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 Abstract
This chapter reviews neuromorphic silicon ret-
inas and cochleas that are based on the struc-
ture and opera� on of their biological counter-�
parts. These devices are built using conven�on-�
al chip fabrica�on technologies, using transistor�
circuits that emulate neural computa� ons from �
biology. In �rst genera� � on sensors, the analog �
outputs of everf y cell were read out serially at 
�xed sample rates. The new genera� �on of sen-�
sors reports only the outputs of ac� ve cells�
through digital events (spikes) that are commu-
nicated asynchronously. Such sensors respond
more quickly with reduced power consump� on. �
Their digital “address-event” outputs rapidly
convey precise �ming informa� � on about the�
scene that is only a�ained from conven� � onal �
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sensors if thef y are con� nuously sampled at high�
rates. The sparseness, low latency, and syy pa�o-�
temporal structure of this new form of sen-
sor output data can bene�t subsequent post-�
processing algorithms. Tradeo�s in the design�
of neuromorphic visual and auditory sensors
are discussed. Examples are given of vision al-f
gorithms that process the address-events, using
their spa� o-temporal coherence, for low-level�
feature extrac� on and for object tracking.�

1. 
Introduc� on�

Biology provides examples of e�  cient ma-�
chines which greatly outperform conven-
� onal technology. Electronic neuromorphic�
systems aim to capture the same e� cient �
style of computa�on by emula� � ng the struc-�
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ture and func� on of biological counterparts�
(Mead 1990; Douglas et al. 1995). This chap-
ter discusses recent progress in realizing
neuromorphic sensory systems which mimic
the biological re� na and cochlea, and sub-�
sequent sensor processing. The new gen-
era� on of electronic sensors communicates �
their ac�vity in much the same way as nerv-�
ous systems do, by asynchronously output-
�ng streams to digital events represen� �ng �
spikes. Because sensory computa�on is�
driven by these events, which originate from
the sensory input, such systems are called
event-driven systems. The progress in two
speci�c neuromorphic sensors, the re� �na �
and the cochlea, is described in this chapter 
along with examples of how these sensors
can help solve challenging problems in vision 
and audi�on.�

How can asynchronous spike-based com-
munica� on in neuromorphic systems be �
implemented? In contrast to biology which
uses a slow ionic medium to carry spikes on
dedicated axonal connec� ons, event-based �
systems use the high speed of electrons tof
transmit source spike addresses from mul-
�ple sources (e. g. re� � na pixels) on a single �
device (e. g. a silicon re� na) onto shared �
digital buses. Receivers decode these ad-
dresses for further use. The name for this
asynchronous transmission scheme is the
 address-event representa�on, or  � AER. Us-
ing AER is a natural match to sensors that 
reduce redundancy in the input, thus trans-
mi�  ng only sparse useful informa� �on. Us-�
ing AER, outputs can be transmi� ed with �
short response latencies and at a low data
rate. Both characteris�cs are useful for prac-�
� cal applica� � ons, and they also di� � eren� � ate �
AER sensors from conven� onal sensors that�
sample redundant informa�on at constant �
rate.

This chapter begins with the history of silf -
icon re� na designs and then describes in de-�
tail the design and opera� on of an example �
AER re� na. Sec� �on 3 discusses the history�

and progress of silicon cochleas. Secf �on 4 �
discusses how the address events from the
re� na are processed in vision applica� � ons,�
with a focus on the use of the event � ming;�
and Sec� on 5 summarizes the chapter.�

2. 
Conven� onal cameras and �
silicon re�nas�

The con� nued shrinking of silicon transis-�
tors has enabled rapid development of con-
ven� onal frame-based electronic camera�
technology (Fossum 1997). With pixel sizes 
barely over a micron nowadays, a naïve
observer might think that industry can ap-
proach a “perfect” image sensor with in-
�nite resolu� �on, in� � nite dynamic range,�
in�nite frame rate, zero pixel size, and zero �
power consump�on. Of course the output�
from such an ideal sensor would be impos-
sible to process. As neuromorphic engineers,
we observe that biological vision relies on a
sensor (the re� na) that does local gain con-�
trol and massive amounts of computa�on to�
produce at its output (the op�c nerve), an�
asynchronous stream of digital data (spikes)
that represents only relevant visual informa-
� on. A vision sensor that emulates its bio-�
logical counterpart could help solve vision 
problems that seem easy for biology but are
di� cult using present machine vision tech-�
niques.

2.1 History of  retina designsf

The �rst integrated silicon re� �na by  Maho-�
wald and  Mead (1991) consists of a 3-lay-
ered model of the outer rf e�na architecture �
that included the photoreceptors, bipolar
cells, and horizontal cells. The spiking gan-
glion cells and AER interface were incorpor-
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ated in a later design. The key biological
features emulated in this re� na include the �
logarithmic, adap�ve,  phototransduc� �on �
stage, the horizontal cell spa� o-temporal �
smoothing network, and the rec�� ca� � on of �
the re�na output into complementary ON�
and OFF channels. This re� na was also part�
of the f �rst AER vision system built by Ma-�
howald and colleagues to compute stereop-
sis (Mahowald 1992, 1994).

However, this and subsequent AER sys-
tems in the following decade were barely 
useable. Mahowald’s re� na for instance, �
would respond reliably only to a �ashing LED�
held up in front of it. Followinf g this re� na,�
Boahen’s group (Zaghloul and Boahen 2004)
built a more biologically realis�c version �
with four cell types emula� ng the ON and�
OFF cell types for the sustained and tran-
sient pathways, but it su� ered from large �
pixel response variability. The vision sensor 
by Ruedi et al. (2003) outputs simultane-
ous spa� al contrast and local orienta� � on�
using an event-based readout in which the
pixel event �ming within a frame encodes�
local contrast informa�on. This design �
was the �rst that showed it was possible �
to overcome the mismatch, poor dynamic
range, and other wise low performance that
plagued prior re� nas.�

Other recent event-based re� nas that �
aim to reduce image redundancy include
spa�al contrast AER re� � nas (Barbaro et al.�
2002; Ruedi et al. 2009; Lenoro-Bardallo et
al. 2010), temporal intensity change re�-�
nas (Mallik et al. 2005), temporal-contrast
re�nas (Kramer 2002; Lichtsteiner et al.�
2004), the dynamic vision sensor silicon
re�na described in Sec� �on 2.3 (Lichtsteiner�
et al. 2008), a prototype temporal-contrast
infrared bolometer (Posch et al. 2009), pre-
liminary  color re� na pixel designs (Fasnacht �
and Delbruck 2007; Berner et al. 2008; Ols-
son and Ha�iger 2009), and a recent design�
which outputs both temporal contrast and
gray level informa� on (Posch et al. 2010). �

These designs need to cope with the fact 
that fabricated transistor characteris� cs are �
quite variable.

2.2  Achieving  precision sensing
with imprecise transistors

One of the bif ggest impediments in bringing
the neuromorphic approach to commer-
cially successful products is the problem of
transistor mismatch. Transistor mismatch
refers to built-in variability in transistor
opera� ng characteris� � cs, and leads to the�
sta�c salt and pepper noise in the output�
of inf i�al re� � nas which made the image �
barely recognizable. Transistor mismatch 
is inherent to the way in which transistors
are fabricated (Pelgrom et al. 1998). It is
also one of the two major reasons why the 
silicon industry revolves around Boolean
logic circuits, which reduce the impact of
transistor mismatch by restoring the circuit
output into one of the two power supply
levels of a circuit block. (The other reason
is the availability of toolsf for designing com-
plex synchronous logic circuits.) Because 
matching precision scales with transistor
dimension, precise analog design requires
an increase of transistor area devoted to
analog processing as process technology
scales down. These considera� ons suggest �
that analog signals from sensors should be
converted quickly to a digital representa-
� on so that the subsequent computa� � onal�
precision can be precisely controlled. How-
ever, at lower precision, analog computa-
�ons take less area and consume less power�
than equivalent digital representa� ons and�
computa�ons (Sarpeshkar 1998). Analog �
designers have increasingly focused their ef-
forts on embedding circuit mechanisms that
decrease the e� ect of device imprecision on�
sensor performance. These mechanisms in-
clude dynamic adapta�on and gain control�
that op�mally u� �lizes the internal signal �
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range, digital calibra� on, and so� 	ware post-	
processing. The most successful neuromor-
phic sensors have paid par� cular a� �en� � on �
to improvements in their response uniform-
ity. The silicon re�na described next uses a�
combina�on of techniques to improve its�
sensi� vity.�

2.3  The  dynamic vision sensor (DVS)
silicon retina

The silicon re�na discussed in this sec� �on �
is called the dynamic vision sensor or DVS,
because it emulates re�nal processing con-�
cerned with dynamic informa�on. The DVS �
is used as an example of a silicon ref � na�
where organizing principles are success-
fully transferred from biology into silicon.
The DVS forms an abstrac� on of the re� � na’s�
transient pathway (Fig. 1  a), which is blind to 
sta�c input, monochroma� �c, and rela� � vely �
fast (Rodieck 1998). The transient pathway 
can be contrasted with the sustained path-
way, wyy hich has proper� es more like conven-�
� onal cameras.�

The DVS models a simpli�ed 3-layer re� �na �
(Fig. 1  b) consis�ng of  photoreceptors,  bipo-�
lar cells, and  ganglion cells. In the simpli� ed �
biological re� na in Fig. 1  b, the photorecep-�
tors transduce from the input s�mulus light �
to electrochemical signals. Bipolar cells
compare the photoreceptor outputs with
spa�otemporal lowpass averages computed�
by the horizontal cell spreading network and 
rec�� y the di� �erences into ON and OFF ac-�
� vity. ON and OFF ganglion cells generate�
ac�on poten� � als (spikes) from the bipolar�
cell outputs. The DVS simpli� es this clas-�
sical scheme even further by omi� ng the�
horizontal spa� al averaging computed by �
the horizontal cells. Each DVS pixel (Fig. 1  c)
consists of 3 parts: a logarithmic photore-
ceptor, a temporal-change “di� erencer” �
ampli� er (bipolar cells), and 2 decision units�
(ganglion cells). The pixel output is an asyn-

chronous stream of ON and OFF events that
signal log intensity changes, which usually
correspond with scene re� ectance changes. �
The genera� on of these events follows the�
process illustrated in Fig. 1  d: The con� nu-�
ous-� me photoreceptor output encodes�
intensity logarithmically as a voltage (logI). 
The di�erencer ampli� �es the change in this�
output from a memorized value to produce
A · d(logI) = A · dIdd /II I// . Ganglion cell compara-II
tors detect a change in log intensity which 
exceeds a threshold and emit an ON or OFF
event. The emission of an event also causes
a new logI value to be memorized acrossI
the capacitor. The ON and OFF thresholds
are typically set to about 10 % contrast. AER
communica�on circuits along the periphery�
of the chip (Fig. 1  e) transmit the address
events o� -chip with latencies of less than a�
microsecond.

What is the meaning of each DVS event?f
Each event represents a quan� zed change�
in log intensity. Light falling on the re� na�
is a product of the scene illumina�on and�
re�ectance. In the usual condi� �on where�
scene illumina� on is constant over � �me, �
the sta� c logarithmic response of the DVS�
photoreceptor turns this product into a
sum. The di�erencing opera� � on that subse-�
quently produces events thereby encodes
scene re� ectance changes, which typically�
represent moving objects. Because this 
computa� on is based on a compressive�
logarithmic transforma�on in the photore-�
ceptor circuit, the pixel can operate over a
wide  dynamic range of backf ground intensity
(120 dB as compared with 60 dB for a high
quality conven�onal image sensor). This �
wide dynamic range capability means that
the sensor can be used under uncontrolled
natural ligh� ng condi� � ons that are typi� �ed�
by wide varia�ons in scene illumina� �on. The �
events are transmi�ed o� �  chip in a frac� � on�
of a microsecondf , so the �ming of the pixel�
event is preserved, leading to a typical ef-
fec�ve frame rate of several kHz. The data�
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Fig. 1  Dynamic vision sensor (DVS)  silicon re� na. � a Sustained and transient pathways from
the re�na through the lateral geniculate nucleus (LGN) to the striate cortex; � b 3-layer re� na; �
c DVS pixel schema�c; � d principle of operf a�on; � e DVS die micrograph and mirror symmetric
arrangement of 4 pixels; f DVS ref �na USB2.0 camera and embedded microcontroller camera; �
g example DVS output data. “Faces” shows events rendered as a 2  d histogram over a 26 ms
� me slice. “Juggling Event Time” shows events from a juggler rendered so that lighter events �
occurred later in the 57 ms �me slice. “Space-Time Spike Events” shows events from a�
spinning dot rendered in 3 d space-�me. Adapted from Liu and Delbruck (2010)�
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rate is o	en a factor of 100 	 � mes lower than�
that of a frame-based image sensor with an
equivalent �me resolu� �on. The pixel design �
provides enough response uniformity such
that the pixel contrast threshold can be set 
to about 10 % contrast, allowing the device 
to sense real-world contrast signals.

The DVS chip can be connected to a vari-
ety of other devices (Fig. 1  f). It is only neces-
sary that the receiving device (e. g. custom
mul�-neuron chips or microcontroller) use �
the digital AER protocol. The chip has been
integrated into a camera unit which inter-
faces to a computer via a standard USB2.0 in-
terface that delivers � me-stamped address-�
events to a host PC where post-processing
of the outf put events allows us to easily ex-
plore event-driven algorithms which we can
test in real-world scenarios.

The DVS output data (Fig. 1 g) shows in-
teres� ng characteris� �cs: The “Faces” image �
shows the 2  d histogram of the ON and OFFf
events over a �me slice of 26 ms. The gray �
level of the “Juggling event �me” image rep-�
resents the event �me rela� � ve to the start �
of the � me window. The “Space-Time Spike�
Events” image exposes the spa� otemporal �
structure of a moving object, in this case
a spinning dot, by displaying the events in
space-� me coordinates. �

The DVS re�na model is only a loose ab-�
strac�on of the transient pathway. Even �
though this simpli� ed silicon re� �na lacks �
many classes of re� nal cells, it is proving�
useful for various prac�cal applica� � ons as�
will be discussed in Sec�on 4.�

3. 
Conven�onal audi� � on and �
silicon cochleas

Historically, incoryy pora� ng biological know-�
ledge into machine audi�on has lead to im-�

proved systems. Biologically inspired meth-
ods improve the performance of speech 
recogni�on systems (Gold and Morgan�
2000).  However the input stage of these 
systems is di� erent for that of the biologic-�
al cochlea. In machines, the acous�c signal �
is processed by extrac�ng frequency com-�
ponents of the sound within af � me window �
(20 ms for example) using a Discrete Fourier
Transform (DFT). The power spectrum of the
DFT is transformed logarithmically and again 
processed through a � lter bank which has �
a log distribu� on similar to that measured�
in human cochleas. Systems based on the
above methods are dominant because of
the e� ciency of the Fast Fourier Transform �
(FFT), and digital signal processing (DSP)
chips that support the type of mathemaf � cal�
computa�on needed for FFTs. Contempor-�
ary  hearing aids, for example, implement an
en�re signal processing chain based on a set�
of customized mostly-digital signal process-
ing chips from microphone to speaker on a
power budget of about 1 mW.f

However, ar��cial audi� �on systems s� � ll �
lack the performance of biolof gical systems,
for example, in tasks such as understanding
speech in noisy backgrounds. Researchers
look at replacing the input stage with a con-
� nuous-� �me cochlea processing stage and�
are also star� ng to explore the use of spikes �
for represen� ng signals in speech process-�
ing systems, u� lizing what is known about�
speech features in various brain regions (Liu
et al. 2010  b).

While silicon cochlea designs have been
evolving over the last 2 decades; recent
coch lea implementa� ons also produce �
asynchronous spike outputs similar to that
of biological cochleas. The analog � ming of �
the silicon cochlea spikes carries precise �m-�
ing informa�on about the sound, similar to�
spikes from the spiral ganglion cell outputs
of the biolof gical cochlea. Developing meth-
ods to process these spikes can guide us on 
how informa�on is processed from the co-�
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Fig. 2 The AER-EAR2  silicon cochlea. a cochlea and its basilar membrane (BM); b frequency response
of the BM; c cascaded second-order-sec�on (SOS) stages of the AER-EAR2 silicon cochlea; � d integrated
binaural 64 channel spike-based cochlea; e USB board implementa� on;� f response to speech “The quick f
red fox jumped over the lazy dog”. Each dot is an event; lower channel numbers are tuned to higher
characteris� c frequencies. Adapted from Liu and Delbruck (2010)�

bandpass �lters of Lyon and Mead (1988)�
(see Fig. 2  a). Depending on the input fre-
quencies, a frequency component of the
pressure wave generated in the � uid leads�
to a maximum displacement at some place
along the basilar membrane (Fig. 2  b) de-
pending on its  characteris� c frequency (CF). �
The basilar membrane structure has a char-
acteris� c frequency (CF) which decreases�
exponen�ally from the base to the apex. The �
cascaded 1-d cochlea captures the sharp
roll-o�  in frequency response of the basilar�
membrane but has limita�ons; a failure in �
one of the stages will lead to a failure in sub-

chlea to the cochlear nucleus, the midbrain,
and other brain structures in the auditory
cortex, and might o� er insights into how hu-�
mans are able to process speech and other 
sounds e�ec� � vely in adverse environments�
such as hearing through noise, reverbera-
�on and interference from other speakers.�

3.1 History of  cochlea designsf

Silicon cochlea models o	 en implement the 	
basilar membrane (BM) architecture as a
cascaded set of  second-order-sef c�on (SOS) �
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sequent second-order-sec�on (SOS) stages.�
Also, the accumula�on of noise along the�
cascaded stages presents a problem. But be-
cause the noise outside of the pass band of
the �lters will be removed as one proceeds�
along the cascade, the noise accumula� on�
quickly saturates to a level that is tolerable 
(Sarpeshkar and LyLL on 1998). A large number
of stages within a frequency range also lead 
to a larger delay through the cascade than
observed in the real cochlea.

Because of these drawbacks, a number of 
labs have a�empted to construct BM mod-�
els based on a parallel (rather than cascad-
ed) 1-d architecture, or a 2-d architecture
that includes the role of thf e �uid coupling�
between the stages (Wa� s et al. 1992; Fra-�
gniere 2005; Wen and Boahen 2006; Hamil-
ton et al. 2008). But these approaches have
their own drawbacks, such as increased chip
area, and sensi�vity to mismatches between�
stages, which cause destruc� ve interfer-�
ence and greatly reduce the theore� cally-�
achievable gain. A recent hot topic in coch-
lear designs concerns the implementa� on�
of local gain control as enabled by the outer
hair cells. Developers are considering ways
of measurinf g of the BM sif gnal amplitudes 
and using these measurements to tune the 
sharpnesses of the resonances of the stages
(Sarpeshkar and LyLL on 1998); others include
implementa�on of Hopf-like models of outer �
hair cell ac�ve nonlinear ampli� �ca� �on or at-�
tenua�on of the signal, using discrete chips�
(Mar�gnoli et al. 2007) or approxima� � ons of �
such models in silicon (Hamilton et al. 2008; 
Katsiamis et al. 2009).

3.2 Spiking cochlea architectures

The latest silicon cochlea designs include ei-
ther cascaded or parallel architectures for
the BM, inner hair cells, and the spiral gan-
glion cells with AER outputs (Abdalla and
Horiuchi 2005; Fragniere 2005; Sarpeshkar

et al. 2005; Wen and Boahen 2006; Chan et 
al. 2007; Liu et al. 2010  a).

Our latest cochlea implementa�on (AER-�
EAR2) is a binaural cochlea intended for
spa�al audi� � on and auditory scene analysis�
(Liu et al. 2010  a). It integrates many features
of former designs in a more user-friendly
form. It uses cascaded second-order-sec-
�ons (SOSs) (Fig. 2  c) which drive inner hair�
cells, which in turn drive mul�ple ganglion�
cells with di�erent spike thresholds. The �
resonance of individual sef c� ons can be ad-�
justed by a local digital-to-analog converter
(QDAC). This chip (Fig. 2  d) includes a variety
of features including a matched binaural
pair of cochleas, on-chif p digitally controlled
biases, on-chip microphone preampli� ers,�
and open-sourced host so	ware algorithms 	
(jAER 2007). A bus-powered USB board en-
ables easy interfacing to standard PCs for
control and processing (Fig. 2  e). An example
response of AER-EAR2 to speech is shown in
Fig. 2  f. 

3.3 Applications of cochleasf

Applica� ons of analog silicon cochleas in �
audit ory tasks have been explored by dif-
ferent groups. The � rst experiments were �
done on extrac�ng pitch and spa� �al loca� �on �
(Lazzaro et al. 1993; van Schaik and Sham-
ma 2004). Because of the availability of AER
cochleas, the focus has shi	ed to computa-	
� ons that capitalize on the precise� �ming of �
the cochlear events. This precise � ming is �
useful for es� ma� �ng  interaural� �me di� � er-�
ence (ITD) cues which can be used to local-
ize sound sources (Chan et al 2007; Liu et al.
2010  a) and for speech recogni� on tasks (Us-�
yal et al. 2006). Es�ma� � ng interaural � �me�
di� erences (ITDs) is expensive to compute�
using conven�onal approaches because of �
the high sample rate required on the analog 
microphone output . Another poten� al appli-�
ca�on is the use of these cochlear circuits as�
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preprocessors for  cochlear implant systems 
(Georgiou and Toumazou 2005; Sarpeshkar
et al. 2005).

4.
Processing events

AER sensor events can be digitally processed
by algorithms running on conven� onal hard-�
ware (jAER 2007; Delbruck 2008). The main
characteris�cs of these algorithms are that �
they are  event-driven and use the precise
�ming of the events. The focus here is on�
visual processing because these algorithms 
are more evolved.

The only prior work on interfacing AER 
chips with computers was the pioneering
work on processing spikes from a silicon
coch lea for  speech recogni� on (Lazzaro et�
al. 1993). The recent availability of AER vision 
and audi�on sensors with good perform-�
ance and user-friendly computer interfaces
has given new life to this �eld. For example,�
recent applica�ons of the dynamic vision �
sensor (DVS) include object tracking for com-
mercial products (Litzenberger et al. 2006; 
Bauer et al. 2007; Gritsch et al. 2008); ro-
bo�c applica� �ons (Delbruck and Lichtsteiner �
2007; Conradt et al. 2009), fall detec� on of �
the elderly in assisted living (Fu et al. 2008),
and in studying the development of tof p-
ological connec�ons (Boerlin et al. 2009).�

Methods for digitally processing events
have evolved into the following classes: �l-�
tersrr that clean up the input to reduce noise
or redundancy; labelers that assign addi� on-�
al meaning to the events such as contour ori-
enta� on or direc� �on of mo� �on; and� trackersrr
that use events to track moving objects. The
� lters and labelers generally use one or sev-�
eral re�notopic maps of event� �mes. These�
maps can be thought of as pictures of the
most recent event �mes. The representa-�

�on of events as so� 	 ware objects allows at-	
tachment of arbitrary annota�on. As events�
are processed, some events are discarded, 
and remaining events are labeled with addi-
�onal informa� �on. Instead of expanding the �
representa�on by expanding the number �
of cell types (as in cor�cal processing), the�
digital events are assigned increasing inter-
preta�on. �

4.1 Low level  visual feature extraction

As one example of this stf yle of processing
we will consider a low level feature extrac-
� on labeler that annotates the events in the�
input stream with addi� onal interpreta� � on.�
The so	 ware	 Direc� onSelec� � veFilter� (Fig. 3)r
shows how orienta� on informa� �on is � �rst �
extracted and then used to compute local
 op� cal � � ow vectors. These vectors are then�
integrated over space to compute global
transla�onal, radial, and tangen� �al op� �cal�
� ows. The input shown in Fig. 3  a is generat-�
ed from a dynamic vision sensor (DVS) cam-
era � ying around a room (in this case hand-�
held simulated �ying) painted with black and�
white squares on the walls. The orienta�on �
labeler labels the ON and OFF DVS events
with an addi�onal ‘orienta� � on type’ that sig-�
nals their spa� al angle of maximum correla-�
� on with past events in the spa� �al vicinity.�
This labeler uses a topographic memory of 
past event �mes. Events generated by pixels�
along a moving edge of af par�cular orien-�
ta� on will be more correlated in� � me than�
events at other orienta�ons. The orienta� � on�
labeler tags each event using criteria about
the maximum allowed correla� on� �me with-�
in the recep�ve � �eld. Events that pass the �
correla� on test are output as orienta� � on�
events. The correla�on � �me is the average �
� me di� �erence between this event and the �
past ones stored in the region of the recep-
� ve� � eld, with smaller� �me di� �erences indi-�
ca� ng stronger correla� �ons.�
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Fig. 3 Example output from the Direc�onSelec� �veFilter� event labeler.r a DVS input to labeler. Grey
pixels indicate no events while white/black pixels indicate ON and OFF events caused by moving edges
in the scene; b output of labeler. Local mo� on vectors (thin lines) are integrated over space and � �me �
to produce the global op�cal � � ow components for transla� � on, rota� �on, and expansion (thick lines). �
Rota�on and expansion vectors are centered on the center of the scene�

� ons is in tracking objects, we will now turn �
to this subject.

4.2  Tracking

Object tracking is widely-used visual cap-
ability. The main advantages of usinf g an
AER sensor for object tracking include sys-
tem computa� onal e� � ciency, low system �
latency, and the cayy pability of the sensor tof
operate over a wide dynamic range of back-
ground intensi�es. One example is a tracker �
called the RectangularClusterTracker thatr
tracks mul�ple moving objects (Litzenberger �
et al. 2006; Delbruck and Lichtsteiner 2007).
This tracker treats an object as a spa�ally-�
connected source which generates a cluster
of temporally correlated events. As objects 
move, they generate events which drag along
the clusters. Clusters are spawned by events 
and disappear when moving clusters merge

The orienta� on events are then used to�
compute local mo�on vectors using the � �me�
of � ight of orienta� � on events. Each orienta-�
� on event starts a search over the map of �
past orienta� on events in a direc� �on normal �
to the orienta� on, and the most likely direc-�
� on of mo� � on is chosen based on a correla-�
�on measure similar to the one used for ori-�
enta�on. The speed is computed by the � � me�
of �ight from the past orienta� �on event. The�
output of the mo�on labeler (Fig. 3  b) shows �
how the local normal � ow vectors (thin�
lines) result in es�mates of the global trans-�
la� onal � � ow (thick line from center), which �
in this case, points to the le	 . Similar global	
metrics of rotf a�onal and radial � � ow are also �
computed.

Low level methods for processing spikes 
like the Direc�onSelec� � veFilter� could pro-r
vide a means of brinf ging a hierarchical style 
of dif gital processing to AER events. But since
the main success so far in prac�cal applica-�
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Fig. 4 Object  tracking:
Rectangular Cluster-
Tracker tracks two 
persons and a car. The 
history of each cluster isf
shown as the dots

using standard USB interfaces (Delbruck and
Lichtsteiner 2007). This combina� on of met-�
rics would be impossible to achieve using
conven� onal frame based vision.�

Other types of trackers have also beenf
developed. For instance, the world’s � rst�
pencil balancing robot uses a pair of dynam-
ic vision sensors (DVSs) with embedded mi-
crocontrollers (Fig. 1  f) to track the pencil in
3 d space. The low memory and processing
costs of events allow the pencil balancing 
robot to process input events at an e� ec� � ve�
frame rate of more than 10 kHz using only
200 mW embedded �xed-point microcon-�
trollers (Conradt et al. 2009).

Work is ongoing to extend these no�ons �
about object tracking to include simultane-
ous tracking of mul� ple objects, object clas-�
si� ca� �on, and object recogni� �on.�

 Summary and discussion  

AER sensors are star� ng to make their way into �
usable high-performance prototypes. The nine
papers from 2002 to 2010 on event-based sen-
sors in the very compe��ve IEEE Interna� � onal�
Solid State Circuits Conference illustrate that
this approach is star�ng to impact mainstream �
electronics (Barbaro et al. 2002; Fragniere 2005;

or when they are starved of events. Clusterf
sizes are determined either by knowledge of
the scene (perspec�ve) and object classes�
(e. g. cars), or they can be dynamic.

Tracking using events is advantageous
because clusters do not have to be tracked
over frames. Each pixel event updates the
informa� on about the size and loca� � on of its�
member cluster and only sensor pixels that 
generate events need to be processed. The
primary processing cost is thus dominated
by the search for the nearest exis� ng cluster �
and the memory cost is limited only to the
storage of the list of f clusters.f

Fig. 4 shows an example of how the Rect-
angularClusterTracker can track a car andr
two people in a scene. Over the 157 ms win-
dow shown, the DVS produces 2048 events. 
1730 events were le	 a	 	 er pre-	 �ltering to �
remove uncorrelated ac� vity. The past loca-�
�ons of the clusters over 2048-event slices �
are shown by the dots. The sizes of the clus-
ters dynamically come to equilibrium by
balancing the events inside and surrounding 
the clusters.

The RectangularClusterTracker has been r
used in a  robo� c goalie that has a reac� � on�
latency of 3 ms with a 4 % f processor load,
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Mallik et al. 2005; Sarpeshkar et al. 2005; Wen 
and Boahen 2006; Lichtsteiner et al. 2006; 
 Posch et al. 2007; Massari et al. 2008; Posch et
al. 2010).
One achievement of this work is the developf -
ment of event-based digital processing meth-f
ods that capture the � avor of biological spike-�
based processing. These methods were only
developed a	 er sensors were built in a form 	
that allowed their everyday use away from the
lab bench. Although these methods have been
developed as so	 ware algorithms on standard 	
computers (jAER 2007), one can consider a vari-
ety of event-processing pla� orms ranging from�
conven� onal computers to the other extreme �
of using AER neuromorphic chips (Choi et al. 
2005; Chicca et al. 2006; Serrano-Gotarredona
et al. 2009). Our industrial partners are using an 
embedded DSP pla� orm (Belbachir et al. 2007).�
We ourselves have used � ny microcontrollers �
(Conradt et al. 2009) and are star� ng to use �
� eld-programmable gate arrays (Linares-Bar-�
ranco et al. 2007). This � eld has the poten� � al �
for realiza� on of small, fast, low power, embed-�
ded sensory-motor processing systems that are
beyond the reach of tradi�onal approaches un-�
der constraints of power, memory, and procesf -
sor cost. The availability of event-based siliconf
re�nas and cochleas will enable inves� �ga� � ons�
of binding across visual and auditory sensory
modali� es using the� �ne temporal structure af-�
forded by spikes. The asynchronous nature of
AER data could inspire digital signal processing
that breaks away from conven� onal regular-�
sample processing and that builds on top of
decades of work in understanding computa�on�
by the nervous system (Liu and Delbruck 2010).
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