5/31/2013

“Gateway” lab exercises

10. ColourTheWorld - parameters in generics; VGA display control to
generate sync signals and RGB colors (see BASYS2 manual).

1

[y

. WorldOfStateMachines - making state machines using sequential

and combinational blocks (switch/case statements) and using ROM
modules ($readmemb).

1

N

. WorldOfLinkedStateMachines - multiple state machines linked by a

master state machine.

13. Snake - a complete snake game.

11. WorldOfStateMachines

BTN1 BTNZ2 BTN3

RESET
1 -
CLK I 1

(4

Y

A

SEG_SELECT HEX_OUT

11. WorldOfStateMachines

@
kot
2]
o
3 |a| |5
3 f=
%) E-’ g =
= ynchronous 2|5 3 ®
. . . =
o Combinatorial Logic £ T '5
z gfgs 2
2 |aT =
w o =)
5 [2) 3
Cla
x
36 reg [2:0] CurrState: g
37 reg [2:0] NextState;
28 Clock
39 azsign OUT = Curritate[Z2:0]:

11. WorldOfStateMachines

Two always@ statements

¢ Synchronous one

127 //Sequential

128 alwaysh [posedge CLK) begin

1za //This is a synchronous RESET

130 if [RESET) begin

131 /¢/The state iz reset to the rest state

132 J/usually this is 0

133 Curr3tate <= 3'b0O00;

134 /#The outputs are reset to their reset conditions
135 CurrOutputs <= //Reset conditions for outputs
13g end

137 //For normwal operations, on the rising edge

138 /¢of the clock, the current Ztate and Outputs
139 f/Get set to the next state snd outputs.

140 /¢ They are then held at this walue untill the
141 J//next rising edge of the clock.

142 else begin

143 Curritate <= NextState;

144 CurrQutputs <= NextQutputs;

145 end

146 =nd

11. WorldOfStateMachines

Two always@ statements

¢ Asynchronous one (combinational)

148 //Conbinatorial

149 alwaysl (Curr3tate or IN) begin
150 case [(CurrState)

151

152 2'do : begin

153 if (IN)

154 MNext3tate <= 2'dil;
155 elze

1568 Mextitate <= Curritate;
157 end

jc2

F e

150 default

151 Next3tate <= 2'd0;
152 endcase

1583 end

11. WorldOfStateMachines

11. WorldOfStateMachines: State Maze

5/31/2013

11. WorldOfStateMachines

TT. WorldOfStateMachines
Using memory look-up table to compute next state

CurrState
/
73

Memory

INPUTS Al 6Wide /4 / ouTPUT
/3 6| 64Deep |73 /3

A 6-bit lookup table, with each entry
holding 3 state/output bits can describe
complete behavior

CLK

TT. WorldOfStateMachines
Using memory look-up table to compute next state

34 J/Loads & ROM configuration from a file to

35 d/the two dimentional array

36 initial

37 $readmens ("SI Nem. list”, NextStateMem);

38

39 //Simple synchronous system that sets the currstate
40 //to state 0 given the reset command, and if this
a1 //is not the case, it fetches the nextstate from the
4z //wewory using the current state and the inpucs

43 //BTN1, BTHZ, and BTN3 as the address.

44 alwaysf (posedge CLK) begin

45 if [RESET)

46 Curr3tate <= 3'h0r

47 else

48 Curritate <= NextStateMem[{Curr3tate, BTN3,BTNZ,ETN1}]:
49 end

50

51 assign OUT = Curr3tate;

53 endmodule

11. WorldOtStatelvViachines
Using memory look-up table to compute next state

Pros Cons
* Simple logic ¢ Only good for very small
* Uses the built-in FPGA bit state machines

memory (there’s lots)

* Forces you to consider each
state

¢ Lookup table can be
computed e.g. in matlab
then saved

¢ No need to figure out logic
functions

“Gateway” lab exercises

10. ColourTheWorld - parameters in generics; VGA display control to
generate sync signals and RGB colors (see BASYS2 manual).

11. WorldOfStateMachines - making state machines using sequential
and combinational blocks (switch/case statements) and using ROM
modules (Sreadmemb).

12. WorldOflLinkedStateMachines - multiple state machines linked by a
master state machine.

13. Snake - a complete snake game.

5/31/2013

12. WorldOfLinkedStateMachines

EBTHI3

ELSE
LED

Display

ELSE

BTN2

BTHN1

ELSE
State Maze

12. WorldOfLinkedStateMachines

Each of the three sub-modules (the State maze, VGA
interface, and LED Display) all take the master state
machine's state as an input, using it to determine when
they must change their behavior (go from a blank to a
colorful display) or move their own state machines from
their idle position. Additionally, the two sub-modules that
comprise a state machine, output their state so that it can

be used by the master state machine in determining
when each of the sub modules have completed their
St azelConplieg tasks. In this way, the master state machine will only
progress from the "LED Display state" or the "State Maze
state" to the "VGA Interface state" after the

ELSE corresponding sub modules pass through their "Finished
otk Electrones for bhveiete | (ol state". N

LED Display Finished

USB silicon retina
An example of a useful handshaking/data
transfer state machine

R. Berner, 2006 masters project

Camera PCB acquires asynchronous digital data from retina chip,
time stamps it, sends data over high speed USB interface to PC. It
also receives control commands for biasing, etc. from PC and

sends to retina chip serially.

bt h.chy

“Gateway” lab exercises

10. ColourTheWorld - parameters in generics; VGA display control to
generate sync signals and RGB colors (see BASYS2 manual).

11. WorldOfStateMachines - making state machines using sequential
and combinational blocks (switch/case statements) and using ROM
modules (Sreadmemb).

12. WorldOfLinkedStateMachines - multiple state machines linked by a
master state machine.

Digital interface connector

Silicon retina

13. Snake - a complete snake game.

High speed USB microcontroller
(Cypress FX2) with parallel FIFO
Interface to CPLD

CPLD logic . >
Handshaking state machine
Time-stamping

Multicamera synchronization

5/31/2013

12. Snake game

http://youtu.be/iB3tXDpLShl

12. Snake game

RESET |R PUSH BUTTONS
CLOCK |C |

El Master State Machine | El Navigation State Machine

State {2-bits)

Snake Control
Cokour

(abitsy RC

Shate (2-bits)

Pixel Address (19-baa) FRandom Target Addres:

(15-bas)

Reached Target
(1-bt)

5[VGA Interface I Target Generator

]

(R: Score Counter
Strobe Counter Curvent Score
(2-bits) {B-bits)

| 7-Segment Display Interface |

COLOUR_OUT HS VS SEG_SELECT HEX_OUT

12. Snake Master state machine

The master state machine
consists of three states, IDLE, ELSE
PLAY, and WIN. The RESET signal
resets the State Machine to IDLE.
If any push button is pressed, the
State Machine transitions into the
PLAY state. When the Score, ELSE
which is collected by the Score
Counter module, reaches 10, the
State Machine transitions from
PLAY to WIN, where it stays until
the system is reset. The only
output of this module is its state
which is used to control the other
modules.

On of four buttons pushed

A score of 10 15 reached

12. Snake Navigation machine

This state machine takes its input from the push buttons,
and dictates the direction the snake should be travelling.
The State Machine should be designed to only allow 90
degree turns at a time. As with the Master state machine,
the only output is its state.

12. Snake VGA machine

Passes to snake control
machine address information

out, and gets color Master State Colour Ar,l‘aress

information in. However,
when‘the- Mastgr State 15 1% Atig
Machine is not in the PLAY

state, it also needs to Colour Control Logic ——
8

overwrite the incoming color
information to display either a Colour
blank blue screen when in the
IDLE state, or the multi-color |
animated display from the

VGA Interface |

previous exercise when in the 4% £ 44
WIN state. The address bus is

; . ; - - L d
combined X axis (horizontal Colour HS vs

[9:0]) and Y axis (vertical
[8:0]).

12. Snake Target Generator

Pseudo-Random Number Generator (PRNG)

* Based on Linear Feedback Shift Register (LFSR) — input comes
from XORed bits (actually XNORed). Output is the shift
register bits taken as a binary number.

http ikipedia.org/wiki/Linear feedback shift_register

5/31/2013

12. Snake Target Generator

A 16-bit Fibonacci LFSR. The feedback tap numbers in white
correspond to a “primitive polynomial” so the register cycles
through the maximum number of 65535 states excluding the all-
zeroes state. The state shown, OxACE1 (hexadecimal) will be
followed by 0x5670.

http://en.wikipedia.org/wiki/Linear_feedback _shift_register

12. Snake Target Generator

Random Target Address

R Target Generator

This module randomly generates the position of the next target.

1. This is done using two pseudo random number generators.

2. The Snake Control module determines the color of a pixel based upon its address, ignoring
the 2 Isbs, thereby reducing the resolution by a factor of four in each direction, from
640x480 to 160x120.

3. We therefore require two LFSRs, one 8-bits long, the other 7-bits, to be able to randomly

generate numbers between 0-159 and 0-119.

. A second process is required that records and holds the current value of the LFSR whenever
the reached target signal is asserted, thereby allowing the LFSRs to constantly shift in the
background

5. The PRNG will generate numbers outside these ranges, so the Target Generator detects this
and instead generates a fixed location in these cases.

P

IS

Download snake-target-generator for verilog PRNG for target generation

12. Snake ScoreCounter

Like CountingInDecimel but triggered by
external enable. Instantiates Seg7Decoder.

12. Snake controller SnakeControl

This module has two
functions: it stores the
current position of all the
elements of the snake, {| Master state Machine | g| Mavigation State Mae
using the input from the
Navigation State Machine

to alter its position; and jt| A e e Gontrol
then translates this {Ehan AT

e . . [Raachnd Target
position into a serial colof: =y a
VGA Interface I cl Target Gene

stream that is presented [R
to the VGA Display I I | CM
module, which passes it to

the monitor. This is by far

the most complex module

that you will create.

‘State {2bils) Slate (2hits)

Frasschom Target Addres:
[T

12. Snake controller SnakeControl

The snake is represented as a Head
two dimensional shift register,

with a size of 15 by N, where N

is the length of the snake. Each .‘M

element (15-bits) corresponds
to the (X,Y) coordinates of that
part of the snake. At each clock
cycle, all the bits shift in the N
direction, and a new 15-bit
element is added to the end of
the shift register. This element
is constructed based upon the
previous first element,
incrementing or decrementing
either the X or Y address
depending on the direction the
snake is moving.

15 bits (8 horiz + 7 vert)

1110 9 8 7 6 5 4 3 2 10
N=12 segments of body

12. Snake controller — displaying snake
Pixel Address (19-bits)

RC

Codour
&-bits)

B[vea interface |
T — LY o=y |

Two address buses come from the VGA Display module to
present the address of the pixel that is about to be displayed.

A synchronous process can then decide what color that pixel
should be, by seeing if its address corresponds to any of the
Snake sections, or to the target.

If the pixel belongs to the snake, it should be colored yellow, if it
belongs to the target, it should be colored red, if it does not
correspond to either then it should be colored blue.

12. Snake controller — determining target eaten

Snake Control &= Leniob
RC q
Fuached Target
(1-bat)

8 [Foroet Ganerstr

A synchronous process is required to determine if the head of
the snake (the first element of the two dimensional array) has
the same position (address) as the target provided by the linear
feedback shift registers.

If this is the case then the output REACHED_TARGET is asserted.
If this is not the case, then REACHED_TARGET is de-asserted.
Asserting REACHED_TARGET will cause a new target to be
selected and the score to be incremented.

5/31/2013

12. Snake game — use parameters

This code is repeated by the
penerale statement a number of
times equal to the value of the
parameter “SnakeLength™

?: At each repetition, the value of

" the generale variable PixMo

::’ increments, thereby changing

" which bits of the two dimensional
] array are targeted

s

I

e

"

»o

12. Snake game — use parameters

After all the sub-modules have been created, it is a relatively simple task to tie
them all together. There will probably be many errors in your code, and you will
not notice them until you implement your final design and load it on to your
FPGA.

Priority should be given to making sure that the VGA Display and the user
interface works properly. Do not be afraid to simulate each of your sub modules
to make sure they work as you intend. Often this will save you a lot of time in the
long run.

Once you have got your snake working, you can try to implement:

* Determine failure when the snake hits itself

* Making snake grow with each target that is acquired

* Making snake move faster with each target that is acquired

* Making new end of game graphical display

* Adding sound effects using external speaker and PWN sound generation

Options for future development

For high-speed USB
— Cypress FX2/FX3 ——

— UC+FTDI (e.g. FT232H). .ﬂ

For FPGA For embedded system
— Lattice ~ * Your AVR32 bronze board.
N =48 ttice You know it
* simpler environment, « Arduino

flexible voltage options Atmel uC, easy to learn,

— Altera * lots of users, lots of
* embedded NIOS processor boards
— Xilinx £ XILINX * Rasberry Pi

ARM11, embedded linux,

* industry leader, Zynq very active lately

processor

What you accomplished

1 half: Embedded systems with = 274 ha|f: Logic design with FPGA
microcontrollers

+ synchronous logic, verilog, state
machines, counters, VGA control
etc

smsane
.

.

H

. I Eost o o

- 14 .

——_ .

PCB SMD assembly PCB design and layout .
"

+embedded systems programming, ADC, PWH, 5P

