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Abstract

We describe a programmable multi-chip VLSI neuronal system that can be used for exploring spike-based information processing models.
The system consists of a silicon retina, a PIC microcontroller, and a transceiver chip whose integrate-and-fire neurons are connected in a soft
winner-take-all architecture. The circuit on this multi-neuron chip approximates a cortical microcircuit. The neurons can be configured for
different computational properties by the virtual connections of a selected set of pixels on the silicon retina. The virtual wiring between the
different chips is effected by an event-driven communication protocol that uses asynchronous digital pulses, similar to spikes in a neuronal
system. We used the multi-chip spike-based system to synthesize orientation-tuned neurons using both a feedforward model and a feedback
model. The performance of our analog hardware spiking model matched the experimental observations and digital simulations of continuous-
valued neurons. The multi-chip VLSI system has advantages over computer neuronal models in that it is real-time, and the computational
time does not scale with the size of the neuronal network. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The sheer number of cortical neurons and the vast
connectivity within the cortex are difficult to duplicate in
either hardware or software. Simulations of a network
consisting of thousands of neurons with a connectivity
that is representative of cortical neurons can take minutes
to hours on a fast Pentium, particularly if spiking behavior is
simulated. The simulation time of the network increases as
the size of the network increases. We have taken initial steps
in mitigating the simulation time of neuronal networks by
developing a multi-chip VLSI system that can support
spike-based cortical processing models. The connectivity
between neurons on different chips and between neurons
on the same chip are reconfigurable. The receptive fields
are effected by appropriate mapping of the spikes from
source neurons to target neurons. A significant advantage
of these hardware simulation systems is their real-time prop-
erty; the simulation time of these systems does not increase
with the size of the network.

In this work, we show how we synthesized orientation-
tuned spiking neurons using the multi-chip system in Fig. 1.
The virtual connection from a selected set of neurons on the
retina to the target neurons on the multi-neuron transceiver
chip is achieved with a PIC microcontroller and an asyn-
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chronous event-driven communication protocol. The circuit
on this multi-neuron chip approximates a cortical microcir-
cuit (Douglas & Martin, 1991).

We explored the different models that have been
proposed for the generation of orientation tuning in neurons
of the V1 cortical area. These cortical neurons receive
inputs from the LGN neurons that are themselves not orien-
tation-selective. The proposed models can be divided into
two classes: feedforward models and feedback models. In
the feedforward model, the orientation selectivity of a corti-
cal neuron is conferred only by the spatial alignment of the
LGN neurons that are presynaptic to the cortical neuron
(Hubel & Wiesel, 1962). In the feedback model, a weak
orientation bias provided by the LGN input is sharpened
by the intracortical excitatory and/or inhibitory feedback
(Ben-Yishai, Bar-Or & Sompolinsky, 1995; Douglas,
Koch, Mahowald, Martin & Suarez, 1995; Ferster &
Koch, 1987; Sillito, 1992; Somers, Nelson & Sur, 1995).
In this work, we looked at both a feedforward model and a
feedback model with recurrent inhibition.

1.1. Orientation-selective retinas

Although there have been quite a number of projects in
building silicon retinas (Boahen, 1996, 1999; Boahen &
Andreou, 1992; Delbriick & Mead, 1994; Liu & Boahen,
1996; Mahowald & Mead, 1991), instances of orientation-
selective chips are less common. Most of these
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Fig. 1. Block diagram of a neuromorphic multi-chip system in which virtual connections from a set of neurons on a silicon retina onto another set of neurons on
a transceiver chip are effected by a microcontroller. The neurons on the transceiver chip are interconnected in a winner-take-all architecture.

implementations are monolithic. Since it is difficult to have
both a high fill factor and more sophisticated processing for
a monolithic implementation, either the templates for the
different orientations are placed to one side of the chip
(Etienne-Cummings & Cai, 1997), or the circuitry is
included in the pixel, thus decreasing the fill factor
(Cauwenberghs & Waskiewicz, 1999; Raffo, Sabatini, Bo
& Bisio, 1998; Shi, 2000).

There has been some work in developing neuromorphic
multi-chip systems for orientation selectivity (Boahen,
Andreou, Hinck, Kramer & Whatley, 1997; Venier,
Mortara, Arreguit & Vittoz, 1997; Whatley, Kramer &
Douglas, 1997). Projective field processors consisting of a
silicon retina, microcontrollers, and multiple receivers have
been explored in different projects at the NSF Telluride
Workshop (Boahen et al., 1997). The pixels in these recei-
vers consist of a circuit that integrates the incoming spikes
on a capacitor and they are not spatially coupled together.
The voltage at each pixel is then scanned out for display on a
multi-sync monitor. Projective field maps were created by
the mapping of a source neuron (sender) to several target
pixels on a receiver. Each receiver was sensitive to only one
orientation.

The transceiver in the multi-chip system by Venier et al.
(1997) consists of pixels that are coupled together through a
resistive network. Incoming spikes are integrated at each
pixel and orientation selectivity in the network is achieved
by setting the resistances so that smoothing is anistropic. All
pixels in the transceiver have the same orientation prefer-
ence. The outputs of the pixels were observed using a non-
arbitered event-driven protocol.

A preliminary experiment in creating orientation-selec-
tive neurons was performed using a silicon retina and the
silicon cortex board (SCX) (Whatley et al., 1997). The DSP
on the SCX generates the receptive fields by using a lookup
table for the incoming retina addresses. The spike outputs of
the orientation-selective neurons can be observed through
the address on the output data bus. In our system, the recep-
tive fields of the orientation-selective neurons are created in
a manner similar to that shown by Whatley et al. (1997).
However, we extend this work and quantify the tuning
curves of these neurons to different neuron parameters and
explore the selectivity of the neurons in a feedforward
model and a feedback model with a winner-take-all circuit.

We compare the orientation tuning results with known
results from the two models.

2. Connectivity in a neuromorphic multi-chip system

To achieve programmability in the interchip and intrachip
wiring of neurons, we take advantage of the fast silicon
substrate and replace point-to-point connections with a
common digital bus and additional circuitry to handle the
communication interface between multiple chips. The
multiplexing of addresses from different neurons on a
common bus is used in various neuromorphic multi-chip
systems (Boahen, 2000; Deiss, Douglas & Whatley, 1999;
Higgins & Koch, 1999; Indiveri, Whatley & Kramer, 1999;
Lazzaro, Wawrzynek, Mahowald, Sivilotti & Gillespie,
1993; Mahowald, 1994).

This time-division multiplexing of addresses is possible
because of the large difference in the time constant (or inte-
gration time) of the neurons (in milliseconds) and the bus (in
microseconds). The communication protocol used for inter-
chip communication, the address event representation
(AER) protocol, was first introduced by Sivilotti (1991)
and Mahowald (1994). The spike output of each pixel on
the sending array (the sender) is encoded with a unique
address. A common bus is used for transmitting the address
to a receiver, where an address decoder drives the corre-
sponding pixel in the receiver array.

There are different methods for transmitting the addresses
of active pixels from the chip onto the common bus. The
most common method is to use an on-chip arbiter that deci-
des the order in which active pixels communicate their
address. The addresses are placed in a queue and are trans-
mitted off chip as fast as bus occupancy permits (Boahen,
2000). An alternative non-arbitered method (Mortara,
Venier & Vittoz, 1995) allows any active pixel to place its
address immediately on the common bus. The pixel
addresses are coded in such a way that collisions result in
invalid addresses that are ignored by the receiver. A
comparison of the performances of these different arbitra-
tion schemes has been performed by Boahen (2000).
Another arbitration scheme is equivalent to the CSMA
(carrier sense/multiple access) protocol used in computer
networking (Abusland, Lande & Hvin, 1996). In this
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Fig. 2. Timing diagram for communication channel signals between a
sender and a receiver. This protocol is known as a four-phase handshake.
When the REQ signal from the sender is active, it means that the address on
a common digital bus is valid. When the receiver has finished latching in
this address, it raises its ACK signal to the sender. The sender then removes
its REQ signal and in turn, the receiver removes its ACK signal, thus
completing the four-phase handshake. Once ACK goes low, the sender is
free to send another request to the receiver.

method, whenever a pixel makes a request, the arbiter
checks to see if the bus is busy. If the bus is being used,
the request from the pixel is either discarded or it is placed
in a queue that is only one event wide. In this way, the time
of the event is not arbitrarily delayed by the service time of
the arbiter. This scheme is a variant of the arbitered method,
in which the queue is only one event deep.

2.1. Arbitered address event representation protocol

We present a summary of the arbitered AER protocol for
a point-to-point connection. Every neuron within a system
has a unique digital address. These neurons may be distrib-
uted across multiple chips. If one of the neurons on a chip is
active, that neuron sends a request (PIXEL REQ) to an on-
chip arbiter. The on-chip arbiter decides which of the active
neurons should place its address on the common bus (see
Figs. 2 and 3) and acknowledges that neuron by raising its
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PIXEL ACK signal while placing that neuron’s address on
the bus. At the same time, the arbiter issues a chip request
(CHIP REQ) to the corresponding receiver. The communi-
cation protocol between the sender and the receiver follows
a similar protocol to that between the neurons and the on-
chip arbiter (see Fig. 2). Meanwhile, the selected neuron
removes its PIXEL REQ signal, but the PIXEL ACK signal
will not be removed by the arbiter until the sender has
received a CHIP ACK signal from the receiver. On receiv-
ing this signal, the sender removes its CHIP REQ signal and
the address on the bus is now invalid. At the same time, the
arbiter takes away the PIXEL ACK signal and selects
another active neuron. The sender does not generate a
new request to the receiver until the receiver has removed
its CHIP ACK signal. This four-phase handshaking protocol
applies in this multi-chip system between the retina and the
PIC and between the PIC and the transceiver chip.

2.2. Reconfigurable connections using the address event
representation protocol

An intermediate chip/system is used to program the
virtual connections between different senders and receivers.
This intermediate module can be an EPROM (Higgins &
Koch, 1999; Higgins, Deutschmann & Koch, 1999),
EEPROMs and PIC microcontrollers (Boahen et al., 1997,
Cohen, Edwards, Stanford, Cauwenberghs, Andreou &
Abshire, 1998), a silicon cortex (SCX) board (Deiss et al.,
1999; Whatley et al., 1997), or the receiver itself (Serrano-
Gotarredona, Andreou & Linares-Barranco, 1999). These
modules are used to create projective fields from the sender
neurons. The device that reconfigures the connections
should not distort the input spike distribution. Here, we
use a PIC to form the connections from the retina to the
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Fig. 3. Detailed block diagram of the three chips and the communication channel signals between them. The active neuron on the retina sends a Row REQ
signal to the Y-arbiter. (Each pixel in the retina has two neurons which code the ON and OFF responses of the pixel.) If this row is selected, then all the ON and
OFF REQ signals from the active neurons on this row will be arbitrated by the X-arbiter. The X and Y addresses of the selected neuron are placed on the bus and
the retina handshakes with the PIC. The handshaking circuits on the retina and the transceiver chips (marked by the block HC on the multi-neuron chip) ensure
that the four-phase handshaking protocol is not violated. Details of the handshaking circuits and protocol are described in Boahen (2000). The PIC
communicates with the multi-neuron chip if the address from the retina falls within one of the stored templates. The address from the PIC is decoded by
the multi-neuron transceiver. The X address codes the target neuron on this multi-neuron array and the Y address codes the synapse that will be stimulated on
the selected neuron. The address of the active neuron on this array can also be communicated off-chip to another receiver/transceiver.
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multi-neuron array. We will show that the PIC does not
distort the interspike stimulus interval (ISI) distribution of
spikes from the retina.

3. System architecture

The multi-chip system (Fig. 3) in this work consists of a
16 X 16 silicon ON/OFF retina, a PIC microcontroller, and a
transceiver chip with a ring of 16 integrate-and-fire neurons
and a global inhibitory neuron. All three modules commu-
nicate using the address event protocol. The communication
channel signals consist of the address bits, the REQ signal,
and the ACK signal. The PIC and the multi-neuron chip are
both transceivers: they can both receive events and send
events. The retina with an on-chip arbiter can only send
events. Each pixel on the retina responds to both the ON
edges and OFF edges of a stimulus. It is not spatially
coupled to its neighbors. The irradiance temporal deriva-
tives go to two neurons within the pixel which code sepa-
rately the positive derivative (the ON response) and the
negative derivative (the OFF response). The operation of
the retina is described in Section 4. The spike outputs
from the retina approximate the ON/OFF outputs of the
lateral geniculate nucleus (LGN) neurons. An active neuron
starts a four-phase handshaking with the on-chip arbiter as
shown in Fig. 3. If the neuron is selected by the arbiter, then
the X and Y addresses which code the column and row
locations of this neuron are placed on the output address
bus of the chip. The retina then handshakes with the PIC
microcontroller. The description of the PIC microcontroller
is presented in Section 6.

The multi-neuron chip has an on-chip address decoder for
the incoming events and an on-chip arbiter to send events.
The X address to the multi-neuron chip codes the identity of
the neuron and the Y address codes the input synapse used to
stimulate the neuron. Each neuron can be stimulated exter-
nally through any one of eight synapses; six of these are
excitatory, and the remaining two are inhibitory. The exci-
tatory neurons of this array are mutually connected via hard-
wired excitatory synapses. These excitatory neurons also
excite a global inhibitory neuron which in turn inhibits all
the excitatory neurons. The membrane potentials of the
multi-neuron chip can be monitored by an on-chip scanner
and the spiking outputs of the neurons can be monitored by
the chip’s AER output. The address on the output bus codes
the active neuron. The architecture and circuit details of this
chip are described in Section 7.

The receptive fields of the neurons are created by config-
uring the connections from a subset of the source pixels on
the retina onto the appropriate target neurons on the multi-
neuron transceiver chip through the PIC microcontroller.
The subsets of retina pixels are determined by user-supplied
templates. In this work, the excitatory neurons on the multi-
neuron chip model the orientation tuning properties of
simple cells in the visual cortex and the global inhibitory
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Fig. 4. Pixel of the transient imager. The circuit contains a photodiode with
a transistor M1 in a source—follower configuration with a high-gain invert-
ing amplifier (M2, M3) in a negative feedback loop. A rectifying temporal
differentiator in the feedback loop extracts transient ON and OFF signals.
These signals go to individual neurons that generate the REQ signals to the
arbiter. In this schematic, we only show the REQ and ACK signals to the X-
arbiter. The duration of the ACK signal from the X-arbiter is extended
within the pixel by a global refractory bias. This duration sets the refractory
period of the neuron.

neuron models an inhibitory interneuron in the visual
cortex. The measured tuning curves of the orientation-selec-
tive neurons in both the feedforwad and feedback cases
using this multi-chip system are presented in Section 8.

4. The transient retina

The retina is a 16 X 16 array of pixels that detect transi-
ents in irradiances. The retina generates the events that drive
the system. Each pixel responds in continuous time to a
local change of a brightness distribution projected through
a lens onto the surface of the retina. The output of the pixels
is coded in the form of asynchronous binary pulses, which
are the request signals to the AER communication interface.

The transient detector is composed of an adaptive photo-
receptor (Delbriick & Mead, 1994) that has a rectifying
temporal differentiator (Kramer, Sarpeshkar & Koch,
1997) in its feedback loop (shown in Fig. 4). Positive
temporal irradiance transients (dark-to-bright or ON transi-
tions) and negative irradiance transients (bright-to-dark or
OFF transitions) appear at two different outputs of each
pixel. The ON and OFF outputs are separately amplified
with tunable gains and they drive two different neurons
within the pixel. Each neuron generates a request signal to
the on-chip arbiter if its input exceeds a chosen threshold.
The ON and OFF outputs have different AER addresses.
The ACK pulse from the X-arbiter triggers a reset pulse to
the requesting neuron. The duration of this reset signal is
controlled by a global refractory bias and determines the
refractory period for the succeeding request from the same
channel. Depending on the refractory period of the neuron
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Fig. 5. Outline of the configuration of the orientation-selective experiments.
A stimulus (edge) moves over the retina. The retina comprising 16 X 16
pixels is sensitive to bright-to-dark and dark-to-bright irradiance transitions
which are coded on the ON channel and the OFF channel, respectively, of
each pixel. The orientations of the stimuli are shown here. The lighter
hatched area indicates the template of pixels used for detecting 0° oriented
stimuli (or the horizontal template). Spikes from the set of neurons within
this area are routed to a neuron on the transceiver chip that is sensitive to 0°
orientation.

and the magnitude and duration of the irradiance transient,
the pixel responds with either a single spike (the non-burst-
ing mode) or a burst of spikes (the bursting mode).

The pixels are arranged on a rectangular grid. The posi-
tion of a pixel along a row is encoded with a 4-bit column
address (X address) and its position along a column with a 4-
bit row address (¥ address) as shown in Fig. 5. By setting the
threshold and the respective gain factors appropriately, the
circuit can be made to respond only to ON transients or only
to OFF transients or to both types of transients. The circuit
details are presented in Kramer (2001).

5. Response of retina to oriented stimuli

A rotating drum with a single black and white strip was
placed about 6 cm from the retina. The lens on the retina had
a focal length of 8 mm with a field of view of approximately
9.5°. The spike addresses and spike times generated by the
retina at an image speed of 7.9 mm/s (or 89 pixels/s) in
response to the rotating drum were recorded using an
Agilent 16702A logic analyzer. The pixel pitch was
88.8 wm and the length of the array was 1332 pm. The
orientations of the stimuli are defined in Fig. 5. An example
of the spike addresses derived from both the ON and OFF
channels of the retina in response to the rotating stimulus
oriented at 90° is depicted in Fig. 6. In this experiment, the
retina was set in the non-bursting mode, so only one spike is
produced by each pixel that detects the stimulus. The retina
address on the ordinate is defined as 16Y + X. The average
time of travel between the ON and OFF edges of the stimu-
lus is about 1 s. The spike addresses during the time of travel
of the OFF edge of a 0° oriented stimulus through the entire
array (Fig. 7(a)) indicate that almost all the pixels along a
row transmit their addresses sequentially as the edge passes
by. This sequential ordering can be seen because the stimu-
lus is oriented slightly different from 0°. If the stimulus was
perfectly at 0°, then any of the pixels of one row could
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Fig. 6. ON-transient and OFF-transient spikes recorded from the 16 X 16
retina in response to an edge (oriented at 90°) moving over the array. The
retina was set in the non-bursting mode; so each pixel should spike only
once every time it sees the stimulus edge pass by. Each circle (OFF-tran-
sient) or asterisk (ON-transient) in the figure marks an address issued by the
retina and recorded by the logic analyzer. The ON and OFF spikes from the
pixels on the retina are coded by unique X and Y addresses. The address on
the ordinate is defined as 16Y + X. The Y address and X address codes the
row and column location, respectively, of the active pixel. The polarity of
the response (ON/OFF) is coded by an extra bit of the X address.

transmit their address and there would be no ordering of
the pixel addresses. The same observation can be made
for the OFF-transient spikes recorded in response to a 90°
oriented stimulus (Fig. 7(b)). Each column of the retina fires
sequentially in response to the stimulus.

The interspike interval (ISI) distributions of the retina
spikes collected in the experiment above are shown in
Fig. 8(a) for the 0° orientation and Fig. 8(b) for the 90°
orientation. In this non-bursting mode, the arbiter on the
retina can easily cope with the rate of incoming requests
from the active pixels because the pixels spike only once
per stimulus presentation, and only a small percentage of the
pixels spike at the same time. In the worst case, all 16 points
on one row or column will simultaneously make a request to
the arbiter. Under these conditions, the ISI distribution
reflects a jitter in the latency of the activated pixel that arises
from the mismatch in the circuitry among the pixels in the
array; and the tilt in the orientation of the stimulus. The
arbiter itself does not introduce any distortion in the ISI
distribution of the retina spikes.

When the retina is in the bursting mode, each pixel
produces several spikes in response to a stimulus. The intra-
burst firing rate of the pixel is tunable via the refractory
period bias. The ISI distributions of the retina spikes in
response to two orientations of the stimulus are shown in
Fig. 9. We can test the ability of the arbiter to service the
increase in the incoming requests from the pixels by increas-
ing the intraburst firing rate of the pixel until the minimum
time interval between subsequent CHIP REQ signals from
the arbiter stops decreasing indicating saturation of the
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Fig. 7. The addresses of the spikes from the retina in the non-bursting mode are recorded for a (a) 0° and (b) 90° oriented stimulus, respectively. The figure
shows the time progression of the stimulated pixels (OFF spikes are marked with circles) as the 0° oriented stimulus (see Fig. 5 for the orientation definition)
passes over each row in (a). The address on the ordinate is defined as 16Y + X. A similar observation is true of (b) for the ordering of the OFF-transient spikes

when each column on the retina is stimulated by the 90° oriented stimulus.

channel capacity. The data in Fig. 9 show this limiting
scenario where a large percentage of spikes have an ISI of
around 2—4 p.s. In this work, the arbiter has been tuned so it
can only handle incoming requests with a minimum latency
of 2 ws. The arbiter can be made to process events with a
frequency of up to 10 MHz, but we have slowed down the
arbiter because this implementation generated a few spur-
ious addresses at faster speeds. At this latency, the AER
interface can support an array of 10° neurons in which
only 10% of the neurons are active at any one time, and
the active neurons have an average spiking rate of 100 Hz.

5.1. Orientation-selective templates

Before using the PIC to create the receptive fields of the
neurons on the multi-neuron transceiver chip, we further
analyzed the recorded spikes from the experiment shown
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in Fig. 8 by binning the OFF spikes from selected sets of
pixels on the retina. These sets were defined by two
templates of size 5X 9 and 9 X5 which were centered in
the middle of the retina. The templates are analogous to the
receptive fields of the neurons. The PIC uses these templates
to map the input spikes from the retina to two target neurons
on the transceiver chip.

The spike histograms for the 0° oriented stimulus and
for the 90° oriented stimulus using the two templates are
shown in Fig. 10(a) and (b), respectively. The solid
curve corresponds to the spikes collected using the hori-
zontal template (9 X 5) and the dotted curve corresponds
to the spikes collected using the vertical template (5 X 9).
The histograms show the possibility of using a threshold
to distinguish the orientation of the stimulus. Similar
results were obtained from the retina in the bursting
mode. This analysis shows that a feedforward model as
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Fig. 8. Probability distribution of the ISIs of the spike outputs from the retina in the non-bursting mode in response to a moving edge. The plot has been
cropped for ISIs above 1800 s so that we can see the detail in the smaller ISI distributions. (a) ISI distribution of the retina spikes in response to a moving
edge which is oriented at 0°. The pixels on each row are stimulated close together in time as the stimulus moves over the row. (b) ISI distribution of the retina

spikes in response to a moving edge oriented at 90°.
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Fig. 9. Probability distribution of the ISIs of the spike outputs from the retina in the bursting mode in response to a moving edge. The intraburst firing rate of the
pixel is larger than the process time of the arbiter. Because of technical reasons which are described in the main text, the arbiter has been tuned so that it
handles incoming requests with a minimum latency of 2 ps. The plot has been cropped for ISIs above 80 ws so that we can see the detail in the smaller ISI
distributions. (a) ISI distribution of retina spikes in response to a moving edge oriented at 0°. (b) ISI distribution of retina spikes in response to a moving edge
oriented at 90°. Since more requests are made by the retina pixels to its on-chip arbiter, the ISI of the spikes should reflect the speed of the arbiter in processing
the requests. Most ISIs were around 2-4 us.
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Fig. 10. Interval histogram (bin size 10 ms) of retina OFF spikes collected from the experiment shown in Fig. 8. (a) Stimulus was oriented at 0°. Two templates
were used for the histogram. The histogram of the spikes using the horizontal template of 9 X 5 pixels (sensitive to 0° orientation) is shown by the solid curve
and the histogram of spikes from the vertical template of 5 X 9 pixels is shown by the dashed curve. The maximum number of spikes per bin time using the
horizontal template is greater than that collected with the vertical template. The histogram shows the possibility of a process to distinguish the two stimulus
orientations using the two different templates. (b) Stimulus was oriented at 90°. The maximum number of spikes per bin time for the vertical template is now
higher than that for the horizontal template. A threshold can be used to separate the outputs of the two templates.

proposed by Hubel and Wiesel (1962) can lead to orien-
tation-selective neurons.

one bit) while another port is used to transmit events to the
receiver chip. The microcontroller filters each event to
decide if it lies in one or more of the receptive fields
(RFs) of the neurons on the receiver. If it does, an event is

6. AER mapping by PIC microcontroller

We used a PIC 16C74 microcontroller' to interface
between the silicon retina and the multi-neuron chip (Fig.
11). The 16C74 is an 8-bit processor running at an instruc-
tion rate of about 4—5 MIPS. It has four 8-bit digital ports.
The retina events are captured on two ports (one port plus

! www.microchip.com

transmitted to the appropriate receiver neuron.

The PIC is connected to an RS232 serial port on a laptop
computer, from which the templates (or RF sizes) are set.
The program on the PIC consists of about 500 lines of
assembly language,” which is assembled to about 300 14-
bit words of code. The program runs in a tight loop looking
for a sender event. Commands sent from the laptop interrupt

2 Program is available from http://www.ini.unizh.ch/~tobi/aerpic
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Fig. 11. The PIC interface board, comprising a PIC 16C74 microcontroller, a 20 MHz crystal, a DS14C232 RS232 interface (single +5 V supply), and ribbon

connectors for sender and receiver.

this tight loop, and are parsed. The PIC has been
programmed to provide other functions. It can generate a
trigger spike when it detects a particular spike address, it can
stimulate a receiver neuron at a specified frequency, and it
can project spikes from the sender to multiple receiver
addresses by adding a table of offset values to each sender’s
address.

As soon as the PIC receives an event, it filters the event
against possible receptive fields and takes appropriate
action. Once the PIC has completed its action (including
the handshaking process to the transceiver, if the spike is
within one of the templates), it acknowledges the sender.
The exact time taken for transmission of a single spike from
the sender to the receiver depends on the location of the
spike address in the list of RFs. Typically, it is about
15 ps (Fig. 12). The cycle time of 15 ws can be reduced
by using a faster processor in place of the PIC. The retina
and transceiver chips can handle handshaking cycle times
on the order of 100 ns.

This cycle time is sufficient to transmit about six trans-
ceiver neuron addresses within a retina ISI of 100 ws. The
statistics of the ISI distribution would then not be distorted
by the presence of the PIC. We show the ISI distribution of
the OFF-transient retina spikes in the non-bursting mode
(Fig. 13(a)) in response to a stimulus oriented at 0° and
the ISI distribution of spikes from the PIC (Fig. 13(b)) to
the transceiver neuron that is sensitive to 0° orientation. The
statistical distribution in both cases looks similar, thus the
PIC does not distort the distribution of the retina spikes.
However, if the retina is in the bursting mode with an aver-
age ISI below 10 s, or the retina pixel is routed to more

than six transceiver neurons, then the statistics of the distri-
bution to the transceiver would be altered by the PIC’s
presence.

7. Multi-neuron network

The transceiver chip consists of a ring of 16 integrate-
and-fire neurons that excite a global inhibitory neuron. The
inhibitory neuron inhibits all the excitatory neurons (see
Fig. 14). The excitatory neurons are locally coupled to
their nearest neighbors. Each excitatory neuron can be
driven externally through six excitatory synapses and two
inhibitory synapses using the AER protocol. The circuit of a
neuron and excitatory synapse are shown in Fig. 15. The
synapse circuit (M1-M4) in the left box of the figure was
originally described in Boahen (1996). The presynaptic
spike drives the transistor M4, which acts like a switch.
The bias voltages V,, and V, set the strength and the time
constant of the synapse. The strengths of the inhibitory
synapses on this chip are set by two global biases. The
strengths of the six excitatory synapses are set by two
other global biases and by different transistor sizes for M3
in each synapse.

The circuit in the right box of Fig. 15 implements a linear
threshold integrate-and-fire neuron with an adjustable
voltage threshold, spike pulse width and refractory period.
If a DC current I;y; is sourced into the neuron’s membrane
capacitance C,,, its membrane voltage V., increases
accordingly. The transconductance amplifier M5-M9
compares V., to a threshold voltage Vy,.. As soon as Vien
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Fig. 12. Averaged traces of the REQ signal from the retina (top) and the PIC’s ACK signal (bottom). The PIC’s acknowledge signal goes high about 2 s after
the retina’s request. This latency is due to the fact that the PIC has an instruction rate of 5 MIPS and it takes an average of 10 instructions for the PIC to
acknowledge the retina. The PIC’s acknowledge signal goes low about 15-25 s after the PIC has either rejected the spike, or sent a spike to the appropriate

receiver neuron.
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Fig. 13. ISI distributions at the input and output of the PIC. (a) ISI distribution of the retina OFF-transient spikes in the non-bursting mode. The spikes were
collected in response to a preferred stimulus oriented at 0°. (b) ISI distribution of the mapped spikes from the output of the PIC to the target neuron on the
transceiver chip whose preferred orientation is 0°. The statistical distributions for both curves look similar.

Fig. 14. Architecture of the ring of integrate-and-fire neurons chip. The
unfilled circles represent the excitatory neurons. The filled circle represents
the global inhibitory neuron. The gray line symbolizes the global inhibitory
connection to all the excitatory neurons, while the dark arrows denote
excitatory connections.

exceeds Vy,, the amplifier’s output voltage switches to the
positive rail Vy. The two inverters (M10-M12 and M13—
M15) implement a non-inverting high-gain amplifier; hence
Vout also switches to V4. The capacitor Cy,, together with C,,
implement a capacitive divider that provides positive feed-
back to the node, V.. This feedback speeds up the circuit’s
response and provides hysteresis to ensure that small fluc-
tuations of Ve, around Vi, (e.g. due to noise) do not make
Vou SWitch erratically.

When V,, switches to Vg, the transistor M21 is switched
on. This switch discharges the charge on the membrane
capacitor C,, to flow to ground through transistors M20



638

S.-C. Liu et al. / Neural Networks 14 (2001) 629-643

Vdd )
A i
Mi c M2 Vdd Vdd Vdd
w°_| V3 I s l'iﬂj Vpb :11 Ms ,4 Mi0
Vspk N Vmem V E‘Mn M13
M4 HEN d[Me M7 P’° thr
I Le, ) ! [ To 1"
I M8 Mo i_~ M12 I_{ M14 IC,
.................................................... L L va L Vi e
M16 k,_____
M17 },_Yqua -
Mig Mi8
Mz@}_o pr == I Cca Vtau
M21]| =
r
€L

Fig. 15. Circuit diagram of an excitatory synapse (left box) connected to a linear threshold integrate-and-fire neuron (right box).

and M21 at a rate controlled by V. This bias voltage can be
used to control the spike’s pulse width. As C,,, is discharged,
Vimem decreases. Once V., decreases below Vj,, the trans-
conductance amplifier switches to ground. The first inverter
then switches to Vg4, but the output of the second inverter
Vou does not immediately go to zero; it decreases linearly at
a rate set by V. In this way, transistor M21 is kept on, even
after V.. has decreased below the neuron’s threshold
voltage. As long as the gate voltage of M21 is sufficiently
high, the neuron is in its refractory period. Spikes cannot be
generated because the current injected in the membrane
capacitance C,, is discharged directly to ground (by setting
Vpw so that the current through M20 is larger than /j,j). Once
the transistor M21 is turned off, a new spike can be gener-
ated in a time that is inversely proportional to the magnitude
of Iiy;. Fig. 16(a) shows a spike trace measured from one of
the 16 neurons, as it was being stimulated by a 100 Hz
pulse-train (see V., of Fig. 15).

35 -
pr=0.5V
3
vV, =25V
w20
25
2 2
§
£
> 15
1 rd
Vn=0.4V
T,
0.5 \_’/’/
0
0 0.02 0.04 0.06 0.08 0.1
Time (s)
(a)

Fig. 16(b) shows the output frequency of the neuron in
response to the magnitude of the input DC current, for three
different values of the refractory period bias setting V. This
plot is commonly referred to as an F—I curve. Transistors
M16-M19 implement a spike frequency adaptation
mechanism (Boahen, 1996). With every spike, M16 is
switched on and a fixed amount of charge (set by V) is
dumped onto the capacitor Cy,. The integrated charge on the
capacitor is balanced by the charge that leaks off through the
transistor M18. The final charge on the capacitor sets the
current that flows through M19. This current is subtracted
from the input current, and the neuron’s spike frequency
decreases accordingly. The voltages V, and V,, can
together be used to set the gain and time constant of the
integrator. Fig. 17(a) shows the time taken for the neuron to
reach its adapted spike frequency for four different values of
Vqua- The neuron was stimulated with a DC current such that
it spiked at a rate of 100 Hz (in steady state, without spike

Firing rate (Hz)

50 101 0
Input current (normalized units)

(b)

Fig. 16. (a) The membrane potential of one of the 16 excitatory neurons as the neuron was being stimulated by a 100 Hz input spike train. The circuit’s bias
parameters and their effect on the neuron’s spiking properties are labeled in the figure. (b) Plot of the frequency of the output spikes versus the magnitude of a

DC input current, for three values of V.
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Fig. 17. (a) Spike frequency adaptation times: In this experiment, the neuron was stimulated by a constant current so that it spiked at a constant rate of 100 Hz
(in the absence of any spike frequency adaptation). In the presence of spike frequency adaptation, the output frequency of the neuron adapted from 100 to
67 Hz. The time that the neuron takes to reach its steady state firing frequency changes as a function of Vy,. (b) Distribution of the mean output spiking rates of
the 16 neurons on the chip for the same presynaptic stimulations. Due to mismatches, the steady state firing rate varies among the neurons.

frequency adaptation). In the example shown, spike
frequency adaptation brought the steady state firing rate
down to 67 Hz. Depending on the value of V,,, this effect
can be immediate, requiring only the generation of one
single spike, or more gradual.

The neurons on this chip have an inherent mismatch
which arises from both the synapse and the soma of the
neuron. This mismatch leads to a variance in the firing
rates of the neurons that is observed when the neurons
are stimulated by the same presynaptic frequency (see
Fig. 17(b)).

8. Responses of orientation-selective neurons

The receptive fields of the orientation-selective neurons
were synthesized by mapping the outputs of a selected set of
neurons on the retina as shown in Fig. 18. In these experi-
ments, only two neurons on the transceiver chip are mapped
for orientation selectivity. These two neurons have orthogo-

nal preferred orientations. The local excitatory coupling
between the neurons was disabled. There is no self excita-
tion to each neuron so we explored only a feedforward
model and a feedback model using inhibition. We varied
the size and aspect ratio of the receptive fields of the neurons
by changing the template size used in the mapping of the
retina spikes to the transceiver chip. The template size and
aspect ratio determine the orientation responses of the
neurons. However, the orientation response of these neurons
also depends on the time constant of the neuron. On this
multi-neuron chip, we do not have an explicit transistor that
allows us to control the time constant of the neuron. Instead,
we generated a leak current through M19 in Fig. 15 by
controlling the source voltage of M18, V,,,. By increasing
V.au» We decrease the time constant of the neuron. Since the
neuron charges up to threshold through the summation of
the incoming EPSPs, if the ISIs of the incoming spikes are
too large, the neurons will not be able to charge up to thresh-
old. If the ISI of the presynaptic spikes is shorter than the
time constant of the neuron, the neuron will be able to

e inhibitory synapse

o Excitatory synapse

Fig. 18. Spikes from a selected set of neurons within the two rectangular regions on the retina are mapped by the PIC onto the corresponding orientation-
selective neurons on the transceiver chip. The right-side-up triangles mark the somas of the excitatory neurons and the upside-down triangle marks the soma of
the global inhibitory neuron. Only two neurons, which are mapped for orthogonal orientations, were used in this experiment.
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Fig. 19. The response of the membrane potential of a neuron to a stimulus of its preferred orientation (a) and to a stimulus of its non-preferred (orthogonal)
orientation (b). Since the ISIs of the presynaptic spikes are smaller in the case of the preferred orientation, the neuron is able to charge up to threshold more
often. The membrane potential leaks away when there are no presynaptic spikes. The time constant of the membrane is about 10 ms.

charge up to threshold as shown in Fig. 19(a). This figure
shows the response of the membrane potential to its
preferred stimulus orientation, while Fig. 19(b) shows the
membrane potential of the neuron in response to the non-
preferred stimulus orientation. The incoming EPSPs cannot
sum to threshold, because the ISIs of the input spikes are too
large. The synaptic weight also affects the responses of the
orientation-selective neurons as the weight determines the
number of EPSPs needed to drive the neuron above
threshold.

We first investigated the feedforward model by using a
template size of 5 X7 (3° X 4.2°) for one neuron and 7 X 5
(4.2° % 3°) for the second neuron. (We have repeated the
following experiments using smaller template sizes, 3 X 5
and 1 X 3 and the experimental results were pretty much the
same. We show results from the 5X 7 template whose
aspect ratio is closest to 1.) The aspect ratio of this template
was 1.4. The time constant of the neuron and synaptic gain
and strength were adjusted so that both neurons responded
optimally to the stimulus. The inhibitory connection from
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the global inhibitory neuron to the two excitatory neurons
was disabled. As in the retina experiments in Section 5, a
rotating drum with a black and white strip was placed in
front of the retina. Data were collected from the multi-
neuron chip for different orientations of the drum (hence
the stimulus) spaced at 30° intervals. The image speed of
the stimulus was approximately 7.9 mm/s (or 89 pixels/s).
The stimulus was presented to the retina approximately
500-1000 times and the output spikes from the orienta-
tion-selective neurons were collected using a logic analyzer.
The retina was set in the non-bursting mode; the refractory
period of the neuron was around 500 ps. Only the OFF
transients from the retina were used as input spikes to the
transceiver neurons. The ISI distributions of the mapped
input spikes to the two neurons when the retina was
presented with a 0° oriented stimulus are shown in Fig. 20.
The input distribution of spikes to the neuron that is
sensitive to this orientation (Fig. 20(b)) shows a larger
percentage of spikes with low ISIs.

Since the orientation-selective neurons respond with only
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Fig. 20. ISI distribution of OFF-transient retina spikes (a) that are mapped to neuron 5 (sensitive to vertical oriented stimulus) and of retina spikes (b) that are
mapped to neuron 6 (sensitive to horizontal oriented stimulus). The retina spikes were collected during a stimulus presentation at 0° orientation. Neuron 6 has a

larger number of spikes at low ISIs compared to neuron 5.
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Fig. 21. Orientation tuning curves of two neurons that have orthogonal
preferred orientations in the case of a feedforward model in the absence
of inhibition. The receptive field sizes of the neurons are 5 X7 and 7 X 5,
respectively. The responses of the neurons in this figure and the remaining
figures are the number of spikes collected per stimulus presentation. The
maximum radius of the polar plot has been normalized to the maximum
response of both neurons. The data were collected for stimulus orientations
spaced at 30° intervals. The neuron (neuron 5) that responds preferably to a
90° oriented stimulus (solid curve) has a smaller response to a stimulus at 0°
orientation. The same observation is true for the other neuron (dashed
curve), neuron 6. The orientation-selective (OS) index for neuron 5 is
0.323 and for neuron 6 it is 0.195. Refer to the main text for the definition
of the OS index.

1-3 spikes every time the stimulus moves over the retina,
we normalized the total spikes collected in these experi-
ments to the number of stimulus presentations. The results
are shown as a polar plot in Fig. 21 for the two neurons that
are sensitive to orthogonal orientations. The radius of the
plot was normalized to the largest neuron response. The

90

180«

figure shows that each neuron responds better to its
preferred orientation even though they both responded to
the non-preferred orientations. The neuron responded with
more spikes to the orthogonal orientation than the in-
between orientations, because there are a small number of
retina spikes that arrive with a small ISI when the orthogo-
nal-oriented stimulus moves across the template space of the
retina (see Fig. 5). We used an orientation-selective (OS)
index to quantify the response of the neuron to all orienta-
tions. This index is defined as

_ R(preferred) — R(nonpreferred)
N R(preferred) + R(nonpreferred)

oS

where R(preferred) is the response at the preferred orienta-
tion and R(nonpreferred) is the response at the orthogonal
orientation. As an example, R(preferred) for neuron 5, which
is sensitive to vertical orientations, is R(90) + R(270) and
R(nonpreferred) is R(0) + R(180).

We next investigated the feedback model in the presence
of global inhibition. In this case, the system acts like a soft
winner-take-all circuit. Since the inhibitory neuron is driven
by all of the excitatory neurons, it is itself not orientation-
selective. We tuned the coupling strengths between the exci-
tatory neurons and the inhibitory neuron so that we obtained
the optimal response to the same stimulus presentations as
in the feedforward case. The new tuning curves are plotted
in Fig. 22(a). The orientation tuning curves of both neurons
were sharpened by the recurrent inhibition. The neuron with
the higher firing rate suppresses the response of the other
neuron (cross-orientation inhibition). The response of the
inhibitory neuron is shown in Fig. 22(b). Its output is a
combination of the responses of both neurons.

The orientation tuning curves for both neurons in the

(b)

Fig. 22. Orientation tuning curves of the two orientation-selective neurons and the global inhibitory neuron in the presence of inhibition (feedback model). (a)
Tuning curves of the two orientation-selective neurons described in Fig. 21. The neurons now respond less to the nonpreferred orientation. The neuron with the
higher firing rate suppresses the response of the other neuron (cross-orientation inhibition). The output firing rates are also lower in this case (approximately
half of the firing rates in the absence of inhibition). The OS index for neuron 5 is 0.546 and for neuron 6 is 0.4973. (b) Orientation tuning curve of the global

inhibitory neuron. The neuron is not orientation-selective.
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Fig. 23. Responses of the two orientation-selective neurons whose receptive fields are created using templates with aspect ratios of 1.8 and 3 in the feedback
configuration. The orientation tuning curves of these neurons whose receptive field sizes are 5 X 9 and 9 X 5 are shown in (a). The tuning curves are sharper
than the curves in Fig. 22. The OS index for neuron 5 is 0.81 and for neuron 6 is 0.79. In (b), the tuning is even sharper when we used template sizes of 3 X 9
and 9 X 3 to create the receptive fields of the neurons. The OS index for both neuron 5 and neuron 6 is 1. As expected, using a template with a larger aspect ratio
leads to a better orientation selectivity for the neurons. The plots have been normalized for the maximum response recorded from the neurons.

presence of inhibition were determined using two other
template sizes (5 X9 and 3 X9). These sizes translate to
aspect ratios of 1.8 and 3, respectively. The results are
shown in Fig. 23(a) for the template aspect ratio of 1.8
and Fig. 23(b) for the template aspect ratio of 3. In the
case of the template with an aspect ratio of 3, the neurons
showed no response to the non-preferred stimulus, even
though the number of EPSPs that the neurons receive per
stimulus presentation is approximately half that for the other
template sizes. As expected, using a template with a larger
aspect ratio leads to a better orientation selectivity for the
neurons.

9. Conclusions

We demonstrated a programmable multi-chip VLSI
system that can be used for exploring spike-based proces-
sing models. This system has advantages over computer
neuronal models in that it is real-time and the computational
time does not scale with the size of the neuronal network.
The spiking neurons can be configured for different compu-
tational properties. Interchip and intrachip connectivity
between neurons can be programmed using the AER proto-
col. In this work, we created the receptive fields for the
orientation-tuned spiking neurons by mapping the transient
spikes from a silicon retina using a microcontroller. We
have not mapped onto all the neurons on the transceiver
chip because the PIC microcontroller we used is not fast
enough to create receptive fields for more neurons without
distorting the ISI distribution of the incoming retina spikes.
We are in the process of testing faster boards that can handle
the mapping of more neurons.

We evaluated the responses of the orientation-tuned spik-
ing neurons for different receptive field sizes and aspect
ratios and also in the absence and presence of feedback
inhibition. In a feedforward model, the aVLSI spiking
neurons show orientation selectivity similar to digital simu-
lation results obtained from continuous-valued neurons.
Adding feedback inhibition increased the selectivity of the
spiking neurons.

We can extend the multi-chip VLSI system in this work to
a more sophisticated system that supports multiple senders
and multiple receivers. Such a system can be used, for
example, to implement multi-scale cortical models (Gross-
berg, Mingolla & Williamson, 1995). The success of this
system opens up the way for more elaborate spike-based
emulations in the future.
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