to avoid overflow values.

den_prediv The pre-divisor used to scale down the
denominator's coefficients of the filter in order to avoid
overflow values.

Return Value:
NONE

Remarks:
Due to its implementation, for the avr32-uc3 optimized
version of the IIR, the output vector (vect1) have to have a
length of 6*n elements to avoid overflows.

 AVR32765

 19

32120A-AVR32-04/09

dsp32_filt_iir_part (See iirpart_example.c and iirpart_example.sce files)
Example:
Using Scilab, compute of butterworth coefficients and filter
signal:

num = [0.0000274
 0.0004939

 …

 0.0004939
 0.0000274]

den = [0.0000000000000001427
 2.4446755
 …

 -0.0000000000000000000

 0.000000001506]
y = […
 -0.00998044237

 -0.00929886725
 -0.00770704662]

C source code using the DSPLib with the pre-calculated
coefficients:

A_ALIGNED dsp32_t num[NUM_SIZE] = {
 DSP16_Q(0.0000274/ (1 << PREDIV)),

 DSP16_Q(0.0004939/ (1 << PREDIV)),

...
}

A_ALIGNED dsp32_t den[DEN_SIZE] = {
};
dsp32_filt_iir_part(&y[DEN_SIZE], &x[NUM_SIZE-1], SIZE, num,
NUM_SIZE, den, DEN_SIZE, NUM_PREDIV, DEN_PREDIV);

y = […
 -0.00998368071,
 -0.00929394507,

 -0.00770432784];

20 AVR32765
32120A-AVR32-04/09

4.1.2.4 Least Mean Square Filter

Description:
16-bit fixed point version of the LMS filter

Module:
FILTERING

Prototype:
void dsp16_filt_lms
(
 dsp16_t *x,
 dsp16_t *w,
 int size,
 dsp16_t new_x,
 dsp16_t d,
 dsp16_t *y,
 dsp16_t *e
);

Arguments:
x A pointer to a 16-bit fixed-point vector of (size) elements
that acts as a circular vector, filled with the input
samples. The elements have to be initialized to zero and then
you just need to insert this vector each time you call this
functions whithout filling any of its values.

w A pointer to a 16-bit fixed-point vector of size elements
corresponding to the coefficients of the filter. Just
initialize The elements to zero and after several
iterations, this vector will be filled with the actual
coefficients of the filter.

size The length of the circular vector (x) and of the
coefficient's vector (w). It must be a multiple of 4.

new_x A 16-bit fixed-point value which contains a new input
sample signal.

d A 16-bit fixed-point value which contains the current
sample of the reference's signal.

y A pointer to a 16-bit fixed-point value corresponding to
the current sample of the output signal.

e A pointer to a 16-bit fixed-point value corresponding to
the current sample of the output error signal.

Return Value:
NONE

Remarks:
 NONE

 AVR32765

 21

32120A-AVR32-04/09

Description:
32-bit fixed point version of the LMS filter

Module:
FILTERING

Prototype:
void dsp32_filt_lms
(
 dsp32_t *x,
 dsp32_t *w,
 int size,
 dsp32_t new_x,
 dsp32_t d,
 dsp32_t *y,
 dsp32_t *e
);

Arguments:
x A pointer to a 32-bit fixed-point vector of (size) elements
that acts as a circular vector, filled with the input
samples. The elements have to be initialized to zero and then
you just need to insert this vector each time you call this
functions without filling any of its values.
w A pointer to a 16-bit fixed-point vector of size elements
corresponding to the coefficients of the filter. Just
initialize The elements to zero and after several
iterations, this vector will be filled with the actual
coefficients of the filter.
size The length of the circular vector (x) and of the
coefficient's vector (w). It must be a multiple of 4.
new_x A 32-bit fixed-point value which contains a new input
sample signal.
d A 16-bit fixed-point value which contains the current
sample of the reference's signal.
y A pointer to a 16-bit fixed-point value corresponding to
the current sample of the output signal.
e A pointer to a 16-bit fixed-point value corresponding to
the current sample of the output error signal.

Return Value:
NONE

Remarks:

22 AVR32765
32120A-AVR32-04/09

dsp16_filt_lms (See lms_example.c and lms_example.m files)
Example:
Using Matlab,

Generate a x input signal made of a combination of 2 sinus.
Filter this signal with an unknown process. The resulting signal is
called d.
Compute a LMS filter and check the output coefficients converge
with the unknown process.
The unknown process model is

fir_coef = [0.0132,
 0.0254),

 0.0579),

 0.1006),
 0.1398),

 0.1632),

 0.1632),
 0.1398),

 0.1006),

 0.0579),
 0.0254),

 0.0132)]

C source code using the DSPLib with the pre-calculated x and d
signals.

w = [0.024536,
 0.050109,

 0.076080,
 0.099517,

 0.117767,

 0.128936,
 0.131835,

 0.126739,

 0.114013,
 0.095642,

 0.073516,

 0.049316];

 AVR32765

 23

32120A-AVR32-04/09

4.1.2.5 Normalized Least Mean Square Filter

Description:
16-bit fixed point version of the Normalized LMS filter

Module:
FILTERING

Prototype:
void dsp16_filt_nlms
(
 dsp16_t *x,
 dsp16_t *w,
 int size,
 dsp16_t new_x,
 dsp16_t d,
 dsp16_t *y,
 dsp16_t *e
);

Arguments:
x A pointer to a 16-bit fixed-point vector of (size) elements
that acts as a circular vector, filled with the input
samples. The elements have to be initialized to zero and then
you just need to insert this vector each time you call this
functions without filling any of its values.
w A pointer to a 16-bit fixed-point vector of size elements
corresponding to the coefficients of the filter. Just
initialize The elements to zero and after several
iterations, this vector will be filled with the actual
coefficients of the filter.
size The length of the circular vector (x) and of the
coefficient's vector (w). It must be a multiple of 4.
new_x A 16-bit fixed-point value which contains a new input
sample signal.
d A 16-bit fixed-point value which contains the current
sample of the reference's signal.
y A pointer to a 16-bit fixed-point value corresponding to
the current sample of the output signal.
e A pointer to a 16-bit fixed-point value corresponding to
the current sample of the output error signal.

Return Value:
NONE

Remarks:

24 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the Normalized LMS filter

Module:
FILTERING

Prototype:
void dsp32_filt_nlms
(
 dsp32_t *x,
 dsp32_t *w,
 int size,
 dsp32_t new_x,
 dsp32_t d,
 dsp32_t *y,
 dsp32_t *e
);

Arguments:
x A pointer to a 32-bit fixed-point vector of (size) elements
that acts as a circular vector, filled with the input
samples. The elements have to be initialized to zero and then
you just need to insert this vector each time you call this
functions without filling any of its values.

w A pointer to a 16-bit fixed-point vector of size elements
corresponding to the coefficients of the filter. Just
initialize The elements to zero and after several
iterations, this vector will be filled with the actual
coefficients of the filter.

size The length of the circular vector (x) and of the
coefficient's vector (w). It must be a multiple of 4.

new_x A 32-bit fixed-point value which contains a new input
sample signal.

d A 16-bit fixed-point value which contains the current
sample of the reference's signal.

y A pointer to a 16-bit fixed-point value corresponding to
the current sample of the output signal.

e A pointer to a 16-bit fixed-point value corresponding to
the current sample of the output error signal.

Return Value:
NONE

Remarks:

 AVR32765

 25

32120A-AVR32-04/09

dsp32_filt_nlms (See nlms_example.c and nlms_example.m files)
Example:
Using Matlab,
Generate a x input signal made of a combination of 2 sinus.
Filter this signal with an unknown process. The resulting signal is
called d.
Compute a LMS filter and check the output coefficients converge
with the unknown process.
The unknown process model is

fir_coef = [0.0132,

 0.0254),

 0.0579),
 0.1006),

 0.1398),

 0.1632),
 0.1632),

 0.1398),

 0.1006),
 0.0579),

 0.0254),

 0.0132)]
C source code using the DSPLib with the pre-calculated x and d
signals.

w = [0.08656555586,
 0.11905200410,
 0.17031530270,

 0.20344278152,

 0.22639864860,
 0.22585131265,

 0.20688786015,

 0.16399965505,
 0.10478496320,

 0.02905859762,

 -0.05285281242,
 -0.13855776903]

26 AVR32765
32120A-AVR32-04/09

4.1.2.6 Interpolation filter

Description:
This function resort the coefficients of a FIR filter
to be used with the function dsp16_filt_interpolation

Module:
FILTERING

Prototype:
void dsp16_filt_interpolation
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 int vect2_size,
 dsp16_t *h,
 int h_size,
 int interpolation_ratio
);

Arguments:
vect1 A pointer to a 16-bit fixed-point vector where to store
the result. It must be of a size (in sample) equals to the
size of the input vector multiplied by the interpolation
factor.
vect2 A pointer to a 16-bit fixed-point vector containing the
input samples.
vect2_size The size of the input vector.
h A pointer to a 16-bit fixed-point vector which contains the
coefficients of the filter. These coefficients must be
reorder with the function dsp16_filt_interpolation_coefsort
before being used.

h_size The size of this vector.
interpolation_ratio The interpolation factor desired for this
interpolation.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 27

32120A-AVR32-04/09

Description:
This function interpolates a vector.

Module:
FILTERING

Prototype:
void dsp16_filt_interpolation
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 int vect2_size,
 dsp16_t *h,
 int h_size,
 int interpolation_ratio
);

Arguments:
vect1 A pointer to a 16-bit fixed-point vector where to store
the result. It must be of a size (in sample) equals to the
size of the input vector multiplied by the interpolation
factor.
vect2 A pointer to a 16-bit fixed-point vector containing the
input samples.
vect2_size The size of the input vector.
h A pointer to a 16-bit fixed-point vector which contains the
coefficients of the filter. These coefficients must be
reorder with the function dsp16_filt_interpolation_coefsort
before being used.

h_size The size of this vector.
interpolation_ratio The interpolation factor desired for this
interpolation.

Return Value:
NONE

Remarks:
NONE

28 AVR32765
32120A-AVR32-04/09

4.1.2.7 Lowpass FIR design

Description:
16-bit fixed point version of the low-pass FIR filter
design.

Module:
FILTERING

Prototype:
void dsp16_filt_lpfirdesign
(
 dsp16_t *c,
 int fc,
 int fs,
 int order,
 dsp16_win_fct_t dsp16_win_fct,
 dsp_filt_design_options_t options
);

Arguments:
c A pointer to a 16-bit fixed-point vector of "order" size,
used to store the coefficients of the filter designed.

fc Cutoff frequency of the low-pass filter.
fs Sample rate of the signal to filter.
order Order of the filter to design.
dsp16_win_fct A window to apply to the coefficients. If this
parameter is NULL, then no window is applied.

options Specific options for the design.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 29

32120A-AVR32-04/09

4.2 Operators [Basic]
All the fixed point operators functions currently implemented in the DSP library.

• Multiplication
• Division
• Sine
• Cosine
• Arc sine
• Arc cosine
• Absolute
• Square root
• Natural logarithm
• Binary logarithm or base 2 logarithm
• Common logarithm or base 10 logarithm
• Exponential
• Power
• Random

4.2.1 Standard description

4.2.1.1 Multiplication

These functions multiply two fixed-point numbers.
Relative functions:

• dsp16_op_mul
• dsp32_op_mul

4.2.1.2 Division

These functions divide two fixed-point numbers. Relative functions:

• dsp16_op_div
• dsp32_op_div

4.2.1.3 Sine

These functions compute the sine of the argument 'angle'.
Note:

Angle is scaled to fit in the range [-1; 1], where -1 corresponds to -pi and 1 to
pi.

Relative functions:

• dsp16_op_sin
• dsp32_op_sin

30 AVR32765
32120A-AVR32-04/09

4.2.1.4 Cosine

These functions compute the cosine of the argument 'angle'. Angles are scale to fit in
the range [-1; 1], where -1 corresponds to -pi and 1 to pi. Relative functions:

• dsp16_op_cos
• dsp32_op_cos

4.2.1.5 Arc sine

These functions compute the arc sine of the argument.
Note:

The output is scaled to fit in the range [-0.5; 0.5], where -0.5 corresponds to -
pi/2 and 0.5 to pi/2.

Relative functions:

• dsp16_op_asin
• dsp32_op_asin

4.2.1.6 Arc cosine

These functions compute the arc cosine of the argument.
Note:

The output is scaled to fit in the range [0.; 1.], where 0. corresponds to 0. and
1. to pi.

Relative functions:

• dsp16_op_acos
• dsp32_op_acos

4.2.1.7 Absolute

These functions compute the absolute value of the argument. Relative functions:

• dsp16_op_abs
• dsp32_op_abs

4.2.1.8 Square root

These functions compute the square root of the argument. Relative functions:

• dsp16_op_sqrt
• dsp32_op_sqrt

 AVR32765

 31

32120A-AVR32-04/09

4.2.1.9 Natural logarithm

These functions compute the natural logarithm of the argument. Relative functions:

• dsp16_op_ln
• dsp32_op_ln

Note:
The output will be limit in the range of the fixed point format used.

4.2.1.10 Binary logarithm or base 2 logarithm

These functions compute the natural logarithm of the argument. Relative functions:

• dsp16_op_log2
• dsp32_op_log2

Note:
The output will be limit in the range of the fixed point format used.

4.2.1.11 Common logarithm or base 10 logarithm

These functions compute the common logarithm of the argument.
Note:

The output will be limit in the range of the fixed point format used.
Relative functions:

• dsp16_op_log10
• dsp32_op_log10

4.2.1.12 Exponential

These functions compute the exponential of the argument.
Note:

The output will be limit in the range of the fixed point format used.
Relative functions:

• dsp16_op_exp
• dsp32_op_exp

4.2.1.13 Power

These functions compute x^y.
Note:

The output will be limit in the range of the fixed point format used.
Relative functions:

• dsp16_op_pow
• dsp32_op_pow

32 AVR32765
32120A-AVR32-04/09

4.2.1.14 Random

These functions generate a pseudo-randomized number Relative functions:

• dsp_op_srand
• dsp16_op_rand
• dsp32_op_rand

 AVR32765

 33

32120A-AVR32-04/09

4.2.2 C description

4.2.2.1 Multiplication

Description:
16-bit fixed point version of the multiplication
function.

Module:
OPERATORS

Prototype:
inline static dsp16_t dsp16_op_mul
(
 dsp16_t num1,
 dsp16_t num2
)

Arguments:
num1 The first argument of the multiplication.
num2 The second argument of the multiplication.

Return Value:
The result of the multiplication.

Remarks:
NONE

Description:
32-bit fixed point version of the multiplication
function.

Module:
OPERATORS

Prototype:
inline static dsp32_t dsp32_op_mul
(
 dsp32_t num1,
 dsp32_t num2
)

Arguments:
num1 The first argument of the multiplication.
num2 The second argument of the multiplication.

Return Value:
The result of the multiplication.

Remarks:
NONE

34 AVR32765
32120A-AVR32-04/09

4.2.2.2 Division

Description:
16-bit fixed point version of the division function.

Module:
OPERATORS
Prototype:

inline static dsp16_t dsp16_op_div
(
 dsp16_t num1,
 dsp16_t num2
)

Arguments:

num1 The first argument of the division.
num2 The second argument of the division.

Return Value:
The result of the division.

Remarks:
NONE

Description:
32-bit fixed point version of the division function.

Module:
OPERATORS
Prototype:

inline static dsp32_t dsp32_op_div
(
 dsp32_t num1,
 dsp32_t num2
)

Arguments:
num1 The first argument of the division.
num2 The second argument of the division.

Return Value:
The result of the division.

Remarks:
NONE

 AVR32765

 35

32120A-AVR32-04/09

4.2.2.3 Sine

Description:
16-bit fixed point version of the sine function.

Module:
OPERATORS

Prototype:
inline static dsp16_t dsp16_op_sin
(
 dsp16_t angle
)

Arguments:
angle The angle to compute

Return Value:
The sine of 'angle' is returned.

Remarks:
If you are using a number greater than 1 (or lower than -1)
for the angle, the function will take the modulo 1 of this
angle.

Description:
32-bit fixed point version of the sine function.

Module:
OPERATORS

Prototype:
inline static dsp32_t dsp32_op_sin
(
 dsp32_t angle
)

Arguments:
angle The angle to compute

Return Value:
The sine of 'angle' is returned.

Remarks:
If you are using a number greater than 1 (or lower than -1)
for the angle, the function will take the modulo 1 of this
angle.

36 AVR32765
32120A-AVR32-04/09

4.2.2.4 Cosine

Description:
16-bit fixed point version of the cosine function.

Module
OPERATORS

Prototype:
inline static dsp16_t dsp16_op_cos
(
 dsp16_t angle
)

Arguments:
angle The angle to compute

Return Value:
The cosine of 'angle' is returned.

Remarks:
If you are using a number greater than 1 (or lower than -1)
for the angle, the function will take the modulo 1 of this
angle.

Description:
32-bit fixed point version of the cosine function.

Module
OPERATORS

Prototype:
inline static dsp32_t dsp32_op_sin
(
 dsp32_t angle
)

Arguments:
angle The angle to compute

Return Value:
The cosine of 'angle' is returned.

Remarks:
If you are using a number greater than 1 (or lower than -1)
for the angle, the function will take the modulo 1 of this
angle.

 AVR32765

 37

32120A-AVR32-04/09

4.2.2.5 Arc sine

Description:
16-bit fixed point version of the arc sine function.

Module:
OPERATORS

Prototype:
inline static dsp16_t dsp16_op_asin
(
 dsp16_t number
)

Arguments:
number The input argument

Return Value:
The arc sine of 'number' is returned.

Remarks:
If you are using a number greater than 1 (or lower than -1)
for the 'number’, the function will limit the output to the
range [-0.5; 0.5].

Description:
32-bit fixed point version of the arc sine function.

Module:
OPERATORS

Prototype:
inline static dsp32_t dsp32_op_asin
(
 dsp32_t number
)

Arguments:
number The input argument

Return Value:
The arc sine of 'number' is returned.

Remarks:
If you are using a number greater than 1 (or lower than -1)
for the 'number’, the function will limit the output to the
range [-0.5; 0.5].

38 AVR32765
32120A-AVR32-04/09

4.2.2.6 Arc cosine

Description:
16-bit fixed point version of the arc cosine function.

Module:
OPERATORS

Prototype:
inline static dsp16_t dsp16_op_acos
(
 dsp16_t number
);

Arguments:
number The input argument

Return Value:
The arc cosine of 'number' is returned.

Remarks:
If you are using a number greater than 1 (or lower than -1)
for the 'number', the function will limit the output to the
range [0.; 1.].

Description:
32-bit fixed point version of the arc cosine function.

Module:
OPERATORS

Prototype:
inline static dsp32_t dsp32_op_acos
(
 dsp16_t number
);

Arguments:
number The input argument

Return Value:
The arc cosine of 'number' is returned.

Remarks:
If you are using a number greater than 1 (or lower than -1)
for the 'number', the function will limit the output to the
range [0.; 1.].

 AVR32765

 39

32120A-AVR32-04/09

4.2.2.7 Absolute

Description:
16-bit fixed point version of the absolute function.

Module:
OPERATORS

Prototype:
inline static dsp16_t dsp16_op_abs
(
 dsp16_t number
);

Arguments:
number The input argument

Return Value:
The absolute value of the number.

Remarks:
NONE

Description:
32-bit fixed point version of the absolute function.

Module:
OPERATORS

Prototype:
inline static dsp32_t dsp32_op_abs
(
 dsp32_t number
);

Arguments:
number The input argument

Return Value:
The absolute value of the number.

Remarks:
NONE

40 AVR32765
32120A-AVR32-04/09

4.2.2.8 Square root

Description:
16-bit fixed point version of the square root function.

Module:
OPERATORS

Prototype:
dsp16_t dsp16_op_sqrt
(
 dsp16_t number
);

Arguments:
number The input argument

Return Value:
The square root of 'number' is returned.

Remarks:
If you are using a number lower than 0 for the number, the
function will return 0.

Description:
32-bit fixed point version of the square root function.

Module:
OPERATORS

Prototype:
dsp32_t dsp32_op_sqrt
(
 dsp32_t number
);

Arguments:
number The input argument

Return Value:
The square root of 'number' is returned.

Remarks:
If you are using a number lower than 0 for the number, the
function will return 0.

 AVR32765

 41

32120A-AVR32-04/09

4.2.2.9 Natural logarithm

Description:
16-bit fixed point version of the natural logarithm
function.

Module:
OPERATORS

Prototype:
dsp16_t dsp16_op_ln
(
 dsp16_t number
);

Arguments:
number The input argument

Return Value:
The natural logarithm of 'number' is returned.

Remarks:
If you are using a number lower than 0 for the number, the
function will return DSP_Q_MIN(DSP16_QA, DSP16_QB).

Description:
32-bit fixed point version of the natural logarithm
function.

Module:
OPERATORS

Prototype:
dsp32_t dsp32_op_ln
(
 Dsp32_t number
);

Arguments:
number The input argument

Return Value:
The natural logarithm of 'number' is returned.

Remarks:
If you are using a number lower than 0 for the number, the
function will return DSP_Q_MIN(DSP32_QA, DSP32_QB).

42 AVR32765
32120A-AVR32-04/09

4.2.2.10 Binary logarithm or base 2 logarithm

Description:
16-bit fixed point version of the binary logarithm
function.

Module:
OPERATORS

Prototype:
dsp16_t dsp16_op_log2
(
 dsp16_t number
);

Arguments:
number The input argument

Return Value:
The binary logarithm of 'number' is returned.

Remarks:
If you are using a number lower than 0 for the number, the
function will return DSP_Q_MIN(DSP16_QA, DSP16_QB).

Description:
32-bit fixed point version of the binary logarithm
function.

Module:
OPERATORS

Prototype:
dsp32_t dsp32_op_log2
(
 dsp32_t number
);

Arguments:
number The input argument

Return Value:
The binary logarithm of 'number' is returned.

Remarks:
If you are using a number lower than 0 for the number, the
function will return DSP_Q_MIN(DSP32_QA, DSP32_QB).

 AVR32765

 43

32120A-AVR32-04/09

4.2.2.11 Common logarithm or base 10 logarithm

Description:
16-bit fixed point version of the common logarithm
function.

Module:
OPERATORS

Prototype:
dsp16_t dsp16_op_log10
(
 dsp16_t number
);

Arguments:
number The input argument

Return Value:
The common logarithm of 'number' is returned.

Remarks:
If you are using a number lower than 0 for the number, the
function will return DSP_Q_MIN(DSP16_QA, DSP16_QB).

Description:
32-bit fixed point version of the common logarithm
function.

Module:
OPERATORS

Prototype:
dsp32_t dsp32_op_log10
(
 dsp32_t number
);

Arguments:
number The input argument

Return Value:
The common logarithm of 'number' is returned.

Remarks:
If you are using a number lower than 0 for the number, the
function will return DSP_Q_MIN(DSP32_QA, DSP32_QB).

44 AVR32765
32120A-AVR32-04/09

4.2.2.12 Exponential

Description:
16-bit fixed point version of the exponential function.

Module:
OPERATORS

Prototype:
dsp16_t dsp16_op_exp
(
 dsp16_t number
);

Arguments:
number The input argument

Return Value:
The exponential of 'number' is returned.

Remarks:
NONE

Description:
32-bit fixed point version of the exponential function.

Module:
OPERATORS

Prototype:
dsp32_t dsp32_op_exp
(
 dsp32_t number
);

Arguments:
number The input argument

Return Value:
The exponential of 'number' is returned.

Remarks:
NONE

 AVR32765

 45

32120A-AVR32-04/09

4.2.2.13 Power

Description:
16-bit fixed point version of the power function.

Module:
PROTOTYPE

Prototype:
dsp16_t dsp16_op_pow
(
 dsp16_t x,
 dsp16_t y
);

Arguments:
x The number from which the power has to be applied.
y The power.

Return Value:
The x power y is returned.

Remarks:
if the argument x is negative: this would result in a complex
number.

Description:
32-bit fixed point version of the power function.

Module:
PROTOTYPE

Prototype:
dsp32_t dsp32_op_pow
(
 dsp32_t x,
 dsp32_t y
);

Arguments:
x The number from which the power has to be applied.
y The power.

Return Value:
The x power y is returned.

Remarks:
if the argument x is negative: this would result in a complex
number.

46 AVR32765
32120A-AVR32-04/09

4.2.2.14 Random

Description:
16-bit fixed point version of the random operator.

Module:
OPERATORS

Prototype:
dsp16_t dsp16_op_rand();

Arguments:
NONE

Return Value:
The random value

Remarks:
The number generated can be any 16-bit value in the range [-
1; 1[.

Description:
32-bit fixed point version of the random operator.

Module:
OPERATORS

Prototype:
dsp32_t dsp32_op_rand();

Arguments:
NONE

Return Value:
The random value

Remarks:
The number generated can be any 32-bit value in the range [-
1; 1[.

 AVR32765

 47

32120A-AVR32-04/09

4.3 Signal generation [Basic]
All the signal generation functions currently supported by the DSP library.

• Periodic
o Cosinusoidal
o Sinusoidal
o Square
o Rectangular
o Saw tooth
o Dirac comb

• Non-periodic
o Noise
o Ramp
o Step
o Dirac

4.3.1 Standard description

4.3.1.1 Sinusoidal

This function generates a sinusoidal signal with a specified frequency, sampling
frequency and phase.
Note:

The amplitude of the signal fits in the range [-1; 1].
The phase is scaled to fit in the range [-1; 1], where -1 corresponds to -pi and
1 to pi.

Relative functions:

• dsp16_gen_sin
• dsp32_gen_sin

48 AVR32765
32120A-AVR32-04/09

4.3.1.2 Cosinusoidal

This function generates a cosinusoidal signal with a specified frequency, sampling
frequency and phase.
Note:

The amplitude of the signal fits in the range [-1; 1].
The phase is scaled to fit in the range [-1; 1], where -1 corresponds to -
pi and 1 to pi.

Relative functions:

• dsp16_gen_cos
• dsp32_gen_cos

4.3.1.3 Square

This function generates a square signal.
Note:

The amplitude of the signal fits in the range [-1; 1].
Relative functions:

• dsp16_gen_sqr
• dsp32_gen_sqr

 AVR32765

 49

32120A-AVR32-04/09

4.3.1.4 Rectangular

This function generates a rectangular signal.
Note:

The amplitude of the signal fits in the range [-1; 1].
Relative functions:

• dsp16_gen_rect
• dsp32_gen_rect

4.3.1.5 Saw Tooth

This function generates a saw tooth signal.
Note:

The amplitude of the signal fits in the range [-1; 1].
Relative functions:

• dsp16_gen_saw
• dsp32_gen_saw

50 AVR32765
32120A-AVR32-04/09

4.3.1.6 Dirac Comb

This function generates a dirac comb signal.
Note:

The amplitude of the signal fits in the range [0; 1].
Relative functions:

• dsp16_gen_dcomb
• dsp32_gen_dcomb

4.3.1.7 Noise

This function generates a noise with a specified amplitude.
Note:

The amplitude of the signal fits in the range [-1; 1].
Relative functions:

• dsp16_gen_noise
• dsp32_gen_noise

 AVR32765

 51

32120A-AVR32-04/09

4.3.1.8 Ramp

This function generates a ramp.
Note:

The amplitude of the signal fits in the range [0; 1].
Relative functions:

• dsp16_gen_ramp
• dsp32_gen_ramp

4.3.1.9 Step

This function generates a step.
Relative functions:

• dsp16_gen_step
• dsp32_gen_step

52 AVR32765
32120A-AVR32-04/09

4.3.1.10 Dirac

This function generates a dirac.
Note:

The amplitude of the signal fits in the range [0; 1].
Relative functions:

• dsp16_gen_dirac
• dsp32_gen_dirac

 AVR32765

 53

32120A-AVR32-04/09

4.3.2 C description

4.3.2.1 Sinusoidal

Description:
16-bit fixed point version of the sinusoidal signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp16_gen_sin
(
 dsp16_t *vect1,
 int size,
 int f,
 int fs,
 dsp16_t phase
);

Arguments:
vect1 A pointer to a 16-bit vector which is the output vector
of this function.
size The number of elements in the output vector.
f The frequency of the output signal.
fs The sampling frequency of the output signal.
phase The phase of the output signal.

Return Value:
NONE

Remarks:
NONE

54 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the sinusoidal signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp32_gen_sin
(
 dsp32_t *vect1,
 int size,
 int f,
 int fs,
 dsp32_t phase
);

Arguments:
vect1 A pointer to a 32-bit vector which is the output vector
of this function.

size The number of elements in the output vector.
f The frequency of the output signal.
fs The sampling frequency of the output signal.
phase The phase of the output signal.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 55

32120A-AVR32-04/09

4.3.2.2 Cosinusoidal

Description:
16-bit fixed point version of the co sinusoidal signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp16_gen_cos
(
 dsp16_t *vect1,
 int size,
 int f,
 int fs,
 dsp16_t phase
);

Arguments:
vect1 A pointer to a 16-bit vector which is the output vector
of this function.
size The number of elements in the output vector.
f The frequency of the output signal.
fs The sampling frequency of the output signal.
phase The phase of the output signal.

Return Value:
NONE.

Remarks:
NONE.

56 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the co sinusoidal signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp32_gen_cos
(
 dsp32_t *vect1,
 int size,
 int f,
 int fs,
 dsp16_t phase
);

Arguments:
vect1 A pointer to a 32-bit vector which is the output vector
of this function.

size The number of elements in the output vector.
f The frequency of the output signal.
fs The sampling frequency of the output signal.
phase The phase of the output signal.

Return Value:
NONE.

Remarks:
NONE.

 AVR32765

 57

32120A-AVR32-04/09

4.3.2.3 Square

Description:
16-bit fixed point version of the square signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
inline static void dsp16_gen_sqr
(
 dsp16_t *vect1,
 int size,
 int f,
 int fs,
 dsp16_t delay
)

Arguments:
vect1 A pointer to a 16-bit vector which is the output vector
of this function.
size The number of elements in the output vector.
f The frequency of the output signal.
fs The sampling frequency of the output signal.
delay The delay of the periodic waveform. The delay must fit
in the range [0; 1] where 1 to T.

Return Value:
NONE

Remarks:
NONE

58 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the square signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
inline static void dsp32_gen_sqr
(
 dsp32_t *vect1,
 int size,
 int f,
 int fs,
 dsp32_t delay
)

Arguments:
vect1 A pointer to a 32-bit vector which is the output vector
of this function.

size The number of elements in the output vector.
f The frequency of the output signal.
fs The sampling frequency of the output signal.
delay The delay of the periodic waveform. The delay must fit
in the range [0; 1] where 1 to T.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 59

32120A-AVR32-04/09

4.3.2.4 Rectangular

Description:
16-bit fixed point version of the rectangular signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp16_gen_rect
(
 dsp16_t *vect1,
 int size,
 int f,
 int fs,
 dsp16_t duty,
 dsp16_t delay
);

Arguments:
vect1 A pointer to a 16-bit vector which is the output vector
of this function.

size The number of elements in the output vector.
f The frequency of the output signal.
fs The sampling frequency of the output signal.
duty The duty cycle of the output signal. The duty cycle is a
number in the range]0; 1] which is the ratio between the
pulse duration and the period of the waveform.
delay The delay of the periodic waveform. The delay must fit
in the range [0; 1] where 1 to T.

Return Value:
NONE

Remarks:
NONE

60 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the rectangular signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp32_gen_rect
(
 dsp32_t *vect1,
 int size,
 int f,
 int fs,
 dsp32_t duty,
 dsp32_t delay
);

Arguments:
vect1 A pointer of a 32-bit vector which is the output vector
of this function.

size The number of elements in the output vector.
f The frequency of the output signal.
fs The sampling frequency of the output signal.
duty The duty cycle of the output signal. The duty cycle is a
number in the range]0; 1] which is the ratio between the
pulse duration and the period of the waveform.

delay The delay of the periodic waveform. The delay must fit
in the range [0; 1] where 1 to T.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 61

32120A-AVR32-04/09

4.3.2.5 Saw Tooth

Description:
16-bit fixed point version of the saw tooth signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp16_gen_saw
(
 dsp16_t *vect1,
 int size,
 int f,
 int fs,
 dsp16_t duty,
 dsp16_t delay
);

Arguments:
vect1 A pointer to a 16-bit vector which is the output vector
of this function.

size The number of elements in the output vector.
f The frequency of the output signal.
fs The sampling frequency of the output signal.
duty The duty cycle of the output signal. The duty cycle is a
number in the range]0; 1] which is the ratio between the
pulse duration and the period of the waveform.
delay The delay of the periodic waveform. The delay must fit
in the range [0; 1] where 1 to T.

Return Value:
NONE

Remarks:
NONE

62 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the saw tooth signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp32_gen_saw
(
 dsp32_t *vect1,
 int size,
 int f,
 int fs,
 dsp32_t duty,
 dsp32_t delay
);

Arguments:
vect1 A pointer to a 32-bit vector which is the output vector
of this function.

size The number of elements in the output vector.
f The frequency of the output signal.
fs The sampling frequency of the output signal.
duty The duty cycle of the output signal. The duty cycle is a
number in the range]0; 1] which is the ratio between the
pulse duration and the period of the waveform.

delay The delay of the periodic waveform. The delay must fit
in the range [0; 1] where 1 to T.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 63

32120A-AVR32-04/09

4.3.2.6 Dirac Comb

Description:
16-bit fixed point version of the dirac comb signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp16_gen_dcomb
(
 dsp16_t *vect1,
 int size,
 int f,
 int fs,
 dsp16_t delay
);

Arguments:
vect1 A pointer to a 16-bit vector which is the output vector
of this function.
size The number of elements in the output vector.
f The frequency of the output signal.
fs The sampling frequency of the output signal.
delay The delay of the periodic waveform. The delay must fit
in the range [0; 1] where 1 to T.

Return Value:
NONE

Remarks:
NONE

64 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the dirac comb signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp32_gen_dcomb
(
 dsp32_t *vect1,
 int size,
 int f,
 int fs,
 dsp32_t delay
);

Arguments:
vect1 A pointer to a 32-bit vector which is the output vector
of this function.

size The number of elements in the output vector.
f The frequency of the output signal.
fs The sampling frequency of the output signal.
delay The delay of the periodic waveform. The delay must fit
in the range [0; 1] where 1 to T.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 65

32120A-AVR32-04/09

4.3.2.7 Noise

Description:
16-bit fixed point version of the noise generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp16_gen_noise
(
 dsp16_t *vect1,
 int size,
 dsp16_t amp
);

Arguments:
vect1 A pointer to a 16-bit vector which is the output vector
of this function.
size The number of elements in the output vector.

amp The amplitude of the signal.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the noise generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp32_gen_noise
(
 dsp32_t *vect1,
 int size,
 dsp32_t amp
);

Arguments:
vect1 A pointer to a 32-bit vector which is the output vector
of this function.

size The number of elements in the output vector.
amp The amplitude of the signal.

Return Value:
NONE

Remarks:
NONE

66 AVR32765
32120A-AVR32-04/09

4.3.2.8 Ramp

Description:
16-bit fixed point version of the ramp signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp16_gen_ramp
(
 dsp16_t *vect1,
 int size,
 dsp16_t increment
);

Arguments:
vect1 A pointer to a 16-bit vector which is the output vector
of this function.

size The number of elements in the output vector.
increment The incrementation of the signal per vector's
element.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the ramp signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp32_gen_ramp
(
 dsp32_t *vect1,
 int size,
 dsp32_t increment
);

Arguments:
vect1 A pointer to a 32-bit vector which is the output vector
of this function.

size The number of elements in the output vector.
increment The incrementation of the signal per vector's
element.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 67

32120A-AVR32-04/09

4.3.2.9 Step

Description:
16-bit fixed point version of the dirac comb signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp16_gen_step
(
 dsp16_t *vect1,
 int size,
 dsp16_t intial_value,
 dsp16_t final_value,
 int step_index
);

Arguments:
vect1 A pointer to a 16-bit vector which is the output vector
of this function.
size The number of elements in the output vector.
intial_value The initial value of the signal.
final_value The final value of the signal.
step_index The index in the vector, where the step appears.

Return Value:
NONE

Remarks:
NONE

68 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the dirac comb signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp32_gen_step
(
 dsp32_t *vect1,
 int size,
 dsp32_t intial_value,
 dsp32_t final_value,
 int step_index
);

Arguments:
vect1 A pointer to a 32-bit vector which is the output vector
of this function.

size The number of elements in the output vector.
intial_value The initial value of the signal.
final_value The final value of the signal.
step_index The index in the vector, where the step appears.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 69

32120A-AVR32-04/09

4.3.2.10 Dirac

Description:
16-bit fixed point version of the dirac comb signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp16_gen_dirac
(
 dsp16_t *vect1,
 int size,
 int dirac_index
);

Arguments:
vect1 A pointer to a 16-bit vector which is the output vector
of this function.

size The number of elements in the output vector.
dirac_index The index in the vector, where the dirac appears.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the dirac comb signal
generation.

Module:
SIGNAL_GENERATION

Prototype:
void dsp32_gen_dirac
(
 dsp32_t *vect1,
 int size,
 int dirac_index
);

Arguments:
vect1 A pointer to a 32-bit vector which is the output vector
of this function.
size The number of elements in the output vector.
dirac_index The index in the vector, where the dirac appears.

Return Value:
NONE

Remarks:
NONE

70 AVR32765
32120A-AVR32-04/09

4.4 Transforms [Basic]
All the transforms functions currently supported by the DSP library.

• Complex Fast Fourier Transform
• Complex inverse Fast Fourier Transform
• Real to complex Fast Fourier Transform

4.4.1 Standard description

4.4.1.1 Complex Fast Fourier Transform

This function computes a complex FFT from an input signal. It uses the Radix-4
"Decimate In Time" algorithm and does not perform a calculation "in place" which
means that the input vector has to be different from the output vector.
Here is the formula of the FFT:

Relative functions:

• dsp16_trans_complexfft

4.4.1.2 Complex Inverse Fast Fourier Transform

This function computes a complex inverse FFT from an input signal. It uses the
Radix-4 "Decimate In Time" algorithm and does not perform a calculation "in place"
which means that the input vector has to be different from the output vector.
Here is the formula of the iFFT:

Relative functions:

• dsp16_trans_complexifft

4.4.1.3 Real to Complex Fast Fourier Transform

This function computes a complex FFT from a real input signal. It uses the Radix-4
"Decimate In Time" algorithm and does not perform a calculation "in place" which
means that the input vector has to be different from the output vector.
Here is the formula of the FFT:

Relative functions:

• dsp16_trans_realcomplexfft
• dsp32_trans_realcomplexfft

 AVR32765

 71

32120A-AVR32-04/09

4.4.2 C description

4.4.2.1 Complex Fast Fourier Transform

Description:
16-bit fixed point version of the complex FFT
algorithm.

Module:
TRANSFORMATION

Prototype:
void dsp16_trans_complexfft
(
 dsp16_complex_t *vect1,
 dsp16_complex_t *vect2,
 int nlog
);

Arguments:
vect1 A pointer to a 16-bit complex vector which is the
output vector of this function.

vect2 A pointer to a 16-bit complex vector which is the input
vector of this function.

nlog It is the base-2-logarithm of the size of the
input/output vector. Due to its implementation, this function
computes only 4^n-point complex FFT. Therefore, the \b nlog
argument has to be even.

Return Value:
NONE

Remarks:
The size of the output vector has to be the same as the size
of the input vector. To avoid overflowing values, the
resulting vector amplitude is scaled by 2^nlog. This function
uses a static twiddle factors table.

72 AVR32765
32120A-AVR32-04/09

4.4.2.2 Complex Inverse Fast Fourier Transform

Description:
16-bit fixed point version of the complex iFFT
algorithm.

Module:
TRANSFORMATION

Prototype:
void dsp16_trans_complexifft
(
 dsp16_complex_t *vect1,
 dsp16_complex_t *vect2,
 int nlog
);

Arguments:
vect1 A pointer to a 16-bit complex vector which is the
output vector of this function.

vect2 A pointer to a 16-bit complex vector which is the input
vector of this function.

nlog It is the base-2-logarithm of the size of the
input/output vector. Due to its implementation, this function
computes only 4^n-point complex iFFT. Therefore, the nlog
argument has to be even.

Return Value:
NONE

Remarks:
The size of the output vector has to be the same as the size
of the input vector. To avoid overflowing values, the
resulting vector amplitude is scaled by 2^nlog. This function
uses a static twiddle factors table.

 AVR32765

 73

32120A-AVR32-04/09

4.4.2.3 Real to Complex Fast Fourier Transform

Description:
16-bit fixed point version of the real to complex FFT
algorithm.

Module:
TRANSFORMATION

Prototype:
void dsp16_trans_realcomplexfft
(
 dsp16_complex_t *vect1,
 dsp16_t *vect2,
 int nlog
);

Arguments:
vect1 A pointer to a 16-bit complex vector which is the
output vector of this function.

vect2 A pointer to a 16-bit real vector which is the input
vector of this function.

nlog It is the base-2-logarithm of the size of the
input/output vector. Due to its implementation, this function
computes only 4^n-point complex FFT. Therefore, the nlog
argument has to be even.

Return Value:
NONE

Remarks:
The size of the output vector has to be the same as the size
of the input vector. To avoid overflowing values, the
resulting vector amplitude is scaled by 2^nlog. This function
uses a static twiddle factors table.

dsp16_trans_realcomplexfft (See complex_fft_example.c and
complex_fft_example.sce files)
Example:
Using Scilab,
Generate a x input signal made of a combinaison of 2 sinus.
Compute FFT Transformation and store value in y vector:

y = [-0.048306 0.000000 i
 …

 -0.138689 0.010377 i

 -0.058407 0.000356 i]
C source code using the DSPLib with the pre-calculated x signal.

vect1 = [-0.048370 + 0.i77563
 …

 -0.138641 + 0.010375i

 -0.058349 + 0.000335i];

74 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the real to complex FFT
algorithm.

Module:
TRANSFORMATION

Prototype:
void dsp32_trans_realcomplexfft
(
 dsp32_complex_t *vect1,
 dsp32_t *vect2,
 int nlog
);

Arguments:
vect1 A pointer to a 32-bit complex vector which is the
output vector of this function.

vect2 A pointer to a 32-bit real vector which is the input
vector of this function.

nlog It is the base-2-logarithm of the size of the
input/output vector. Due to its implementation, this function
computes only 4^n-point complex FFT. Therefore, the nlog
argument has to be even.

Return Value:
NONE

Remarks:
The size of the output vector has to be the same as the size
of the input vector. To avoid overflowing values, the
resulting vector amplitude is scaled by 2^nlog. This function
uses a static twiddle factors table.

 AVR32765

 75

32120A-AVR32-04/09

4.5 Vectors [Basic]
All the vector management functions currently supported by the DSP library.

• Real
o Addition
o Addition with a real
o Subtraction
o Subtraction with a real
o Multiplication with a real
o Division with a real
o Dot multiplication
o Dot division
o Multiplication with an integer
o Division with an integer
o Power
o Minimum
o Maximum
o Negate
o Zero padding
o Copy
o Partial Convolution
o Convolution

• Complex
o Complex addition
o Complex subtraction
o Complex absolute
o Complex conjugate

4.5.1 Standard description

4.5.1.1 Addition

This function adds two vectors and store the result into another one.
Relative functions:

• dsp16_vect_add
• dsp32_vect_add

4.5.1.2 Addition with a real

This function adds each items of a vector with a real number and store the result into
another vector.
Relative functions:

• dsp16_vect_realadd
• dsp32_vect_realadd

76 AVR32765
32120A-AVR32-04/09

4.5.1.3 Subtraction

This function subtracts two vectors and store the result into another one.
Relative functions:

• dsp16_vect_sub
• dsp32_vect_sub

4.5.1.4 Subtraction with a real

This function subtracts each items of a vector with a real number and store the result
into another vector.
Relative functions:

• dsp16_vect_realsub
• dsp32_vect_realsub

4.5.1.5 Multiplication with a real

This function multiplies one vector with a real number and store the result into another
vector.
Relative functions:

• dsp16_vect_realmul
• dsp32_vect_realmul

4.5.1.6 Division with a real

This function divides one vector with a real number and store the result into another
vector.
Relative functions:

• dsp16_vect_realdiv
• dsp32_vect_realdiv

4.5.1.7 Multiplication with an integer

This function multiplies one vector with an integer and store the result into another
vector.
Relative functions:

• dsp16_vect_intmul
• dsp32_vect_intmul

 AVR32765

 77

32120A-AVR32-04/09

4.5.1.8 Division with an integer

This function divides one vector with an integer and store the result into another
vector.
Relative functions:

• dsp16_vect_intdiv
• dsp32_vect_intdiv

4.5.1.9 Dot multiplication

This function multiplies two vectors point per point and store the result into another
one.
Relative functions:

• dsp16_vect_dotmul
• dsp32_vect_dotmul

4.5.1.10 Dot division

This function divides two vectors point per point and store the result into another one.
Relative functions:

• dsp16_vect_dotdiv
• dsp32_vect_dotdiv

4.5.1.11 Power

These functions compute vect2^real.
Note:

The output will be limit in the range of the fixed point format used.
Relative functions:

• dsp16_vect_pow
• dsp32_vect_pow

4.5.1.12 Minimum

This function retrieves the minimum of a vector.
Relative functions:

• dsp16_vect_min
• dsp32_vect_min

78 AVR32765
32120A-AVR32-04/09

4.5.1.13 Maximum

This function retrieves the maximum of a vector.
Relative functions:

• dsp16_vect_max
• dsp32_vect_max

4.5.1.14 Negate

This function negate a vector.
Relative functions:

• dsp16_vect_neg
• dsp32_vect_neg

4.5.1.15 Zero padding

This function zero pads the tail of the vector.
Relative functions:

• dsp16_vect_zeropad
• dsp32_vect_zeropad

4.5.1.16 Copy

This function copy a vector into another vector.
Relative functions:

• dsp16_vect_copy
• dsp32_vect_copy

4.5.1.17 Partial Convolution

This function performs a linear partial convolution between two discrete sequences. It
returns a signal of a length equals to (vect2_size - vect3_size + 1) elements.
Note:

The two discrete sequences have to be scaled to avoid overflowing values.
All the vectors have to be 32-bits aligned.

Relative functions:

• dsp16_vect_convpart
• dsp32_vect_convpart

 AVR32765

 79

32120A-AVR32-04/09

4.5.1.18 Convolution

This function performs a linear convolution between two discrete sequences. It
returns a signal of a length equals to (vect2_size + vect3_size - 1) elements.
Note:

The two discrete sequences have to be scaled to avoid overflowing values.
All the vectors have to be 32-bits aligned.

Warning:
The output vector of the function has to have at least a length of N + 2*M � 2
elements because of internal computations, where N is the length of the largest
input vector and M, the length of the smallest input vector.

Relative functions:

• dsp16_vect_conv
• dsp32_vect_conv

4.5.1.19 Complex addition

This function adds two complex vectors and store the result into another one.
Relative functions:

• dsp16_vect_complex_add
• dsp32_vect_complex_add

4.5.1.20 Complex subtraction

This function sub two complex vectors and store the result into another one.
Relative functions:

• dsp16_vect_complex_sub
• dsp32_vect_complex_sub

4.5.1.21 Complex absolute

This function returns the absolute value of a complex vector.
Relative functions:

• dsp16_vect_complex_abs
• dsp32_vect_complex_abs

4.5.1.22 Complex conjugate

This function returns the conjugate complex vector of the input.
Relative functions:

• dsp16_vect_complex_conj

80 AVR32765
32120A-AVR32-04/09

4.5.2 C description

4.5.2.1 Addition

Description:
16-bit fixed point version of the vector addition
function.

Module:
VECTORS

Prototype:
void dsp16_vect_add
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 dsp16_t *vect3,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the result of the addition.

vect2 A pointer to the 16-bit real vector that will be added
with the other input vector (vect3).

vect3 A pointer to the 16-bit real vector that will be added
with the other input vector (vect2).

size The size of the input vectors.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 81

32120A-AVR32-04/09

Description:
32-bit fixed point version of the vector addition
function.

Module:
VECTORS

Prototype:
void dsp32_vect_add
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 dsp32_t *vect3,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the result of the addition.

vect2 A pointer to the 32-bit real vector that will be added
with the other input vector (vect3).

vect3 A pointer to the 32-bit real vector that will be added
with the other input vector (vect2).

size The size of the input vectors.

Return Value:
NONE

Remarks:
NONE

82 AVR32765
32120A-AVR32-04/09

4.5.2.2 Addition with a real

Description:
16-bit fixed point version of the vector addition with
a real number.

Module:
VECTORS

Prototype:
void dsp16_vect_realadd
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 int size,
 dsp16_t real
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the result of the operation.

vect2 A pointer to the 16-bit real vector that will be added
with the real number.

size The size of the vectors.
real The real number to be added with the vector (vect2).

Return Value:
NONE

Remarks:
NONE

 AVR32765

 83

32120A-AVR32-04/09

Description:
32-bit fixed point version of the vector addition with
a real number.

Module:
VECTORS

Prototype:
void dsp32_vect_realadd
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 int size,
 dsp16_t real
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the result of the operation.

vect2 A pointer to the 32-bit real vector that will be added
with the real number.

size The size of the vectors.
real The real number to be added with the vector (vect2).

Return Value:
NONE

Remarks:
NONE

84 AVR32765
32120A-AVR32-04/09

4.5.2.3 Subtraction

Description:
16-bit fixed point version of the vector subtraction
function.

Module:
VECTORS

Prototype:
void dsp16_vect_sub
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 dsp16_t *vect3,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the result of the subtraction.

vect2 A pointer to the 16-bit real vector that will be
subtracted with the other input vector (vect3).

vect3 A pointer to the 16-bit real vector that will be
subtracted with the other input vector (vect2).

size The size of the input vectors.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 85

32120A-AVR32-04/09

Description:
32-bit fixed point version of the vector subtraction
function.

Module:
VECTORS

Prototype:
void dsp32_vect_sub
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 dsp32_t *vect3,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the result of the subtraction.

vect2 A pointer to the 32-bit real vector that will be
subtracted with the other input vector (vect3).

vect3 A pointer to the 32-bit real vector that will be
subtracted with the other input vector (vect2).

size The size of the input vectors.

Return Value:
NONE

Remarks:
NONE

86 AVR32765
32120A-AVR32-04/09

4.5.2.4 Subtraction with a real

Description:
16-bit fixed point version of the vector subtraction
with a real number.

Module:
VECTORS

Prototype:
void dsp16_vect_realsub
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 int size,
 dsp16_t real
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the result of the operation.

vect2 A pointer to the 16-bit real vector that will be
subtracted with the real number.

size The size of the vectors.
real The real number to be subtracted with the vector
(vect2).

Return Value:
NONE

Remarks:
NONE

 AVR32765

 87

32120A-AVR32-04/09

Description:
32-bit fixed point version of the vector subtraction
with a real number.

Module:
VECTORS

Prototype:
void dsp32_vect_realsub
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 int size,
 dsp32_t real
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the result of the operation.

vect2 A pointer to the 32-bit real vector that will be
subtracted with the real number.

size The size of the vectors.
real The real number to be subtracted with the vector
(vect2).

Return Value:
NONE

Remarks:
NONE

88 AVR32765
32120A-AVR32-04/09

4.5.2.5 Multiplication with a real

Description:
16-bit fixed point version of the vector multiplication
with a real number.

Module:
VECTORS

Prototype:
void dsp16_vect_realmul
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 int size,
 dsp16_t real
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the result of the operation.

vect2 A pointer to the 16-bit real vector that will be
multiplied with the real number.

size The size of the vectors.
real The real number to be multiplied with the vector
(vect2).

Return Value:
NONE

Remarks:
NONE

 AVR32765

 89

32120A-AVR32-04/09

Description:
32-bit fixed point version of the vector multiplication
with a real number.

Module:
VECTORS

Prototype:
void dsp32_vect_realmul
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 int size,
 dsp32_t real
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the result of the operation.

vect2 A pointer to the 32-bit real vector that will be
multiplied with the real number.

size The size of the vectors.
real The real number to be multiplied with the vector
(vect2).

Return Value:
NONE

Remarks:
NONE

90 AVR32765
32120A-AVR32-04/09

4.5.2.6 Division with a real

Description:
16-bit fixed point version of the vector division with
a real number.

Module:
VECTORS

Prototype:
void dsp16_vect_realdiv
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 int size,
 dsp16_t real
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the result of the operation.

vect2 A pointer to the 16-bit real vector that will be
divided with the real number.

size The size of the vectors.
real The real number to be divided with the vector (vect2).

Return Value:
NONE

Remarks:
NONE

 AVR32765

 91

32120A-AVR32-04/09

Description:
32-bit fixed point version of the vector division with
a real number.

Module:
VECTORS

Prototype:
void dsp32_vect_realdiv
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 int size,
 dsp32_t real
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the result of the operation.

vect2 A pointer to the 32-bit real vector that will be
divided with the real number.

size The size of the vectors.
real The real number to be divided with the vector (vect2).

Return Value:
NONE

Remarks:
NONE

92 AVR32765
32120A-AVR32-04/09

4.5.2.7 Multiplication with an integer

Description:
16-bit fixed point version of the vector multiplication
with an integer.

Module:
VECTORS

Prototype:
void dsp16_vect_intmul
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 int size,
 int integer
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the result of the operation.

vect2 A pointer to the 16-bit real vector that will be
multiplied with the integer.

size The size of the vectors.
integer The integer to be multiplied with the vector (vect2).

Return Value:
NONE

Remarks:
NONE

 AVR32765

 93

32120A-AVR32-04/09

Description:
32-bit fixed point version of the vector multiplication
with an integer.

Module:
VECTORS

Prototype:
void dsp32_vect_intmul
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 int size,
 int integer
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the result of the operation.

vect2 A pointer to the 32-bit real vector that will be
multiplied with the integer.

size The size of the vectors.
integer The integer to be multiplied with the vector (vect2).

Return Value:
NONE

Remarks:
NONE

94 AVR32765
32120A-AVR32-04/09

4.5.2.8 Division with an integer

Description:
16-bit fixed point version of the vector division with
an integer.

Module:
VECTORS

Prototype:
void dsp16_vect_intdiv
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 int size,
 int integer
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the result of the operation.

vect2 A pointer to the 16-bit real vector that will be
divided with the integer.

size The size of the vectors.
integer The integer to be divided with the vector (vect2).

Return Value:
NONE

Remarks:
NONE

 AVR32765

 95

32120A-AVR32-04/09

Description:
32-bit fixed point version of the vector division with
an integer.

Module:
VECTORS

Prototype:
void dsp32_vect_intdiv
(
 dsp32_t *vect1,
 dsp132_t *vect2,
 int size,
 int integer
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the result of the operation.

vect2 A pointer to the 32-bit real vector that will be
divided with the integer.

size The size of the vectors.
integer The integer to be divided with the vector (vect2).

Return Value:
NONE

Remarks:
NONE

96 AVR32765
32120A-AVR32-04/09

4.5.2.9 Dot multiplication

Description:
16-bit fixed point version of the vector dot multiplication
function.

Module:
VECTORS

Prototype:
void dsp16_vect_dotmul
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 dsp16_t *vect3,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that will recieved
the result of the dot multiplication.

vect2 A pointer to the 16-bit real vector that will be
multiplied with the other input vector (vect3).

vect3 A pointer to the 16-bit real vector that will be
multiplied with the other input vector (vect2).

size The size of the input vectors.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 97

32120A-AVR32-04/09

Description:
32-bit fixed point version of the vector dot multiplication
function.

Module:
VECTORS

Prototype:
void dsp32_vect_dotmul
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 dsp32_t *vect3,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the result of the dot multiplication.

vect2 A pointer to the 32-bit real vector that will be
multiplied with the other input vector (vect3).

vect3 A pointer to the 32-bit real vector that will be
multiplied with the other input vector (vect2).

size The size of the input vectors.

Return Value:
NONE

Remarks:
NONE

98 AVR32765
32120A-AVR32-04/09

4.5.2.10 Dot division

Description:
16-bit fixed point version of the vector dot division
function.

Module:
VECTORS

Prototype:
void dsp16_vect_dotdiv
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 dsp16_t *vect3,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the result of the dot division.

vect2 A pointer to the 16-bit real vector that will be
divided with the other input vector (vect3).

vect3 A pointer to the 16-bit real vector that will be
divided with the other input vector (vect2).

size The size of the input vectors.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 99

32120A-AVR32-04/09

Description:

32-bit fixed point version of the vector dot division
function.

Module:
VECTORS

Prototype:
void dsp32_vect_dotdiv
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 dsp32_t *vect3,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the result of the dot division.
vect2 A pointer to the 32-bit real vector that will be
divided with the other input vector (vect3).
vect3 A pointer to the 32-bit real vector that will be
divided with the other input vector (vect2).
size The size of the input vectors.

Return Value:
NONE

Remarks:
NONE

100 AVR32765
32120A-AVR32-04/09

4.5.2.11 Power

Description:
16-bit fixed point version of the power function.

Module:
VECTORS

Prototype:
void dsp16_vect_pow
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 int size,
 dsp16_t real
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the result of the operation.

vect2 A pointer to the 16-bit real vector that will be raised
to the power 'real'.

size The size of the vectors.
real The real number used to raised to the power 'vect2'.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the power function.

Module:
VECTORS

Prototype:
void dsp32_vect_pow
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 int size,
 dsp32_t real
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the result of the operation.

vect2 A pointer to the 32-bit real vector that will be raised
to the power 'real'.

size The size of the vectors.
real The real number used to raised to the power 'vect2'.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 101

32120A-AVR32-04/09

4.5.2.12 Minimum

Description:
16-bit fixed point version of the vector minimum
function.

Module:
VECTORS

Prototype:
dsp16_t dsp16_vect_min
(
 dsp16_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that is used to
find its minimum.

size The size of the input vector.

Return Value:
The minimum of the vector (vect1).

Remarks:
NONE

Description:
32-bit fixed point version of the vector minimum
function.

Module:
VECTORS

Prototype:
dsp32_t dsp32_vect_min
(
 dsp32_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that is used to
find its minimum.

size The size of the input vector.

Return Value:
The minimum of the vector (vect1).

Remarks:
NONE

102 AVR32765
32120A-AVR32-04/09

4.5.2.13 Maximum

Description:
16-bit fixed point version of the vector maximum
function.

Module:
VECTORS

Prototype:
dsp16_t dsp16_vect_max
(
 dsp16_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that is used to
find its maximum.
size The size of the input vector.

Return Value:
The maximum of the vector (vect1).

Remarks:
NONE

Description:
32-bit fixed point version of the vector maximum
function.

Module:
VECTORS

Prototype:
dsp32_t dsp32_vect_max
(
 dsp32_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that is used to
find its maximum.
size The size of the input vector.

Return Value:
The maximum of the vector (vect1).

Remarks:
NONE

 AVR32765

 103

32120A-AVR32-04/09

4.5.2.14 Negate

Description:
16-bit fixed point version of the vector negate
function.

Module:
VECTORS

Prototype:
void dsp16_vect_neg
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the result.

vect2 A pointer to the 16-bit real vector that will be
negate.

size The size of the input vector.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the vector negate
function.

Module:
VECTORS

Prototype:
void dsp32_vect_neg
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the result.

vect2 A pointer to the 32-bit real vector that will be
negate.

size The size of the input vector.

Return Value:
NONE

Remarks:
NONE

104 AVR32765
32120A-AVR32-04/09

4.5.2.15 Zero padding

Description:
16-bit fixed point version of the zero padding
function.

Module:
VECTORS

Prototype:
inline static void
dsp16_vect_zeropad
(
 dsp16_t *vect1,
 int size,
 int num_zero
);

Arguments:
vect1 A pointer to the 16 bits real vector that has to be
padded with zeros.

size The size of this vector.
num_zero The number of zeros to pad at the end of the vector.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the zero padding
function.

Module:
VECTORS

Prototype:
inline static void
dsp32_vect_zeropad
(
 dsp32_t *vect1,
 int size,
 int num_zero
);

Arguments:
vect1 A pointer to the 32 bits real vector that has to be
padded with zeros.
size The size of this vector.
num_zero The number of zeros to pad at the end of the vector.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 105

32120A-AVR32-04/09

4.5.2.16 Copy

Description:
16-bit fixed point version of the copy function.

Module:
VECTORS

Prototype:
inline static void dsp16_vect_copy
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 int size
)

Arguments:
vect1 A pointer to the 16 bits real vector that contains the
data.
vect2 A pointer to the 16 bits real vector to be copied to.

size The size of those vectors.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the copy function.

Module:
VECTORS

Prototype:
inline static void dsp32_vect_copy
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 int size
)

Arguments:
vect1 A pointer to the 32 bits real vector that contains the
data.

vect2 A pointer to the 32 bits real vector to be copied to.
size The size of those vectors.

Return Value:
NONE

Remarks:
NONE

106 AVR32765
32120A-AVR32-04/09

4.5.2.17 Partial Convolution

Description:
16-bit fixed point version of the Partial Convolution.

Module:
VECTORS

Prototype:
void dsp16_vect_convpart
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 int vect2_size,
 dsp16_t *vect3,
 int vect3_size
);

Arguments:
vect1 A pointer to a 16-bits fixed-point output vector.
vect2 A pointer to a 16-bits fixed-point input vector.
vect2_size The length of the first input vector (must be
greater or equal to 4).

vect3 A pointer to a 16-bits fixed-point input vector.
vect3_size The length of the second input vector (must be
greater or equal to 8)

Return Value:
NONE

Remarks:
Due to its implementation, for the avr32-uc3 optimized
version of the FIR, the output vector (vect1) has to have a
length of 4*n elements to avoid overflows.

 AVR32765

 107

32120A-AVR32-04/09

4.5.2.18 Convolution

Description:
16-bit fixed point version of the Convolution.

Module:
VECTORS

Prototype:
void dsp16_vect_conv
(
 dsp16_t *vect1,
 dsp16_t *vect2,
 int vect2_size,
 dsp16_t *vect3,
 int vect3_size
);

Arguments:
vect1 A pointer to a 16-bits fixed-point output vector.
vect2 A pointer to a 16-bits fixed-point inout vector.
vect2_size The length of the first input vector (must be
greater or equal to 8).
vect3 A pointer to a 16-bits fixed-point input vector.
vect3_size The length of the second input vector (must be
greater or equal to 8)

Return Value:
NONE

Remarks:
Due to its implementation, for the avr32-uc3 optimized
version of the FIR, the output vector (vect1) has to have a
length of 4*n elements to avoid overflows.

108 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the Convolution.

Module:
VECTORS

Prototype:
void dsp32_vect_conv
(
 dsp32_t *vect1,
 dsp32_t *vect2,
 int vect2_size,
 dsp32_t *vect3,
 int vect3_size
);

Arguments:
vect1 A pointer to a 32-bits fixed-point output vector.
vect2 A pointer to a 32-bits fixed-point input vector.
vect2_size The length of the first input vector (must be
greater or equal to 8).

vect3 A pointer to a 32-bits fixed-point input vector.
vect3_size The length of the second input vector (must be
greater or equal to 8)

Return Value:
NONE

Remarks:
Due to its implementation, for the avr32-uc3 optimized
version of the FIR, the output vector (vect1) has to have a
length of 4*n elements to avoid overflows.

dsp32_vect_conv (See convolution_example.c and convolution_example.sce files)
Example:
Using Scilab,

Generate vect2 and vect3 input signals
Compute a convolution of this two signals and obtains a vect1
vectors:

vect1 = [-0
 …

 0.01246589690

 0.00668038504]
C source code using the DSPLib with the pre-calculated vect2 and
vect3 signals.

vect1 = [0
 …
 0.012420

 0.006652];

 AVR32765

 109

32120A-AVR32-04/09

4.5.2.19 Complex addition

Description:
16-bit fixed point version of the complex vector
addition function.

Module:
VECTORS

Prototype:
void dsp16_vect_complex_add
(
 dsp16_complex_t *vect1,
 dsp16_complex_t *vect2,
 dsp16_complex_t *vect3,
 int size
);

Arguments:
vect1 A pointer to the 16-bit complex result vector.
vect2 A pointer to the first 16-bit complex input vector.
vect3 A pointer to the second 16-bit complex input vector.
size The size of the input vectors.

Return Value:
NONE

Remarks:
NONE

110 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the complex vector
additon function.

Module:
VECTORS

Prototype:
void dsp32_vect_complex_add
(
 sp32_complex_t *vect1,
 dsp32_complex_t *vect2,
 dsp32_complex_t *vect3,
 int size
);

Arguments:
vect1 A pointer to the 32-bit complex result vector.
vect2 A pointer to the first 32-bit complex input vector.
vect3 A pointer to the second 32-bit complex input vector.
size The size of the input vectors.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 111

32120A-AVR32-04/09

4.5.2.20 Complex subtraction

Description:
16-bit fixed point version of the complex vector
subtraction function.

Module:
VECTORS

Prototype:
void dsp16_vect_complex_sub
(
 dsp16_complex_t *vect1,
 dsp16_complex_t *vect2,
 dsp16_complex_t *vect3,
 int size
);

Arguments:
vect1 A pointer to the 16-bit complex result vector.
vect2 A pointer to the minuend 16-bit complex vector.
vect3 A pointer to the subtrahend 16-bit complex vector.
size The size of the input vectors.

Return Value:
NONE

Remarks:
NONE

112 AVR32765
32120A-AVR32-04/09

Description:
32-bit fixed point version of the complex vector
subtraction function.

Module:
VECTORS

Prototype:
void dsp32_vect_complex_sub
(
 dsp32_complex_t *vect1,
 dsp32_complex_t *vect2,
 dsp32_complex_t *vect3,
 int size
);

Arguments:
vect1 A pointer to the 32-bit complex result vector.
vect2 A pointer to the minuend 32-bit complex vector.
vect3 A pointer to the subtrahend 32-bit complex vector.
size The size of the input vectors.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 113

32120A-AVR32-04/09

4.5.2.21 Complex absolute

Description:
16-bit fixed point version of the complex vector
absolute function.

Module:
VECTORS

Prototype:
void dsp16_vect_complex_abs
(
 dsp16_t *vect1,
 dsp16_complex_t *vect2,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the result.

vect2 A pointer to the 16-bit complex input vector.
size The size of the input vector.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the complex vector
absolute function.

Module:
VECTORS

Prototype:
void dsp32_vect_complex_abs
(
 dsp32_t *vect1,
 dsp32_complex_t *vect2,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the result.
vect2 A pointer to the 32-bit complex input vector.
size The size of the input vector.

Return Value:
NONE

Remarks:
NONE

114 AVR32765
32120A-AVR32-04/09

4.5.2.22 Complex conjugate

Description:
16-bit fixed point version of the complex vector
conjugate function.

Module:
VECTORS

Prototype:
void dsp16_vect_complex_conj
(
 dsp16_complex_t *vect1,
 dsp16_complex_t *vect2,
 int size
);

Arguments:
vect1 A pointer to the 16-bit complex vector that will
contain the result.

vect2 A pointer to the 16-bit complex input vector.
size The size of the input vector.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 115

32120A-AVR32-04/09

4.6 Windowing [Basic]
All the windowing functions currently supported by the DSP library.

• Rectangular
• Bartlett
• Blackman
• Hamming
• Gauss
• Hann
• Kaiser
• Welch

4.6.1 Standard description

4.6.1.1 Rectangular

These functions generate a rectangular window that fits in the output vector.
The rectangular window filled the output vector with 1.
Relative functions:

• dsp16_win_rect
• dsp32_win_rect

116 AVR32765
32120A-AVR32-04/09

4.6.1.2 Bartlett

Also known simply as the triangular windows, these functions generate a bartlett
window that fits in the output vector.
The amplitude of the signal is in the range [0; 1]
Relative functions:

• dsp16_win_bart
• dsp32_win_bart

4.6.1.3 Blackman

These functions generate a Blackman window that fits in the output vector.
The amplitude of the signal is in the range [0; 1]
Relative functions:

• dsp16_win_black
• dsp32_win_black

 AVR32765

 117

32120A-AVR32-04/09

4.6.1.4 Hamming

These functions generate a Hamming window that fits in the output vector.
The amplitude of the signal is in the range [0; 1]
Relative functions:

• dsp16_win_hamm
• dsp32_win_hamm

118 AVR32765
32120A-AVR32-04/09

4.6.1.5 Gauss

These functions generate a gaussian window that fits in the output vector.
The amplitude of the signal is in the range [0; 1]
Note:

You can change the value of the teta coefficient by defining
DSP_GAUSS_TETA at the compilation with a value that fits in the range]0;
0.5]

Relative functions:

• dsp16_win_gauss
• dsp32_win_gauss

4.6.1.6 Hann

These functions generate a Hann window that fits in the output vector.
The amplitude of the signal is in the range [0; 1]
Relative functions:

• dsp16_win_hann
• dsp32_win_hann

 AVR32765

 119

32120A-AVR32-04/09

4.6.1.7 Kaiser

These functions generate a Kaiser window that fits in the output vector.
The amplitude of the signal is in the range [0; 1]
Relative functions:

• dsp16_win_kaiser
• dsp32_win_kaiser

4.6.1.8 Welch

These functions generate a Welch window that fits in the output vector.
The welch window is commonly used as a window for power spectral estimation.
The amplitude of the signal is in the range [0; 1]
Relative functions:

• dsp16_win_welch
• dsp32_win_welch

120 AVR32765
32120A-AVR32-04/09

4.6.2 C description

4.6.2.1 Rectangular

Description:
16-bit fixed point version of the rectangular windowing
function.

Module:
WINDOWING

Prototype:
void dsp16_win_rect
(
 dsp16_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the window.
size The size of the output vector.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the rectangular windowing
function.

Module:
WINDOWING

Prototype:
void dsp32_win_rect
(
 dsp32_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the window.
size The size of the output vector.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 121

32120A-AVR32-04/09

4.6.2.2 Bartlett

Description:
16-bit fixed point version of the bartlett windowing
function.

Module:
WINDOWING

Prototype:
void dsp16_win_bart
(
 dsp16_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the window.

size The size of the output vector.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the bartlett windowing
function.

Module:
WINDOWING

Prototype:
void dsp32_win_bart
(
 dsp32_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the window.

size The size of the output vector.

Return Value:
NONE

Remarks:
NONE

122 AVR32765
32120A-AVR32-04/09

4.6.2.3 Blackman

Description:
16-bit fixed point version of the blackman windowing
function.

Module:
WINDOWING

Prototype:
void dsp16_win_black
(
 dsp16_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the window.
size The size of the output vector.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the blackman windowing
function.

Module:
WINDOWING

Prototype:
void dsp32_win_black
(
 dsp32_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the window.
size The size of the output vector.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 123

32120A-AVR32-04/09

4.6.2.4 Hamming

Description:
16-bit fixed point version of the hamming windowing
function.

Module:
WINDOWING

Prototype:
void dsp16_win_hamm
(
 dsp16_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the window.

size The size of the output vector.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the hamming windowing
function.

Module:
WINDOWING

Prototype:
void dsp32_win_hamm
(
 dsp32_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the window.

size The size of the output vector.

Return Value:
NONE

Remarks:
NONE

124 AVR32765
32120A-AVR32-04/09

4.6.2.5 Gauss

Description:
16-bit fixed point version of the gaussian windowing
function.

Module:
WINDOWING

Prototype:
void dsp16_win_gauss
(
 dsp16_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the window.
size The size of the output vector.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the gaussian windowing
function.

Module:
WINDOWING

Prototype:
void dsp32_win_gauss
(
 dsp32_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the window.
size The size of the output vector.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 125

32120A-AVR32-04/09

4.6.2.6 Hann

Description:
16-bit fixed point version of the hann windowing
function.

Module:
WINDOWING

Prototype:
void dsp16_win_hann
(
 dsp16_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the window.

size The size of the output vector.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the hann windowing
function.

Module:
WINDOWING

Prototype:
void dsp32_win_hann
(
 dsp32_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the window.

size The size of the output vector.

Return Value:
NONE

Remarks:
NONE

126 AVR32765
32120A-AVR32-04/09

4.6.2.7 Kaiser

Description:
16-bit fixed point version of the kaiser windowing
function.

Module:
WINDOWING

Prototype:
void dsp16_win_kaiser
(
 dsp16_t *vect1,
 int size,
 int alpha
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the window.

size The size of the output vector.
alpha The alpha coefficient which must be greater than 0.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the kaiser windowing
function.

Module:
WINDOWING

Prototype:
void dsp32_win_kaiser
(
 dsp32_t *vect1,
 int size,
 int alpha
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the window.

size The size of the output vector.
alpha The alpha coefficient which must be greater than 0.

Return Value:
NONE

Remarks:
NONE

 AVR32765

 127

32120A-AVR32-04/09

4.6.2.8 Welch

Description:
16-bit fixed point version of the welch windowing
function.

Module:
WINDOWING

Prototype:
void dsp16_win_welch
(
 dsp16_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 16-bit real vector that will contain
the window.

size The size of the output vector.

Return Value:
NONE

Remarks:
NONE

Description:
32-bit fixed point version of the welch windowing
function.

Module:
WINDOWING

Prototype:
void dsp32_win_welch
(
 dsp32_t *vect1,
 int size
);

Arguments:
vect1 A pointer to the 32-bit real vector that will contain
the window.

size The size of the output vector.

Return Value:
NONE

Remarks:
NONE

128 AVR32765
32120A-AVR32-04/09

4.7 Advanced API
This group regroups all the functions available in the advanced library.

• ADPCM
• Re-Sampling

4.7.1 Standard description

4.7.1.1 Re-Sampling

All the signal re-sampling functions implemented in the DSP advanced library.
Following is a brief description of the frequency re-sampling algorithm used in
this module. It is aimed for anybody so no specifics digital signal processing
knowledges are required to understand this presentation.

• Summary

The principle is simple, it consists in 2 main stages, up-sampling the signal frequency
by an integer value (L), this action is also called interpolation, and then down-
sampling it by another integer value (M), also known as decimation.

• L and M calculation

L and M are 2 integers that are calculated by getting the GCD (Greatest Common
Divisor) of the input (Fsin) and the output (Fsout) frequencies.
The number resulting will divide Fsin and Fsout to respectively give M and L.

• Interpolation (frequency up-sampling)

This process up samples the frequency of the input signal by an integer factor. The
factor used at this stage of the process by the re-sampling algorithm will be the pre-
calculated "interpolation factor" L. Which means, if we consider this process as a
black box with 1 input (u) and 1 output (v), the output signal sampling frequency
(Fs(v)) will be equals to the input signal sampling frequency (Fs(u)) multiplied by L.

The following describes the algorithm used to implement the interpolation.
The method consists in extending the signal by filling "blank spaces" with zeros, in
order to obtain a signal with the desired sampling rate.

Then this signal goes through a filter in order to remove the highest frequencies, to
give it back its original shape. The cut off frequency is calculated according to the
input frequency of the signal.
The filter used in this algorithm, is most likely a lowpass FIR filter, which is used as a
poly-phase filter. This optimizes greatly the performances of this process because

 AVR32765

 129

32120A-AVR32-04/09

poly-phase filters are simply, classical filters cut into pieces. And in this case, the aim
is to have one piece with the original samples and the other with the zeros used to up
sample the signal.
Then, by re-ordering the coefficients in a certain way, this process is equivalent to
apply a filter only on the original sample parts since the result of filtering a null signal
is a null signal.

Now, the signal is interpolated, it needs to be down sampled.

• Decimation (frequency down-sampling)

This process is much simpler than the interpolation.
It just consists in removing samples in order to keep the same signal wave form but
with a lower sampling rate.
Therefore, to obtain the desired output sampling frequency, the signal has to be down
sampled by M (decimation factor).

Every M samples are kept from the input signal and all the others are removed.

• Conclusion

By processing these 2 main stages, the signal is re-sampled by a factor equals to
L/M. Therefore, the smaller the 2 frequencies have their GCD (Greatest Common
Divisor), the more memory it will need (to store the FIR filter coefficients).
This method is one of the most used in digital signal processing systems. It will
generate a clean signal and evaluate at best the waveform of the output signal.

• Frequency response

The signal is attenuated on high frequencies. Following are traces showing the
frequency response of the re-sampling algorithm over different sampling rate
conversions.

130 AVR32765
32120A-AVR32-04/09

Frequency response from 32KHz to 44.1KHz

Frequency response from 48KHz to 48.51KHz

 AVR32765

 131

32120A-AVR32-04/09

4.7.2 C description

4.7.2.1 ADPCM

Description:
IMA/DVI ADPCM sample encoder.

Module:
ADVANCED

Prototype:
S8 dsp_adpcm_ima_encode_nibble
(
 S16 nibble,
 S16 *step_index,
 S16 *predicted_value
);

Arguments:
nibble The sample to encode.
step_index A pointer to a 16 bits data which contains the
current step index of the ADPCM algorithm.

predicted_value A pointer to a 16 bits data which contains
the current predicted value of the ADPCM algorithm.

Return Value:
A 4-bit data that corresponds to the sample encoded.

Remarks:
NONE

Description:
IMA/DVI ADPCM sample decoder.

Module:
ADVANCED

Prototype:
S16 dsp_adpcm_ima_decode_nibble
(
 S8 nibble,
 S16 *step_index,
 S16 *predicted_value
);

Arguments:
nibble The sample to decode.
step_index A pointer to a 16 bits data which contains the
current step index of the ADPCM algorithm.

predicted_value A pointer to a 16 bits data which contains
the current predicted value of the ADPCM algorithm.

Return Value:
A 4-bit data that corresponds to the sample encoded.

Remarks:
NONE

132 AVR32765
32120A-AVR32-04/09

Description:
IMA/DVI ADPCM encoder.

Module:
ADVANCED

Prototype:
void dsp_adpcm_ima_encode
(
 void *out,
 S16 *in,
 int size,
 S16 *step_index,
 S16 *predicted_value
);

Arguments:
out A 4-bit data vector that will contain the encoded data.
in A 16-bit data vector that contains the data to encode.
size The number of data to encode.
step_index A pointer to a 16 bits data which contains the
current step index of the ADPCM algorithm.
predicted_value A pointer to a 16 bits data which contains
the current predicted value of the ADPCM algorithm.

Return Value:
NONE

Remarks:
Can be performed "in-place".

 AVR32765

 133

32120A-AVR32-04/09

Description:
IMA/DVI ADPCM decoder.

Module:
ADVANCED

Prototype:
void dsp_adpcm_ima_decode
(
 S16 *out,
 void *in,
 int size,
 S16 *step_index,
 S16 *predicted_value
);

Arguments:
out A 4-bit data vector that will contain the decoded data.
in A 16-bit data vector that contains the data to decode.
size The number of data to encode.
step_index A pointer to a 16 bits data which contains the
current step index of the ADPCM algorithm.

predicted_value A pointer to a 16 bits data which contains
the current predicted value of the ADPCM algorithm.

Return Value:
NONE

Remarks:
Can be performed "in-place".

134 AVR32765
32120A-AVR32-04/09

4.7.2.2 Re-Sampling

Description:
This function is the 16-bit signal resampling setup
function.

Module:
ADVANCED

Prototype:
dsp_resampling_t *dsp16_resampling_setup
(
 int input_sample_rate,
 int output_sample_rate,
 int buffer_size,
 int filter_order,
 int nb_channels,
 malloc_fct_t malloc_fct,
 dsp_resampling_options_t options
);

Arguments:
input_sample_rate The sample rate of the input signal.
output_sample_rate The sample rate of the output signal.
buffer_size The size of the input vectors.
filter_order The order of the filter to be used.
malloc_fct A pointer to a memory allocation function.
nb_channels The number of channels to compute.
options Add specific options to the algorithm.

Return Value:
A pointer to a structure containing the context that will be
used during the re-sampling process.

Remarks:
It has to be called only once at the initialization of the
resampling process.

The output must be freed with the dsp16_resampling_free
function once the re-sampling process is completed.

 AVR32765

 135

32120A-AVR32-04/09

Description:
Function used to free the previously allocted structure
issued by the dsp16_resampling_setup function.

Module:
ADVANCED

Prototype:
void dsp16_resampling_free
(
 dsp_resampling_t *dsp_resampling,
 free_fct_t free_fct
);

Arguments:
dsp_resampling The re-sampling context structure to be freed.
free_fct A pointer to the free function to be used.

Return Value:
NONE

Remarks:
NONE

Description:
Returns the maximal length in sample of the output
signal.

Module:
ADVANCED

Prototype:
int dsp16_resampling_get_output_max_buffer_size
(
 dsp_resampling_t *dsp_resampling
);

Arguments:
dsp_resampling The re-sampling context structure associated.

Return Value:
NONE

Remarks:
NONE

136 AVR32765
32120A-AVR32-04/09

Description:
Returns the maximal length in sample of the output
signal.

Module:
ADVANCED

Prototype:
int dsp16_resampling_get_output_current_buffer_size
(
 dsp_resampling_t *dsp_resampling
);

Arguments:
dsp_resampling The re-sampling context structure associated.

Return Value:
NONE

Remarks:
NONE

Description:
The re-sampling computation function.

Module:
ADVANCED

Prototype:
void dsp16_resampling_compute
(
 dsp_resampling_t *dsp_resampling,
 dsp16_t *output,
 dsp16_t *input,
 int channel
);

Arguments:
dsp_resampling The re-sampling context structure associated.
output A pointer to a 16-bit vector used to store output
data. The length of this vector is defined by the output of
the dsp16_resampling_get_output_current_buffer_size function.

input A pointer to a 16-bit vector used as an input to the
re-sampling process. It has to be of a length defined to the
dsp16_resampling_setup function as for its sampling rate.
channel The channel input argument (starting from 0 to
nb_channels – 1 refered in dsp16_resampling_setup)

Return Value:
NONE

Remarks:
NONE

 AVR32765

 137

32120A-AVR32-04/09

32120A-AVR32-04/09

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
Avr32@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio® and others, are the
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Reference
	3 Overview
	3.1 What can I find in this document?
	3.2 Architecture
	3.3 Fixed Point Format
	3.4 Naming Convention
	3.5 Compilation Options
	3.6 Deliveries

	4 AVR32 – Fixed point DSP Library Modules
	4.1 Filtering [Basic]
	4.2 Operators [Basic]
	4.3 Signal generation [Basic]
	4.4 Transforms [Basic]
	4.5 Vectors [Basic]
	4.6 Windowing [Basic]
	4.7 Advanced API

