
Christian P. Brändli

Driving With Spikes

Lane Detection In A Semi-Neuroinspired Manner

Bachelor Project

Institute Of Neuroinformatics
Swiss Federal Institute of Technology (ETH) Zurich

Advisors

Tobias Delbrück
Thomas Besselmann

Rodney Douglas

August 25, 2008

Abstract

The goal of this project was to create an algorithm that allows an au-
tonomous robotic car to find its way along a chalk drawn lane by using
the inputs of a spike-event-based silicon retina. This machine vision task
could not be tackled with the existing frame based vision algorithms. A
neuroinspired processing concept was developed whose methods are able
to track a line as well as a lane. The events are filtered to increase the
signal to noise ratio, undistorted and processed with a line prediction
algorithm. The extracted information can be used to handle the control-
ling of the car in a virtual environment and in reality. The car is able to
follow a line and a lane in the virtual reality and it can follow a line on
a real street at walking pace.

Contents

1 Introduction 6
1.1 The Project . 6
1.2 Neuroinspired Programming 7

2 System Description 9
2.1 The Hardware . 9
2.2 The Software . 10
2.3 The Execution . 11

3 The Implementation 12
3.1 The Architecture . 12
3.2 The TmpDiff Chip . 13
3.3 The OrientationCluster Class 14
3.4 The PerspecTransform Class 17

3.4.1 The Perspective Distortion 17
3.4.2 The Lens Distortion 17

3.5 The HingeLineTracker Class 18
3.5.1 The AccumArray Object 18
3.5.2 The Winner-Take-All Algorithm 18
3.5.3 The Concept Of Attention 19
3.5.4 The Output . 20

3.6 The HingeLaneTracker Class 20
3.6.1 The Separator . 20
3.6.2 Entering Or Leaving Lines 21
3.6.3 The Output . 21

3.7 The FancyDriver Class 22

4 Results 23
4.1 The OrientationCluster Class 23
4.2 The PerspecTransform Class 23
4.3 The HingeLineTracker Class 23
4.4 The HingeLaneTracker Class 24
4.5 The FancyDriver Class 24

4

5 Contents

5 Conclusion And Outlook 25
5.1 Conclusion . 25
5.2 Outlook . 25

A Acknowledgements 27

B Attachment 28
B.1 Code . 28
B.2 Movies . 28
B.3 Blueprints . 29
B.4 Literature . 29
B.5 Presentation . 29
List of Figures . 30
Bibliography . 30

1 Introduction

1.1 The Project

The TmpDiff128 chip in the sili-
con retina camera is a powerful tool
which processes visual inputs in a
similar way our retina does [1]. Due
to its neuromorphic architecture it
has advantages compared to a clas-
sical video camera which make it
suitable for a machine vision task.
The cameras output are address-
events which only contain the infor-
mation where (spacial coordinates
of the pixel), when (a timestamp)
and what kind of contrast change
(from dark to bright or the other
way round) happened within the
visual field of the camera. So it
doesn’t produce huge amounts of
redundant information by reading
out each pixel to create a frame,
as a normal camera does. It just
waits until something happens and
then sends out these events - so if
neither the camera moves nor some-
thing in front of it, there are no con-
trast changes and nothing is sent
out. This does not only reduces
the amount of data but also allows
a high and adjustable (not read-
out frequency dependent) temporal
resolution. Additionally the cam-
era only sends out ”‘interesting”’
informations, that come from ob-
jects that change their position rel-

ative to the camera and this makes
a lot of visual preprocessing super-
fluous. So all in all the silicon retina
camera seems to be tailor-made for
dynamic machine vision tasks.

It was the goal of this bachelor
project to demonstrate that one can
really use the silicon retina for such
a machine vision task, which in our
case was to let a robotic car follow
a lane with high velocity. There-
fore the camera together with a mi-
cro PC, an acceleration sensor, a
servo-controller micro chip and an
USB-hub were mounted on a 4x4
remote controlled electric monster
truck. The data that came from the
camera was transmitted with an
address event representation proto-
col (AER) via the USB port to the
micro PC where it then got read out
by the java project jAER [2]. So
the core of the project was to de-
velop an algorithm within the jAER
project, that processes the incom-
ing events in a way that it can send
out the proper commands to the
servo board which controls the mo-
tors of the RC-Car.

This project was realized in col-
laboration with Robin Ritz and
while this part of project is about
recognizing the lane and its border-
lines, he developed a model of the
car in a 3D-environment and set up

6

7 1.2. Neuroinspired Programming

the controlling algorithms to steer
the car. The merging and testing of
the algorithms in the real world en-
vironment were then done together.

1.2 Neuroinspired
Programming

Since the data we used as input was
not made of images or frames but
events, we couldn’t use any classi-
cal approaches because converting
our data into frames would have
destroyed its neuromorphic nature,
i.e. its advantages. The goal was
therefore to develop a concept that
processes the data in a way that
can handle its event-based nature
as well as using its advantages and
so it was obvious to treat them in
a similar way the brain does - in a
neuroinspired way. But what does
this mean?
If one wants to process data in a
computer the way the brain does
it, there are certain principal prob-
lems to solve and one should follow
some rules. Thinking about these
limitations lead me to the following
conclusions:

The Paradox Of
Neuroinspired
Programming

The paradox of neuroinspired Pro-
gramming can be reduced to the
following sentence: The brain is
no Turing machine. Since the

computer and the whole idea of pro-
gramming, i.e. building algorithms
is based on the idea of a Turing
machine, it will never be possible
to build a program that works in
the way our brain does because it
works in a fundamentally different
way. How does this come?
The brain is a huge network of
neurons that work in a simple
way: They let other neurons de-
posit charge on their membrane un-
til the voltage across this mem-
brane reaches a threshold which
makes them fire, i.e. by sending
out spikes they deposit charge on
other neurons. So to speak they
are nothing else than analog to dig-
ital converters which integrate ana-
log currents to a certain threshold
at which they then create a dig-
ital output pulse. In reality this
is more complex of course but this
main principle describes a lot very
well. What makes the brain com-
puting, is not a single neuron, it
is the network with its connections:
In contrast to a computer a brain
does not distinguish between mem-
ory and processing unit - the net-
work is both. It is the wiring and
weighing of the connections in be-
tween the neurons that determines
what the output for a certain input
is. This is also the reason why a
brain is able to learn - it has the
ability to change its computation
structure by changing the strength
of the connections.
An output of one neuron is the in-
put of many other neurons, which

8 1.2. Neuroinspired Programming

is parallel and simultaneous signal
transduction and leads to the fact
that the whole brain computes in
parallel. And this is exactly the
difference between a brain and a
Turing machine: While a Turing
machine can only execute serial or-
dered commands, the brain com-
putes in parallel through the net-
work given structures.
The implementation of the network
would not be a real problem but
it is impossible to do simultane-
ous calculations on a computer with
only one CPU. Neuroinspired Pro-
gramming therefore tries to emu-
late the brain within the serial com-
mand structure of a computer by
dividing the time into sections in
which pseudo-simultaneous actions
are possible.

The Rules Of
Neuroinspired
Programming

In order to guarantee the neuroin-
spired nature of the developed pro-
gramming code, some rough rules
about handling the data were set
up:

• Do It Like The Brain The
calculations done should also
be possible for a network. This
leads to a processing struc-
ture that contains different lay-
ers of ‘neurons’ (stored in ar-
rays) that change their state
depending on the input they
get. Each neuron has a de-

fined amount of possible input
and output-neurons which can
change the state of the neuron
or can get changed by it. No
neuron should have the possi-
bility to change a whole layer
(no ‘supervision neurons’)

• No Event - No Compu-
tation Since the brain does
not know any algorithms, the
job of the programmer is to
prepare structures in which
an event can drive a cascade
of reactions. This can be
done by simple arithmics or
if-statements. It is forbidden
to implement any supervised
process that scans through an
entity. The whole computing
should be event-driven and or-
ganized bottom-up.

• Simultaneous is Simulated
Supervised scanners or itera-
tors (e.g. for-loops) are only
allowed if they simulate pro-
cessing steps that would be
simultaneous. So a for-loop
should for example be used if
it represents the effect of an
event that happens at the same
time in an entity (e.g. a neu-
ron that projects to a number
of other neurons).

Most of the project was imple-
mented following these rules but
certain processing steps couldn’t
done this way, so other methods
were used which made the approach
a semi-neuroinspired one.

2 System Description

In the following all methods and
technical devices to realize the
project used are presented.

2.1 The Hardware

Camera

The camera used was an asyn-
chronous temporal contrast silicon
retina with a TmpDiff128-chip that
has a 128x128 resolution, 120dB
dynamic range, 23mW power con-
sumption, 2.1%-contrast threshold
mismatch and 15 µs-latency, [10].

Micro PC

The micro PC used was a
VAIOR©UX 180 Micro PC with
an Intel CoreTM2 Solo processor
U2200 (1.2GHz, 2MB L2 cache)
and Windows XP. It has 500 MB
RAM and a 16 GB flash HD, [11].

RC Car

The RC Car used was a TRAXXAS
E-MAXXTMwith a 14-Volt power
system for two twin TitanR©550 mo-
tors and a top speed over 50 kph.

Servo Board

The servo board used was a US-
Bservo board with a Silicon Labs
C8051F320, [10], capable of con-
troling four servo motors and auto-
matic override of the computer con-
trols from the RC headset.

Structure

Camera Mount

A first construction to mount and
protect the camera that was made
of wood and used a mirror but it
had several drawbacks: It cut off
a very important part of the visual
field of the camera and it broke af-
ter a crash after which it had to
be repaired. A second construction
we built which was made of wood
and plexi and that used a spring
and a screw to adjust the camera
angle also broke after intense test-
driving so P. Lichtsteiner made a
solidly built, full plexi construction
that also allowed to adjust the an-
gle of view.

Acceleration Sensor And PC
Mount

In the beginning the Micro PC was
just put into the chassis of the Car
so it was badly protected, rather

9

10 2.2. The Software

Figure 2.1: The RC-car with its components: (A) The silicon retina and its mount (B) The accel-
eration sensor which is mounted underneath the white plate (C) The usb-hub (D) The
micro PC within its protective box

loose and hard to access. To im-
prove the protection and fixation, a
full plexi box with transparent and
removable cover was built in a man-
ner that the PC was tightly locked
inside.
To ensure an accurate acceleration
measurement in the center of the
car, the acceleration sensor was
screwed, very well protected, on a
plexi piece which allows different
positions and orientations of the
sensor.

2.2 The Software

The jAER-project

The jAER project is a collection
of objects and methods to handle
AER (adress event representation)
data in java. It served us as ba-

sis to develop the algorithms and
its GUI, the jAER-viewer made it
easy to see the results and adjust
the parameters and biases.

NetBeans

All code was written in the IDE
NetBeans which is an open source
development environment. Net-
Beans was also used to profile the
performance of our algorithms.

RealVNC

To see the real-time performance of
our algorithms on the RC-car and
to adjust the parameters we tried
to use RealVNC over wireless LAN
but for non-ideal WLAN conditions
the connection was to slow and use-
less.

11 2.3. The Execution

2.3 The Execution

The Programming

The building of the basic algo-
rithms (Feb-May) was done by us-
ing already existing code and al-
gorithms as pattern. Most of the
programming style was taken over
from the preexisting jAER objects
and methods.

The Refinement & Testing

The refinement of the code, the
testing and the adjusting of the pa-
rameters took far more time than
planned. This had several reasons:

• The WLAN-Connection:
The adjusting of the pa-
rameters could not be done
real-time because is was im-
possible to set up a WLAN
that was fast enough to main-
tain the connection to the
micro PC. So the parameters
had to be adjusted by hand
(unplugging and taking the
micro PC out of the box) and
USB-Stick which took very
long.

• The Test-Track: It was not
possible to find a testing area
which was large enough, cov-
ered, with a black ground
and enough light. An al-
most ideal spot in the park-
ing garage could not be used
because the retina doesn’t
work with deeply-modulating
sodium lighting.

• The Power: The power of
the micro PC and the RC-car
only lasted for about one hour.
While the RC-car was very fast
recharged, the mirco pc took
very long. This made the time-
frame for testing very narrow.
It became even narrower be-
cause the power packs of the
car became weaker and weaker.

• The Weather: Often when
test-runs were planned, it
rained or started to, which
made driving impossible be-
cause the micro PC would have
gotten wet.

• The Light Conditions: Pa-
rameters that were right for
sunshine did not work anymore
for overcast or twilight condi-
tions. So changing conditions
led to a lot of adjustment work.

• The Lens: While a small an-
gle lens made it impossible to
see the whole lane, a wide an-
gle lens distorted the picture
and reduced the resolution and
both of these options caused
problems hard to tackle.

3 The Implementation

In the following not only the so-
lutions we found for the problems
that arisen during tackling the task
are depicted, but also some ap-
proaches that failed or seemed un-
suitable for certain problems. To
fully understand what the algo-
rithms are doing one should have
a look at the code which can be
found on the attached CD. The
typed words represent variables or
classes of the implemented algo-
rithm which are in some cases ac-
cessible as parameters in the jAER-
viewer.

3.1 The Architecture

The idea behind the algorithm ar-
chitecture was to process the vi-
sual input information and solve
the problems in the same order and
a similar way our brain does. So the
task was split into a number of pro-
cessing steps (specifically into soft-
ware classes) which have an analog
in the brain (fig. 3.1):

1. Retina - TmpDiff Chip:
The preprocessing which is
done in the retina is in our case
undertaken by the TmpDiff
Chip that produces the first
signals to process in jAER.

2. LGN - attention: By using
informations about the posi-
tion of the line, the attention
around it modulates the inten-
sity of the incoming events. In
the brain the lateral genicu-
late nucleus (LGN) has a sim-
ilar function and helps focus-
ing the attention on the impor-
tant inputs. Since this atten-
tion driven modulation is not
very complicated it is imple-
mented as a part of the Ori-
entationCluster.

3. Visual Cortex - Orienta-
tionCluster The orientation
of the presented stimuli is ex-
tracted, which in the brain is
done by simple cell columns
and if they satisfy some criteria
- in our case this is being part
of a line - they are forwarded.

4. Visual Cortex - Perspec-
Transform The Perspec-
Transform then filters out the
uninteresting events that do
not origin from the road and
it transforms the image to
account for the perspective
and the lens distortion. It is
thought that the perspective
transformation in the brain is
also done in the visual cortex.

12

13 3.2. The TmpDiff Chip

1

2 3
4

6

5

Figure 3.1: The architecture of the approach: (1) The silicon retina chip which serves as retina
(2) The attention method of the OrientationCluster which serves as lateral geniculate
nucleus (LGN) (3),(4) The OrientationCluster and the PerspecTransform which serve
as visual cortex (5) The HingeLineTracker and the HingeLaneTracker which serve as
prefrontal cortex (6) The FancyDriver which corresponds to the motor cortex from where
the commands are sent to the motoric devices.

5. Prefrontal Cortex - Hin-
geLine/LaneTracker From
the visual information a line is
extracted. Since this is done in
a supervised, so to say cogni-
tive way, the prefrontal cortex
as home of the executive func-
tions is considered the most
appropriate spot to ‘place’ this
algorithm.

6. Motor Cortex - Fancy-
Driver The information
about the line(s) has to be
directed to the motor devices
which are in an animal the
muscles and in our case the
electro motors. The analog for
the FancyDriver is therefore
the motor cortex.

3.2 The TmpDiff Chip

If we observe the world with our
eyes, we do this with the rods and
cones on our retina. Both types
of these photo receptors show an
adaptation behavior which follows
in case of the cones a logarithmic
behavior [3]. This adaptive loga-

Figure 3.2: Dark- and light-adapted intensity-
response curves recorded in a
red cone. From [3] c©Blackwell
Publishing

14 3.3. The OrientationCluster Class

rithmic behavior was implemented
in the retina chip by using the
properties of MOSFET-transistors
in subthreshold. This adaptive be-
havior makes that a pixel, which
represents a photo receptive neu-
ron, only sends out signals - so
called spikes - if it observes an
change in light intensity. Usual
pixels just store the light intensity
and have then to be read out by a
‘scanner’, this is not how it works
in our retina and also not in the
retina chip. In the TmpDiff chip
a pixel autonomously sends a spike
to the USB-port without any su-
pervised scanner. Furthermore the
chip distinguishes, like the bipo-
lar cells in our eyes, the polarity
of the events that happen: If the
light intensity changes from dark to
bright, it sends out an ‘ON’ spike
and if changes from bright to dark
an ‘OFF’ event is sent out. So
the output of the camera are events
which contain when (timestamp),
where (coordinates) and what kind
(polarity) of brightness change hap-
pened.

3.3 The
OrientationCluster
Class

To consider only the events that
might come from a line, each event
has to pass a line selective filter. To
build such a filter one has to find
a property of an event that corre-
lates to the fact that it is originat-

ing from a line. This property is
in our case that the orientation of
an event from a line is similar to
the one of its spacial and temporal
neighbors. The development of this
class was based on the preexisting
SimpleOrientationCluster class [4].

The VectorMap Array

In order to handle the orienta-
tion of an event, a vector-array
(vectorMap) is used that containes
‘orientation cells’ which stores the
timestamps, the orientation (θ) and
the corresponding intensity (i.e.
vector length) of the most recent
incoming events . This array corre-
sponds to the orientation columns
that were discovered in the cat as
well as in the monkey by Hubel
and Wiesel ([7] and [8]). So the
length of the vector would be the
firing strength and the orientation
its receptive field. To calculate
the orientation, meaning the vec-
tor belonging to an event, the al-
gorithm iterates through the neigh-
boring orientation cells within the
receptive field (defined by width

and depth) of the orientation cell
to calculate it. In each step
the distance vector (from the ac-
tual event to the neighboring ori-
entation cell) gets decayed by an
1/t function (its slope can be ad-
justed by factor) and then the nor-
malized x- and y-components are
added up. The resulting total com-
ponents are used to extract the an-
gle (θ) and the length of the ori-

15 3.3. The OrientationCluster Class

Figure 3.3: The effect of the OrientationCluster: On the left an image of a lane as it comes from the
retina chip and on the right the result of the filtering by the OrientationCluster. The
colors are distributed the following: Theta from zero degrees (vertical) to the ori-angle
(in this case 45◦) - red, green, blue, purple.

entation vector. To avoid that the
two components of a line above and
below an event get subtracted, all
coordinates of orientation cells be-
low the event get point inverted,
so all orientation vectors have a
positive y-component. Addition-
ally one can choose if the Vec-
torMap entries of the opposite po-
larity should be used or not to cal-
culate the orientation of an event
(useOppositePolarity). If they
are used their coordinates get ro-
tated by 90◦ (in a way that the y-
component afterwards is positive)
because the contrast gradient is
rectangular to the course of a line.

The Selection

To decide whether an event
can pass, the orientation of the
neighbors also have to be known.

Therefore during the neighborhood
iteration steps described above, the
vector components of the respective
orientation cells in the VectorMap
are added up to a neighbor-
hood vector (with neighborX,

neighborY, neighborTheta,

neighborLength). The actual
selection then consists of three
criteria:

• The Orientation Differ-
ence: The difference between
the orientation of the event
and the orientation of the
neighborhood vector has to be
lower than a given tolerance

value. This ensures that the
orientation of the event and its
environment are the same as it
is in the picture of a line.

• The Right Orientation:
The orientation angle θ has to

16 3.3. The OrientationCluster Class

Figure 3.4: The orientation vector of an event
(blue): The length and angle are
determined by iterating through the
neighborhood (given by width and
length) and by adding up the nor-
malized x- and y-components of the
time decayed position vectors of the
neighbors. The darker the red, the
more recent the timestamp, i.e. the
more important (longer) the position
vector. White means that the times-
tamp of the most recent event with
this coordinates was below the time
threshold dt and so it does not ac-
count for the total vector.

has to be smaller than a given
ori angle so that horizontal
lines, which are not interesting
in a line-/lane-following task,
are filtered out.

• The Length Of The Neigh-
borhood Vector: The
neighborhood vector length
has to satisfy a certain thresh-
old (neighborThr) to filter
out single events without any
neighborhood activity and

events from a noisy envi-
ronment, that have random
events all around them which
lead in summation to a small
vector.

Additional Features

The outputs of the filter are Ori-
entationEvents which can have a
discrete orientation value from one
to four which is translated into a
color code. The value is relative to
the range in which the orientations
have to be: from zero degrees
(vertical) to the maximum value
(ori) the colors are: red, green,
blue, purple. This allows to use
all four possible colors instead of
sorting some of them out.
By activating textttuseAtten-
tion the vector length of an
orientation Vector gets enlarged
by the attentionFactor times
the attention from the Hinge-
Line/LaneTracker. This allows
some kind of concentration by
feeding back the result of the
tracking algorithm to the filter
(like denoted under 2 in the archi-
tecture).
Similar to the SimpleOrien-
tationCluster [4] one can also
turn on a function that allows
the previous orientations to in-
fluence the actual orientation
(oriHistoryEnabled) by a certain
factor (oriHistoryFactor)

17 3.4. The PerspecTransform Class

Figure 3.5: The effect of the PerspecTransform filter: An perspective, lens distorted image as it
comes from the chip on the left and on the right a perspec-transformed image where this
distortion is corrected and the events from above the horizon are cut away.

3.4 The
PerspecTransform
Class

If one wants to extract steering
commands from visual inputs, the
distortions that arise between the
original image and the ‘seen’ image
have to be considered. In our case
there were two main sources of dis-
tortion which we tried to knock out
with the transformation filter Per-
specTransform:

3.4.1 The Perspective
Distortion

Since the camera is not mounted
perpendicular to the lines that it
records, there is a distortion orig-
inating from the angle in which the
camera looks on to the road. This

distortion is linear, which makes it
easy to handle and what is done, is
linearly squeezing the picture from
top to bottom by a given ratio.
So with stronger squeezing (smaller
ratio) one can account to flatter
angles between the camera and the
observed surface. This squeezing is
done in the algorithm by setting up
a look-up table that tells each event
how far it has to be shifted.

3.4.2 The Lens Distortion

There is another distortion that
originates from the lens. A first self
made implementation of a transfor-
mation algorithm was not success-
ful so the approach of Vass and Per-
laki [5] was used which is built on
the model of Sassenberg [6] and as-
sumes a first order radial correction
(adjusted with k1).
With the knowledge of how the

18 3.5. The HingeLineTracker Class

image gets distorted we set up
look-up matrices which contain the
amount of distortion in the x- and
y-direction. This technique of redi-
recting the input via an existing
structure (look-up matrix) not only
represents the interconnection of
two neural layers, it is also a very
powerful and inexpensive method
of calculation.

3.5 The
HingeLineTracker
Class

Before the development of an algo-
rithm that tracks a lane which con-
sists of two borderlines, the prob-
lem was simplified to one line and
this lead to the implementation of
the HingeLineTracker:
After sorting out the uninteresting
events, the remaining ones have to
be assembled to a line. A first neu-
roinspired approach should, by an
inheritance method, assign to each
incoming event a fuzzy value that
represents the probability of being
part of a line. This approach did
not work because the right inher-
itance was hard to adjust which
made the algorithm instable and af-
ter diverse approaches of fixing it,
it was jettisoned. The actual algo-
rithm is a supervised one that is no
more event driven but it still has
somehow neuroinspired structures.
What it does is the following:

3.5.1 The AccumArray
Object

Instead of assuming the line to
be straight (as it was done in
the existing HoughLineTracker ap-
proach [2]), it is described as a
series of hinges. To place these
hinges, events that are within some
horizontal slices (number of silces:
hingeNumber, lowest slice location:
bottomHinge, highest slice loca-
tion: topHinge) are directed to row
cells (stored in the AccumArrray)
where their intensities get added
up and decay with time (controled
by hingeDecayFactor). Each row
cell in the AccumArray gets inputs
from a certain width and height

within a slice so the AccumArray is
a kind of selective subsampler.

3.5.2 The Winner-Take-All
Algorithm

To set a hinge for each slice the
coordinates of the row cell with
the highest activity are chosen to
set the hinge. This maximum
function corresponds to a winner-
take-all (WTA) circuit which is
considered to play an important
role in the brain’s way of com-
puting [9]. To really set a hinge,
the activity has to be higher than
a threshold value (hingeThr) to
avoid that even smallest activity
due to noise can lead to a hinge
(mis-)placement.
If no row cell of an hinge reaches
the threshold the hinge is sent to a

19 3.5. The HingeLineTracker Class

Figure 3.6: The HingeLineTracker (left): The events that passed the OrientationCluster and the
PerspecTransform filters are used to set up a line approximation with hinges which are
denoted by the white squares. The the activity in the highest slice is not high enough
to set the highest hinge which is waiting on the left border of the image. The white
surrounding of the line approximation is the attention: the whiter the higher the attention
that is paid to a certain pixel. The HingeLaneTracker (right): The concept is the same as
in the HingeLineTracker but white denotes the hinges of the seperator and the borderline
approximations are pink and turquoise.

waiting state until a cell reaches the
threshold (it is no PArt Of a LIne,
so isPaoli=false)

3.5.3 The Concept Of
Attention

To make the line prediction algo-
rithm more stable, attention was
introduced: Each pixel has an
attention value which decays with
time (attentionDecayFactor)
and which directly influences how
strongly an event on this pixel
excites the corresponding row cells
(tuned by attentionFactor. The
attention can be increased in two
ways: Either a pixel is within a
attentionRadius of where an
already set hinge is predicted to

be if one continues with its lateral
movement or it is predicted to
be near a possible hinge which
is predicted by an extrapolation
of two already placed hinges.
The attention around an already
existing hinge makes the hinge less
dependent on the actual activity
because events with attention
activate the row cells more, even if
they are less than events without
attention. By placing the attention
on spots where a missing hinge is
predicted the line prediction gets
completed and extended to regions
with less activity.
An additional mechanism to avoid
instability is the condition that
an already set hinge can only
jump from one position to another

20 3.6. The HingeLaneTracker Class

within a shiftSpace. This makes
hinges stay on a already predicted
line, even if there would be more
activity outside of it.

3.5.4 The Output

The HingeLineTracker delivers two
values:

• The Phi-value: This value is
an weighted average of the an-
gles between the hinges where
the angles count more the
higher they lay in the image.
The first angle counts once, the
next higher twice and so on.
This has the following purpose:
The higher a hinge, the further
away and the more important
it is for the future. Weigh-
ing the future higher leads to
an anticipating error estima-
tion. The higher hinges are
also more reliable since they
are affected by less noise less
if the horizon is cut away prop-
erly. If phi is 0, the line is verti-
cal and if it is 1 the line is hor-
izontal. Positive values come
from a road pointing to the
right (top hinges more right)
and vice versa.

• The X-value: The second
value which is produced as out-
put is the averaged x-position
of the hinges. The averaging
leads to a more stable behav-
ior because the values of mis-
placed hinges get dampened.

The value ranges from -1 at the
full left to 1 on the full right.

3.6 The
HingeLaneTracker
Class

The Hinge Lange Tracker can be
used to let the RC-car follow a lane
which consists of two borderlines.
The main difference between the
LineTracker and the LaneTracker is
the fact that there are two series
of hinges (in the hingeArray: even
numbers for the right, odd for the
left line). This leads to the problem
of assigning events to the two lines,
so to simplify the task, the image is
split by a mobile and flexible sepa-
rator.

3.6.1 The Separator

Incoming events to the right of this
separator only contribute to the ac-
cumArray of the right hinges and
the other way round. Since the line
is not always at the same location
in the image, the separator has to
be adjusted all the time. If the at-
tention of one line is coming close
to the separator, the separator gets
pushed away until the attention of
both lines is equal. So if for ex-
ample the lane is leaving the image
to the left and the right borderline
is shifting more and more in this
direction, than it pushes the sep-
arator to the left until all hinges
have left the frame and all events

21 3.6. The HingeLaneTracker Class

Figure 3.7: The FancyDriver (left): the visual output is similar to the line trackers but in addition
a steering wheel denotes the actual steering angle. On the right the AccumArray, which
represents the activity of the row cells, is shown.

excite the row cells of the right line.
Like this the left row cells do not
get excited anymore and the left
hinges stay unset. So if the right
line moves to the right again while
the right hinges follow it, the sep-
arator follows as soon as the right
hinges passed the middle of the im-
age.
Additionally the separator slowly
(dependent on number of input
event packets) slides into the mid-
dle if neither the right nor the left
hinge are part of a line. If a hinge
is placed in between two hinges, it
gets pushed out.

3.6.2 Entering Or Leaving
Lines

In the case that the whole lane
is leaving the image, the al-
gorithm is sent into a waiting

state (isWaiting) which makes the
hinges align at the side where the
lane left the image and it also
makes the events of the other half
of the image not excite the row cells
until the hinges are set again.
To avoid that low hinges of a line,
which in the lower part already par-
tially left the image, are set to some
noise, they are considered as not
being part of the line as long as an
upper hinge is close to the frame of
the image.

3.6.3 The Output

Since there are two lines, the out-
put is now coming from both line
approximations and instead of av-
eraging the x-values of the hinges
only over one line, it is done for the
two, which results in about the mid-
dle of the lane. The phi is handled

22 3.7. The FancyDriver Class

similarly: because we are interested
in the curvature of the whole lane.
It is possible to draw the output-
values in form of a line (activated
by drawOutput.

3.7 The FancyDriver
Class

The output of the HingeLine-
Tracker or the HingeLaneTracker
is used to extract an error about
where the car is at the moment
and where it should be. The ideal
state where the error is zero is the
one where the phi- and the x-value
are zero. To reach this state two
controllers are implemented: a
PID-controller that works with
the actual error (P), its derivative
(D) and the integrated error (I)
and a LQR-controller that works
with the phi-, the x-value and their
derivatives. These controllers are
further described in the companion
Bachelor thesis by Robin Ritz.

4 Results

To see the algorithms at work
there are some movies on the at-
tached CD which show some ex-
emplary performance of them on a
test-track.

4.1 The
OrientationCluster
Class

With the right parameters the Ori-
entationCluster was able to filter
out the events originating from a
line. This highly increased the sig-
nal to noise ratio which allowed an
increased performance of the Hine-
Line/LaneTracker. The movie on
the CD shows how much of the
noise, i.e. events that do not origi-
nate from a line are sorted out. It
is not possible to sort out all noise
because not matter what criteria
is chosen as filter-criteria, there al-
ways will be some statistical out-
liers that fulfill them.

4.2 The
PerspecTransform
Class

The PerspecTransform helped to
tackle the distortion problem. It

is still not working perfectly but it
made the output values of the lane
trackers, especially the phi value,
more reliable. The transformation
was set up to avoid that the phi
values of a line which is away from
the image center, don’t point away
from the line in reality (because of
the perspective narrowing) and this
goal could more or less be reached.
The problem that still remains, is
the one of tackling the lens distor-
tion where the transforming filter
may have improved the image but
it is still distorted - especially for
the wide angle lens.

4.3 The
HingeLineTracker
Class

If the two filters in front of the
HineLaneTracker were tuned the
right way, it was able to track a
line in a robust way. Thanks to the
built-in attention it could complete
an uncomplete line prediction and
it was also able to ignore noise even
when its activity was higher than
the one of the line.

23

24 4.5. The FancyDriver Class

4.4 The
HingeLaneTracker
Class

The HingeLaneTracker ran stable
and was able to track the two
borderlines unless the lines did
not leave the image or suddenly
changed the lateral position. If
the algorithm once lost the lines it
had almost no chance to find them
again in the right order. If the
car drove slowly the tracker was
able to stay on the lines but sud-
den changes e.g. narrow curves of-
ten made the algorithm mixing up
the lines. Even though the algo-
rithm already has some exception
handling this couldn’t handle all
the variations of exceptions but at
least the separator hinges could be
set to a satisfying behavior.

4.5 The FancyDriver
Class

After some fiddling around with the
interface between the trackers and
the FancyDriver the error needed
for the controlling model could be
extracted from the trackers and
sent to the driver. Some more fid-
dling around with the driver pa-
rameters then allowed following the
line and the lane. In the computer
model the lane could be followed at
moderate speed and the line even
at some higher speeds. In reality
where we draw some lines on the

asphalt ground behind the INI the
lane could be followed if the car was
pushed manually and for the line
tracking it was possible to let the
car drive at moderate speed (a lit-
tle more than walking pace).

5 Conclusion And Outlook

5.1 Conclusion

The project showed that the cam-
era certainly has the power to sim-
plify machine-vision tasks in a way
that less computational resources
have to be used. It also demon-
strated that it is possible to use
the events of the retina and process
them in a neuroinspired manner.
Unfortunately the car following a
lane could only be realized in the
virtual model and for the reality
it only worked when the car was
slowly pushed manually. This and
the fact that it followed the line
only at moderate speed have two
main causes:

• The small visual field: The
camera only recorded a small
part of the street in front of
the car which narrowed the
range of positions and orien-
tations that ‘see’ the line(s).
This made it hard to control
the steering - especially at high
speed - because already small
failures led to a loss of the
line(s). The wider lens could
also not solve this problem be-
cause it introduced others.

• The wasteful parameter-
tuning conditions: Since it
was not possible to do the

parameter-tunig in real-time,
it was a very costly process and
so we couldn’t adjust the al-
gorithms and parameters to an
optimal performance.

5.2 Outlook

To increase the performance and its
stability, i.e. to make the make the
car run faster and longer, there are
several areas one should work on:

The OrientationCluster

The OrientationCluster works quite
well but it requires a lot of compu-
tation time, so the calculation steps
might be optimized. For example
by subsampling the events as it is
done in the SimpleOrientationFil-
ter.
It would also be useful to imple-
ment a learning algorithm that ad-
justs the parameters of the filter to
the light and contrast conditions.

The PerspecTransform
Filter

Since the image is still distorted af-
ter the transformation of the Per-
specTransform Filter, one would
have to think about implementing

25

26 5.2. Outlook

second order corrections or a totally
new transformation approach. If
the actual approach is not replaced,
one would should fix it and avoid
the shrinking of the image for high
k1-values.

The HingeLineTracker

If the line once left the image the
HingeLineTracker should somehow
try to retrieve it but this couldn’t
be implemented yet. Instead of re-
trieving the line the hinges track
some noise which makes it impos-
sible for the FancyDriver to recover
it.

The HingeLaneTracker

The HingeLaneTracker would need
some more elaborate exception
handling to avoid the mixing up of
the lines or to increase the retriev-
ing rate of lines that left the visual
field.

The Parameter-Tuning
And Test-Running

If one wants to make the car driv-
ing at really high speeds it would
be very useful to make real-time pa-
rameter adjustment possible which
would heavily decrease the error
recognition and removal time and
the fine-tuning. One should also re-
spect that even for a human it is im-
possible to react on narrow curves
at high speed with such a small vi-
sual field, so the curves should be

rather wide and this would mean
that big testing area is needed.

Additional Devices

A second camera with a wider field
could make it easier to see the line
and stay on it. A local GPS-system
could be used to retrieve the track
after a loss or it could be used
to train an artificial neural net-
work approach. A higher resolving
Retina could be used with a wider
lens to see more of the lane.

A Acknowledgements

I would like to thank Robin Ritz for the very nice collaboration, Tobi
Delbrück for the supervision of the project and the support, Thomas
Besselmann for the inputs and support, Patrick Lichtsteiner for the sup-
port, the intense test-driving and the following construction of a new
camera mount and Rodney Douglas for being official godfather of my
bachelor project as grading professor.

27

B Attachment

On the attached CD is some of our work in digital form:

B.1 Code

The folder Code contains the latest version of the code we developed.

B.2 Movies

Each folder contains a movie that shows the performance of the algorithm
on a example sequence compared to the unprocessed sequence, the raw
data (recored AER-events) in form of a .dat file and the settings of the
algorithm saved in a .xml file. This allows a reproduction of the result
in the jAER-viewer.

OrientationCluster

The sequence to demonstrate the effect of the orientation cluster was
recorded with a chalk drawn lane on the 11th of March 08 behind the
INI on dry street ground. The sequence was recorded during the car was
manually driven along the lane. During the development phase of the
algorithms this sequence served as template to test the developed code.

PespecTransform

This sequence which demonstrates the PerspecTransform performance
was recorded under the same conditions as the one of the Orientation-
Cluster - it also served as development template.

HingeLaneTracker

Also this sequence was recorded under the same conditions as the other
two and also served as development template.

28

29 B.3. Blueprints

FancyDriver

This sequence was recorded on the 15. Jun. 08 on the street behind the
INI. The reason for the slow driving at the end, is the fact that the power
packs run dry.

B.3 Blueprints

camera mount.pdf

This is the laser cutter blueprint for the second version of the camera
mount. The upper parts were used to screw on a hinge and the lower
one to screw on the camera.

screw nut.pdf

This is the laser cutter blueprint for the screw-nut holder in the the
second version of the camera mount.

PC box.pdf

This is the laser cutter blueprint for the protective box of the micro PC.
the wholes for fresh air and for charging the pc are missing because they
were drilled afterwards.

AccSensor mount-pdf

This is the laser cutter blueprint for the acceleration sensor mount which
allows to screw on the sensor in different directions and on different
positions.

B.4 Literature

This folder contains all referenced literature numbered the same way as
in they were referenced.

B.5 Presentation

This folder contains the slides of the project presentation in the hardware
group meeting at the INI on 19. June 2008.

Bibliography

[1] P. Lichtsteiner, C. Posch, T. Delbrück, A 128x128 120 dB 15 µ s
Latency Asynchronous Temporal Contrast Vision Sensor , IEEE
Journal Of Solid State Circuits, 2008, VOL. 43, NO. 2

[2] Available: http://jaer.wiki.sourceforge.net/

[3] R.A. Normann, I. Perlman, The Effects Of Background Illumina-
tion On The Photoresponse Of Red And Green Cones, J. Physiol.,
1979, 286, pp. 491-507, Authorized to print figure 7.

[4] T. Delbruck, Frame-free dynamic digital vision , Proceedings of
Intl. Symposium on Secure-Life Electronics, Advanced Electronics
for Quality Life and Society, University of Tokyo, Tokyo, Japan,
Mar. 6-7, 2008, pp. 21-26.

[5] G. Vass, T. Perlaki, Applying and removing lens distortion
in post production, The Second Hungarian Conference on
Computer Graphics and Geometry 2003, Budapest, available:
http://www.vassg.hu/pdf/vass gg 2003 lo.pdf

[6] U. Sassenberg. ”‘Lens distortion model of 3DE V3”’, available:
http://www.3dequalizer.com/sdv tech art/paper/distortion.html
(2001).

[7] D.H. Hubel, T.N. Wiesel, Shape and arrangement of columns in
cat’s striate cortex, J. Physiol. 1963, 165, pp. 559 - 568

[8] D.H. Hubel, T.N. Wiesel, Receptive fields and functional architec-
ture of monkey striate cortex, J. Physiol. 1968, 195, pp. 215-243

[9] W.Maass, On the Computational Power of Winner-Take-All, Neu-
ral Computation 2000, 12, 2519-2535

[10] Available: http://siliconretina.ini.uzh.ch/

[11] Available: http://www.sonystyle.com/webapp/wcs/stores/servlet/CategoryDisplay?catalogId=
10551&storeId=10151&langId=-1&categoryId=577&parentCategoryId=16154

30

List of Figures

2.1 The RC-car with its components: (A) The silicon retina
and its mount (B) The acceleration sensor which is
mounted underneath the white plate (C) The usb-hub (D)
The micro PC within its protective box 10

3.1 The architecture of the approach: (1) The silicon retina
chip which serves as retina (2) The attention method of the
OrientationCluster which serves as lateral geniculate nu-
cleus (LGN) (3),(4) The OrientationCluster and the Per-
specTransform which serve as visual cortex (5) The Hin-
geLineTracker and the HingeLaneTracker which serve as
prefrontal cortex (6) The FancyDriver which corresponds
to the motor cortex from where the commands are sent to
the motoric devices. 13

3.2 Dark- and light-adapted intensity-response curves
recorded in a red cone. From [3] c©Blackwell Publishing . 13

3.3 The effect of the OrientationCluster: On the left an im-
age of a lane as it comes from the retina chip and on the
right the result of the filtering by the OrientationCluster.
The colors are distributed the following: Theta from zero
degrees (vertical) to the ori-angle (in this case 45◦) - red,
green, blue, purple. 15

3.4 The orientation vector of an event (blue): The length and
angle are determined by iterating through the neighbor-
hood (given by width and length) and by adding up the
normalized x- and y-components of the time decayed posi-
tion vectors of the neighbors. The darker the red, the more
recent the timestamp, i.e. the more important (longer) the
position vector. White means that the timestamp of the
most recent event with this coordinates was below the time
threshold dt and so it does not account for the total vector. 16

31

32 List of Figures

3.5 The effect of the PerspecTransform filter: An perspective,
lens distorted image as it comes from the chip on the left
and on the right a perspec-transformed image where this
distortion is corrected and the events from above the hori-
zon are cut away. 17

3.6 The HingeLineTracker (left): The events that passed the
OrientationCluster and the PerspecTransform filters are
used to set up a line approximation with hinges which are
denoted by the white squares. The the activity in the
highest slice is not high enough to set the highest hinge
which is waiting on the left border of the image. The white
surrounding of the line approximation is the attention: the
whiter the higher the attention that is paid to a certain
pixel. The HingeLaneTracker (right): The concept is the
same as in the HingeLineTracker but white denotes the
hinges of the seperator and the borderline approximations
are pink and turquoise. 19

3.7 The FancyDriver (left): the visual output is similar to the
line trackers but in addition a steering wheel denotes the
actual steering angle. On the right the AccumArray, which
represents the activity of the row cells, is shown. 21

	Introduction
	The Project
	Neuroinspired Programming

	System Description
	The Hardware
	The Software
	The Execution

	The Implementation
	The Architecture
	The TmpDiff Chip
	The OrientationCluster Class
	The PerspecTransform Class
	The Perspective Distortion
	The Lens Distortion

	The HingeLineTracker Class
	The AccumArray Object
	The Winner-Take-All Algorithm
	The Concept Of Attention
	The Output

	The HingeLaneTracker Class
	The Separator
	Entering Or Leaving Lines
	The Output

	The FancyDriver Class

	Results
	The OrientationCluster Class
	The PerspecTransform Class
	The HingeLineTracker Class
	The HingeLaneTracker Class
	The FancyDriver Class

	Conclusion And Outlook
	Conclusion
	Outlook

	Acknowledgements
	Attachment
	Code
	Movies
	Blueprints
	Literature
	Presentation
	List of Figures
	Bibliography

