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SUMMARY AND CONCLUSIONS INTRODUCTION 

1. We have tested the hypothesis that simple cells in the cat’s 
visual cortex perform a linear spatiotemporal filtering of the visual 
image. To conduct this study we note that a visual neuron behaves 
linearly if the responses to small, brief flashes of light are mathe- 
matically related, via the Fourier transform, to the responses elic- 
ited by sinusoidal grating stimuli. 

2. We have evaluated the linearity of temporal and spatial 
summation for 118 simple cells recorded from the striate cortex 
(area 17) of adult cats and kittens at ages 4 and 8 wk postnatal. 
These neurons represent a subset of the population of cells for 
which we have described the postnatal development of spatiotem- 
poral receptive-field structure in the preceding paper. Spatiotem- 
poral receptive-field profiles are constructed, with the use of a 
reverse correlation technique, from the responses to random se- 
quences of small bar stimuli that are brighter or darker than the 
background. Fourier analysis of spatiotemporal receptive-field 
profiles yields linear predictions of the cells’ spatial and temporal 
frequency tuning. These predicted responses are compared with 
spatial and temporal frequency tuning curves measured by the use 
of drifting, sinusoidal-luminance grating stimuli. 

3. For most simple cells, there is good agreement between spa- 
tial and temporal frequency tuning curves predicted from the re- 
ceptive-field profile and those measured by the use of sinusoidal 
gratings. These results suggest that both spatial and temporal sum- 
mation within simple cells are approximately linear. There is a 
tendency for predicted tuning curves to be slightly broader than 
measured tuning curves, a finding that is consistent with the ef- 
fects of a threshold nonlinearity at the output of these neurons. In 
some cases, however, predicted tuning curves deviate from mea- 
sured responses only at low spatial and temporal frequencies. This 
cannot be explained by a simple threshold nonlinearity. 

4. If linearity is assumed, it should be possible to predict the 
direction selectivity of simple cells from the structure of their spa- 
tiotemporal receptive-field profiles. For virtually all cells, linear 
predictions correctly determine the preferred direction of motion 
of a visual stimulus. However, the strength of the directional bias 
is typically underestimated by a factor of about two on the basis of 
linear predictions. Consideration of the expansive exponential 
nonlinearity revealed in the contrast-response function permits a 
reconciliation of the discrepancy between measured and predicted 
direction selectivity indexes. 

5. Overall, these findings show that spatiotemporal receptive- 
field profiles obtained with the use of reverse correlation may be 
used to predict a variety of response properties for simple cells. 
These results are generally consistent with recent theoretical work 
in which simple cells are modeled as the combination of a linear 
spatiotemporal filter, an exponent nonlinearity, and a contrast 
normalization mechanism. 

Early explorations of neuronal response properties in the 
striate cortex (area 17) have led to two different views of the 
function of simple cells. Hubel and Wiesel ( 1959, 1962) 
first discovered that simple cells respond optimally to bars 
and edges of light having a particular orientation in space. 
Hubel and Wiesel also reported that the optimal bar and 
edge stimuli for these neurons could be predicted on the 
basis of a qualitative mapping of their receptive fields. Ad- 
ditional studies of cortical cells using bars and edges of light 
(e.g., Bishop et al. 197 1) have led some researchers to 
model simple cells as bar and edge detectors (e.g., Lindsay 
and Norman 1972). In an alternative approach, Campbell 
et al. ( 1969) and Cooper and Robson ( 1968) first measured 
the response properties of simple cells in the frequency do- 
main, with the use of sinusoidal grating stimuli of variable 
spatial frequency. On the basis of these spatial frequency 
tuning measurements, it has been suggested (e.g., Albrecht 
et al. 1980; DeValois et al. 1982; Maffei and Fiorentini 
1973) that simple cells act as spatial frequency analyzers. 

These two seemingly contradictory views of simple-cell 
function have prompted an investigation (see Albrecht et 
al. 1980) as to whether the responses of cortical cells are 
more selective for bar or grating stimuli. The results of this 
study suggest that the responses of simple cells to both types 
of stimuli may be explained on the basis of linear spatial 
summation. For a linear spatial filter, the responses to bars 
and gratings can be related analytically through the Fourier 
transform. Moreover, it has been pointed out (Daugman 
1985; Marcelja 1980) that a particular class of linear spatial 
filter, the Gabor filter (Gabor 1946), has maximal joint 
resolution in both the space and spatial frequency domains. 
Several investigators ( Andrews and Pollen 1979; DeValois 
et al. 1978; Glezer et al. 1980, 1982; Kulikowski and Bishop 
198 la; Maffei et al. 1979; Movshon et al. 1978; Tadmor 
and Tolhurst 1989; Webster and DeValois 1985 ) have eval- 
uated whether spatial summation in simple cells is a linear 
process, by comparing the receptive-field profile measured 
by the use of bars (i.e., the “line-weighting function”) with 
linear predictions on the basis of spatial frequency tuning 
curves measured with gratings. Some researchers (e.g., 
Glezer et al. 1982; Kulikowski and Bishop 198 1 a) have also 
conducted this evaluation in the frequency domain by 
comparing measured spatial frequency tuning curves with 
linear predictions obtained through Fourier analysis of the 
receptive-field profile. The general consensus of these stud- 
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ies, with the use of either method, is that simple cells sum 
their inputs over space in an approximately linear fashion. 
Studies using two-dimensional patterns (checkerboards 
and plaids) have also yielded results that support the notion 
that simple cells behave as linear spatial filters ( DeValois et 
al. 1979). Moreover, it has been shown that Gabor func- 
tions provide a good fit to either the one-dimensional 
(Baker and Cynader 1986; DeAngelis et al. 199 la; Field 
and Tolhurst 1986; Marcelja 1980) or two-dimensional 
(Jones and Palmer 1987b; Webster and DeValois 1985) 
spatial receptive-field profiles of simple cells. 

These findings have been taken as supporting evidence 
for models of visual cortical function in which simple cells 
perform a linear spatial filtering of the visual input (e.g., 
Geisler and Hamilton 1986; Kulikowski and Bishop 198 1 b; 
Sakitt and Barlow 1982; Watson 1983, 1987; Robson 1975, 
1983 ) . The advantage of a linear spatial filter is that its 
response to any spatial pattern can be predicted knowing 
only its impulse response (i.e., its receptive-field profile). 
However, the input to a visual neuron is not just a static 
spatial pattern, but a spatiotemporal pattern of luminance 
variation. In the companion paper ( DeAngelis et al. 1993 ), 
we have described the spatiotemporal receptive-field struc- 
ture of simple cells in the cat’s striate cortex. For us to 
correctly predict the response of a simple cell to any time- 
varying visual pattern, based on the spatiotemporal recep- 
tive-field profile, the cell must exhibit not only linear spatial 
summation but also linear temporal summation. 

Relatively little attention has been paid to the linearity of 
temporal summation in simple cells. Tolhurst et al. ( 1980) 
have compared temporal frequency tuning curves mea- 
sured by the use of counterphase modulated gratings with 
predicted tuning curves obtained via Fourier analysis of the 
response to the onset of a flashed grating stimulus. They 
conclude that temporal summation in simple cells is grossly 
nonlinear because predicted temporal frequency tuning 
curves do not resemble measured tuning curves. This find- 
ing has been confirmed, with the use of a different method, 
by Dean et al. ( 1982), although data from a few cells in 
their study are consistent with linear temporal summation. 
More recently, Mancini et al. ( 1990) have analyzed the 
temporal response properties of simple cells with the use of 
a white noise method. Their data show that a linear predic- 
tion of the temporal impulse response accounts reasonably 
well, but not completely, for the measured response to a 
flashing bar stimulus. In addition, Mancini et al. ( 1990) 
find a nonlinear response component that may be ac- 
counted for by a static nonlinearity, such as a response 
threshold (see Tadmor and Tolhurst 1989). Mancini et al. 
conclude, on the basis of data from a small sample of neu- 
rons, that temporal summation within simple cells is ap- 
proximately linear. 

Given the disparate nature of these previous findings and 
the importance of their implications, we have reassessed the 
nature of temporal summation for a large population of 
simple cells from the striate cortex of cats and kittens. We 
have also examined spatial summation for these same cells, 
to compare temporal and spatial summation with regard to 
linearity. The approach we have taken is to compare mea- 
sured spatial and temporal frequency tuning curves for sim- 
ple cells with linear predictions on the basis of measure- 

ments of the spatiotemporal receptive-field profile. Spatial 
and temporal frequency tuning curves are measured in tra- 
ditional fashion by the use of drifting sinusoidal gratings. 
Spatiotemporal receptive-field profiles are obtained by the 
use of the reverse correlation technique (Jones and Palmer 
1987a; McLean and Palmer 1989; Palmer et al. 199 1 ), as 
described in detail in the companion paper (DeAngelis et 
al. 1993). 

Consistent with previous studies, we find that measured 
and predicted spatial frequency tuning curves agree well for 
most simple cells, suggesting that spatial summation is ap- 
proximately linear. In addition, we find that measured and 
predicted temporal frequency tuning curves also match 
well for most cells. Thus we conclude that temporal sum- 
mation in simple cells is also approximately linear. When 
measured and predicted tuning curves differ substantially, 
the largest errors are often manifested at low frequencies. 
Linear predictions of optimal spatial and temporal frequen- 
cies, as well as high spatial and temporal frequency cutoffs, 
are found to be fairly accurate, confirming the validity of 
the techniques used in the companion paper (see Figs. 1 l- 
13 of DeAngelis et al. 1993). 

If simple cells behave as linear spatiotemporal filters, it 
should also be possible to predict their direction selectivity 
on the basis of the organization of the spatiotemporal recep- 
tive field (i.e., Adelson and Bergen 1985; Watson and Ahu- 
mada 1983, 1985 ). We have examined this notion by com- 
paring responses to gratings moving in the preferred and 
opposite directions with linear predictions. In agreement 
with previous work (Albrecht and Geisler 199 1; Reid et al. 
1987, 199 1; Tolhurst and Dean 199 1 ), we find that linear 
predictions correctly estimate the preferred direction of 
motion but consistently underestimate the strength of the 
directional selectivity. In concordance with the recent work 
of Albrecht and Geisler ( 199 1 ), we find that the agreement 
between measured direction selectivity indexes and linear 
predictions can be markedly improved by accounting for 
the expansive exponential nonlinearity revealed in the con- 
trast response function. 

Overall, our findings show that the spatiotemporal recep- 
tive-field profiles of simple cells can be used to predict a 
variety of response properties with reasonably good accu- 
racy. The adequacy of a linear spatiotemporal filter model 
for simple cells is discussed with regard to some known 
nonlinear mechanisms of cortical function. Our results are 
consistent with recent theoretical efforts in which simple 
cells are modeled as linear spatiotemporal filters, combined 
with an expansive nonlinearity and a contrast normaliza- 
tion scheme (Albrecht and Geisler 199 1; Heeger 199 1, 
1992a,b). 

METHODS 

Most of the methods used in this study are described in the 
companion paper ( DeAngelis et al. 1993)) with a couple of excep- 
tions. Contrast response functions were obtained with the use of 
sinusoidal luminance gratings of optimal orientation and spatial 
frequency, which drifted in the preferred direction for each neu- 
ron. Details of stimulus presentation for the contrast-response 
measurements are identical to those described in the companion 
paper for orientation and spatial frequency tuning measurements. 
Spatial and temporal frequency tuning curves were fit (see Fig. 5) 

Downloaded from journals.physiology.org/journal/jn at University Library Zurich (083.077.250.028) on May 1, 2024.



1120 G. C. DEANGELIS, I. OHZAWA, AND R. D. FREEMAN 

with appropriate functions (Eqs. 1 and 2), with the use of the 
Simplex method (see Press et al. 1988) to minimize a squared 
error term. 

RESULTS 

In the companion paper, we have analyzed the spatio- 
temporal receptive-field structure of 233 simple cells, re- 
corded from either adult cats or kittens. For 118 of these 
cells (24 from adult cats, 63 from 8-wk-old kittens, and 3 1 
from 4-wk-old kittens), we have also measured the spatial 
and temporal frequency selectivity with the use of sinusoi- 
dal gratings drifting in the preferred direction for each neu- 
ron. In this paper we report an analysis of these 118 cells in 
which we compare measured spatial and temporal fre- 
quency tuning curves with predicted tuning curves ob- 
tained through Fourier analysis of the spatiotemporal re- 
ceptive-field (X-T) profile. 

Figure 1 illustrates the method by which the responses to 
gratings are compared with linear predictions on the basis 
of reverse correlation data. The peristimulus time histo- 
grams (PSTHs) of Fig. 1 A show the responses of a typical 
simple cell to drifting gratings of varying spatial frequency 
(left) and temporal frequency (right). The largest response 
for this cell is obtained with a spatial frequency of 0.18 
cycles/deg and a temporal frequency of 4 Hz. This can be 
seen more clearly in D, where average response rate is plot- 
ted as a function of spatial frequency and temporal fre- 
quency (see filled circles). Error bars denote t 1 SE. 

Predicted spatial and temporal frequency tuning curves 
for this cell are obtained through Fourier analysis of the X-T 
profile, which is shown in Fig. 1 B. A two-dimensional Fast 
Fourier Transform (FFT) is applied to the X-T data, yield- 
ing the spatiotemporal amplitude spectrum shown in Fig. 
1 C. By convention, positive temporal frequencies corre- 
spond to movement in the neuron’s preferred direction; 
negative temporal frequencies correspond to movement in 
the opposite (null) direction. To obtain predicted spatial 
and temporal frequency tuning curves, we first find the 
peak amplitude in the spatiotemporal frequency spectrum. 
This is shown by the intersection of the cross-hairs in Fig. 
1 C. By slicing through this peak parallel to the spatial fre- 
quency axis, we obtain a predicted spatial frequency tuning 
curve. Similarly, a slice parallel to the temporal frequency 
axis gives a predicted tuning curve for temporal frequency. 
These predicted tuning curves are shown in Fig. 1 D 
( -), along with the measurements obtained with the use 
of gratings. Note that the predicted tuning curves have been 
scaled (along the y-axis) to match the peak response rate 
from the grating measurements. The predicted curves have 
not been shifted horizontally or otherwise transformed. For 
this cell, there is a good agreement between the measured 
and predicted tuning curves. We may conclude, therefore, 
that this simple cell sums its inputs approximately linearly 
over space and time. As a result, the X-T profile may be 
considered a good approximation to the cell’s spatiotem- 
poral impulse response function. 

Figures 2 and 3 show data for six more simple cells that 
exhibit a good match between measured and predicted spa- 
tial and temporal frequency tuning curves. For each cell the 
spatiotemporal receptive-field profile is shown as a contour 

map (left), responses to drifting gratings are shown as filled 
symbols, and predicted tuning curves based on the assump- 
tion of linearity are shown as solid lines. For the cell of Fig. 
2A, a second set of predicted tuning curves is shown by the 
dashed lines; these curves were derived by analyzing a sec- 
ond X-T profile that was obtained 3 h after the initial mea- 
surement. Note that there is excellent agreement between 
the two sets of predicted tuning curves in Fig. 2A (- and 
---). In general, we find a very strong correlation between 
data obtained from repeated measurements of the X-T pro- 
file (this point is addressed in Fig. 8, A and B). 

All of the cells in Figs. 2 and 3 exhibit band-pass tuning 
for spatial frequency, with the possible exception of the cell 
shown in Fig. 2C. In this case the grating measurements 
(filled symbols) do not show a low-frequency rolloff, al- 
though a band-pass tuning is suggested by the linear predic- 
tion (- ). Similarly, most cells show band-pass tuning for 
temporal frequency when tested with drifting gratings. How- 
ever, Fig. 3, B and C, shows temporal frequency data (filled 
symbols) for two cells that do not exhibit any appreciable 
low-frequency rolloff when tested with gratings. For these 
cells, the predicted temporal frequency tuning (- ) also 
shows a low-pass characteristic. This corresponds with the 
fact that the X-T profiles for these cells are approximately 
unimodal with respect to time. If the impulse response (X- 
Tplot) is bimodal or multimodal in time (e.g., Figs. 2A and 
3A), then the predicted temporal frequency tuning curve 
wiil always have a band-pass nature. 

Most of the cells we have examined show a reasonably 
good agreement between measured spatial and temporal 
frequency tuning curves and those predicted on the basis of 
linear summation. However, many cells do exhibit some 
systematic deviations from linearity. Figure 4 shows data 
from three cells for which measured and predicted tuning 
curves match quite poorly. For the cell shown in Fig. 4A, 
the predicted temporal frequency tuning curve matches 
well with the responses to gratings; however, the predicted 
spatial frequency tuning curve is too broad. In this case the 
error occurs almost exclusively at low spatial frequencies. 
For high spatial frequencies, the predicted tuning curve 
agrees well with the responses to gratings. For the cell 
shown in Fig. 4 B, the predicted spatial frequency tuning 
curve matches well with the measured responses, but the 
predicted temporal frequency tuning curve is much too 
broad. Again, the error is manifested predominantly at low 
frequencies. Figure 4C shows an example for which both 
the spatial and temporal frequency predictions are too 
broad. Because the data are plotted on a logarithmic scale, 
error at low spatial and temporal frequencies is exaggerated, 
and error at high frequencies is deemphasized. However, 
when the data of Fig. 4C are plotted on linear frequency 
axes (not shown), it becomes clear that the predicted tun- 
ing curves are broader than the measured data at both low 
and high frequencies. This pattern of deviation from linear- 
ity is common in our sample of neurons. 

Quantitative evaluation of linear predictions 

So far, we have only examined the adequacy of linear 
predictions in a qualitative way. We now turn to a quantita- 
tive assessment of linearity, which is based on extracting 
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FIG. 1. A: comparison is shown between measured spatial and tem- 
poral frequency tuning curves and linear predictions obtained from the 
spatiotemporal receptive-field profile. A : responses of a typical simple cell 
from an adult cat to drifting sinusoidal gratings, which have variable spa- 
tial frequency (SF; left) or temporal frequency (TF; right), are shown as 
peristimulus time histograms (PSTHs). Each PSTH spans 4 s. For the left 
column of histograms, temporal frequency is fixed at 2 Hz, spatial fre- 
quency is varied from 0.14 to 0.8 cycles/deg, and contrast is 20%. For the 
right column of histograms, spatial frequency is fixed at 0.2 cycles/deg, and 
temporal frequency is varied from 0.25 to 15.0 Hz. Note that the responses 
are modulated at the temporal frequency of the drifting grating, which is 
typical of simple cells. B : space-time (X- T) receptive-field profile is shown 
for the same cell from which the grating data of A were obtained. The X-T 
profile spans 9” of visual space and 200 ms of time. Details of the construc- 
tion of X-T profiles are given in the companion paper (DeAngelis et al. 
1993 ) . Solid contours denote bright-excitatory ( or ON) subregions; dashed 
contours denote dark-excitatory (or OFF) subregions. C: spatiotemporal 
amplitude spectrum that is obtained by applying a 2-dimensional Fast 
Fourier Transform ( FFT ) to the X-T profile shown in B (details of the FFT 
methods are given in the companion paper). Only 2 quadrants of the 
amplitude spectrum, corresponding to positive spatial frequencies, are 
shown. This contour map shows response amplitude plotted as a function 

parameters from each spatial and temporal frequency tun- 
ing curve. To make quantitative comparisons, we first fit 
the grating data with appropriate curves, as shown in Fig. 5. 
For the spatial frequency tuning curve ( Fig. 5A ) , grating 
measurements are fit with a Gaussian of the form 

G( s f) = Ke-[(sf-sfo)/a12 
(1) 

where K, sfo, and a are free parameters, and sf denotes 
spatial frequency. Note that this function is Gaussian 
shaped on a linear spatial frequency axis. In Fig. 5A, the 
spatial frequency tuning curve obtained with the use of 
gratings is shown by filled symbols and the best-fitting 
Gaussian is shown by the solid curve (plotted on a logarith- 
mic spatial frequency axis). From this best-fitting Gauss- 
ian, three parameters are extracted: SF,,,, the optimal spa- 
tial frequency; SF,,, , the high spatial frequency cutoff; and 
SF lOW, the low spatial frequency cutoff. SF,,, is defined as 
the spatial frequency at which the curve has its peak ampli- 
tude, whereas SF,,, and SF,,, are defined as the high and 
low spatial frequencies, respectively, at which the curve 
drops to one-half of its peak amplitude. If the best-fitting 
curve does not have enough low-frequency attenuation to 
reach one-half of the peak amplitude, SF,,, is assigned a 
value of zero. 

An analogous fitting procedure is carried out for the tem- 
poral frequency tuning curve, as illustrated in Fig. 5 B. In 
this case the grating data are fit by a gamma distribution 
having the form 

G(tf) = K 
c( t f  - t fJ ne-ic(tf-tJo)l 

n ne-(n) (2) 

where K, c, tfo, and y2 are free parameters, and tfdenotes 
temporal frequency. Three temporal frequency tuning pa- 
rameters ( TFOP,, TF,,, , and TF,,,) are defined in exactly 
the same way as described above for the spatial frequency 
parameters. The reasons for choosing a Gaussian and a 
gamma distribution to fit the spatial and temporal fre- 
quency tuning curves, respectively, are given in the com- 
panion paper ( DeAngelis et al. 1993). It should be noted 
that these formulations provide an excellent fit to spatial 
and temporal frequency tuning data for the vast majority of 
cells that we have examined. The data shown in Fig. 5 are 
actually quite typical of the quality of fits obtained. 

To compare tuning parameters extracted from grating 
measurements (as shown in Fig. 5) with tuning parameters 
extracted from linear predictions, a similar fitting proce- 
dure is applied to the spatiotemporal amplitude spectrum 
obtained through Fourier analysis of the X-T profile. This 
fitting procedure is described in detail in the companion 
paper (see Fig. 11 and Eq. 5 of DeAngelis et al. 1993) and 
will not be addressed further here. Note, however, that the 
same tuning parameters ( SF,,, , SF,, , SF,,, , TFop,, TF,, , 
TFlow) can be extracted from the best fit to the amplitude 
spectrum. This allows us to make quantitative comparisons 

of spatial frequency (SF) and temporal frequency (TF) . The intersection 
of the cross-hairs indicates the peak amplitude in this frequency domain. 
D: superposition of measured and predicted tuning curves. Filled symbols 
represent the mean firing rates obtained from the PSTHs shown in A. 
Error bars around the responses indicate +I SE. Solid curves show the 
predicted tuning curves obtained by taking cross sections through the peak 
of the amplitude spectrum shown in C. Note the excellent agreement be- 
tween the measured and predicted tuning curves. 
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between measured and predicted tuning curves for a popula- 
tion of cells. 

Figure 6 shows a comparison of temporal frequency tun- 
ing parameters obtained from grating data and from spatio- 
temporal receptive-field profiles (via Fourier analysis). In 
Fig. 6A, values of TFop, measured with gratings (vertical 
axis) are plotted against predictions of TFop, obtained 
through FFT analysis of the X-T profile (horizontal axis). 
Each point in Fig. 6A represents one neuron: circles denote 
simple cells from adult cats (n = 24), squares denote cells 
from S-wk-old kittens (n = 63 ), and triangles represent neu- 
rons from 4-wk-old kittens (n = 3 1). The diagonal line of 
slope = 1 represents the prediction based on linearity; if 
simple cells exhibit linear temporal summation, then the 
points should be clustered around the diagonal. The shaded 
region defines the area within which the measured and pre- 
dicted values of TFopt differ by no more than 50%. Note that 
the vast majority of points are contained within the shaded 
region, and that most of the points cluster around the diago- 
nal. Linear regression yields a correlation coefficient of 
0.77, which is significant (F, 116 = 172.5, P < 0.001). The 
regression line ( not shown) has a slope of 0.84 and an inter- 
cept of 0.61 Hz. 

Figure 6B shows the relationship between estimates of 
TF,,, derived from grating and reverse correlation measure- 
ments. Nearly all points fall within the shaded region 
( ~50% error). There is a weak trend for predicted values of 

Temporal Freq. (Hz) 

FIG. 2. Evaluation of linearity of spatial 
and temporal summation is presented for 3 
simple cells (A-C). For each cell, the space- 
time (X-T) receptive-field profile is shown 
on the left. Measured spatial and temporal 
frequency tuning curves are shown on the 
right as filled circles ( error bars, -I- 1 SE), and 
predicted tuning functions are shown as 
solid curves. For cell A, 2 sets of predicted 
tuning curves are shown (- and ---). 
These were obtained from 2 separate mea- 
surements of the X-T profile, separated in 
time by 3 h. Cell A is from an adult cat, cell B 
is from an 8-wk-old kitten, and cell Cis from 
a 4-wk-old kitten. All 3 cells exhibit approxi- 
mately linear spatial and temporal summa- 
tion. 

TFhi& to be slightly larger than measured values. The aver- 
age predicted value of TF,i, is 5.54 Hz, and the average 
measured value of TFhigh is 5.29 Hz, but this difference is 
not statistically significant (P = 0.38 ) . The coefficient of 
correlation for the data of Fig. 6 B is 0.83, which is highly 
significant (& 116 = 265.4, P < 0.00 1). The regression line 
(not shown) has a slope of 0.88 and an intercept of 0.48 Hz. 

Whereas measured and predicted values agree quite well 
for TFop, and TFhigh, Fig. 6C shows that there is a poor 
correspondence between these two measurements for 
TF,cnv* There is a strong tendency for linear predictions of 
TF,,, to be too small, such that most points lie above the 
diagonal in Fig. 6C. The average predicted value of TF,,, is 
0.28 Hz, whereas the average measured value of TF,,, is 
0.60 Hz. This difference is highly significant (P < 0.001). 
The coefficient of correlation for the data of Fig. 6C is 0.56, 
which is significant (F, 116 = 50.8, P < 0.00 1); however, 
very few points lie within the shaded region representing 
~50% error. The regression line (not shown) has a slope of 
1.09 and an intercept of 0.3 1 Hz. Overall, the data of Fig. 6 
show that linear predictions of the optimal frequency and 
high-frequency cutoff are reasonably accurate, whereas pre- 
dictions of the low-frequency cutoff are consistently too 
small. 

A similar conclusion can be drawn from analysis of mea- 
sured and predicted spatial frequency tuning curves, as sum- 
marized in Fig. 7. The format of Fig. 7 is identical to that of 
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Fig. 6, with grating measurements plotted on the vertical 
axis and linear predictions plotted on the horizontal axis. 
Figure 7A shows the relationship between measured and 
predicted values of the optimal spatial frequency (SF,,,). 
Virtually all points fall within the shaded region, and the 
correlation coefficient is 0.97, which is highly significant 
(F 1,116 = 1,953.8, P < 0.001). The best-fitting straight line 
to the data (not shown) has a slope of 1.06 and an intercept 
of 0.006 cycles/deg. The average value of SF,,, from grating 
measurements (0.42 cycles/deg) is slightly higher than the 
average value of SF,,, obtained from reverse correlation 
data (0.39 cycles/deg) , but the difference is not statistically 
significant (P = 0.34). 

Figure 7 B shows the relationship between measured and 
predicted values of the high spatial frequency cutoff, SF,, . 
Again, most points are clustered closely around the diago- 
nal. The coefficient of correlation is 0.95, which is highly 
significant (Fl 116 = 94 1.7, P < 0.00 1). The regression line 
(not shown) has a slope of 0.97 and an intercept of -0.02 
cycles/deg. The average predicted value of SF,,& (0.66 cy- 
cles/deg) is somewhat higher than the average measured 
value (0.6 1 cycles/deg), but the difference is not significant 
(P= 0.33). 

As for the low temporal frequency cutoff (see Fig. 6C), 
the correspondence between measured and predicted val- 
ues of the low spatial frequency cutoff, SFlow, is poor (see 

t I FIG. 3. Comparisons of measured tun- 
ing curves and linear predictions are shown 
for 3 additional cells that exhibit linear spa- 
tial and temporal summation. The format is 
the same as that of Fig. 2. Cell A is from a 
4-wk-old kitten; cells B and C are from an 
8-wk-old kitten. 

0.1 1 10 20 

Temporal Freq. (Hz) 

Fig. 7C). Although there is a significant correlation (r = 
0.90;F, 116 = 588.9, P < O.OOl), the linear predictions are 
consistently too low (i.e., most points lie well above the 
diagonal in Fig. 7C). The average predicted value of SF,,, is 
0.14 cycles/deg, whereas the average measured value of 
SF,,, is 0.22 cycles/deg; this difference is significant (P < 
0.00 1). The regression line for these data (not shown) has a 
slope of 1.28 and an intercept of 0.05 cycles/deg. 

Comparison of Figs. 6 and 7 shows that the overall pat- 
tern of correspondence between grating measurements and 
linear predictions is similar for temporal frequency parame- 
ters and spatial frequency parameters. In both cases, esti- 
mates of the optimal frequency and high-frequency cutoff 
obtained from the X-T profile are reasonably accurate. This 
finding validates the results reported in the companion 
paper ( DeAngelis et al. 1993 ), in which linear predictions 
of TF,,, TFhia, SFoPt, and SF,,, are used to gauge the 
postnatal development of spatial and temporal frequency 
selectivity in kittens. Low-frequency cutoff values obtained 
from the X-T profile are typically not accurate, however. 
Note that this does not impact the results reported in the 
companion paper, because low-frequency cutoff values 
were not used. Note also that there are no differences be- 
tween kittens and cats with regard to the data presented in 
Figs. 6 and 7. 

There is one consistent difference between the temporal 
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frequency data shown in Fig. 6 and the spatial frequency 
data shown in Fig. 7. The correlation between measured 
and predicted values is clearly weaker for temporal fre- 
quency parameters than for spatial frequency parameters. 
This difference is reflected in the correlation coefficients, 
which are substantially smaller for the temporal frequency 
data (Fig. 6) than for the spatial frequency data (Fig. 7). 

Variability in reverse correlation and grating measurements 

As noted above, the correlation between measured and 
predicted values of tuning parameters is weaker for tem- 
poral frequency than for spatial frequency. At first glance, 
this finding suggests that linear predictions are less reliable 
for temporal frequency than for spatial frequency. How- 
ever, this conclusion relies on the assumption that the inher- 
ent variability in the temporal frequency tuning measure- 
ments is equivalent to the variability in the spatial fre- 
quency tuning measurements. We have examined this 
assumption by comparing parameters obtained from re- 
peated grating and reverse correlation measurements. 

We first consider variability in repeated estimates of spa- 
tial and temporal frequency tuning parameters obtained 
from spatiotemporal receptive-field profiles (via Fourier 
analysis). Figure 8A shows the correlation between esti- 
mates of SF,,, obtained from repeated measurements of the 

t  :::++Htt : : : : -  
0.1 1 10 20 

Temporal Freq. (Hz) 

FIG. 4. Measured and predicted tuning 
curves are shown for 3 cells that exhibit sys- 
tematic deviations from linearity, as de- 
scribed in the text. Cells A and C are from 
adult cats; cell B is from a 4-wk-old kitten. 

X-T profile. If repeat measurements produce identical esti- 
mates of SFopt, then all of the data points should fall on the 
diagonal line of slope = 1. Indeed, the data conform closely 
to this ideal behavior, because all of the data points are 
contained well within the shaded region that delineates 
~50% error. Linear regression yields a correlation coeffi- 
cient of 0.98 (& 36 = 1004.5, P < 0.00 1). The regression 
line (not shown) has a slope of 0.99 and an intercept of 
0.004 cycles/deg. A similar result is shown in Fig. 8 B for 
estimates of TFopt obtained from repeated reverse correla- 
tion measurements. Again, estimates of TFopt from re- 
peated trials are highly consistent. In this case the coeffi- 
cient of correlation is 0.96 (F, 21 = 426.7, P < 0.001); the 
regression line (not shown) has a slope of 0.96 and an inter- 
cept of 0.09 Hz. Overall, the data of Fig. 8, A and B, show 
that spatial and temporal frequency tuning estimates (i.e., 
linear predictions) obtained from the spatiotemporal recep- 
tive-field profile are highly repeatable. 

We have also assessed variability in spatial and temporal 
frequency tuning measurements obtained with the use of 
drifting gratings. Figure 8C shows the correlation between 
estimates of SF,,, obtained from repeated measurements of 
the spatial frequency tuning curve. It is clear that repeat 
estimates of SFop, obtained with the use of gratings are very 
consistent, as indicated by the correlation coefficient of 
0.97 (F, 36 = , 38 1.8, P < 0.001) in Fig. 8C. Figure 8 D 

Downloaded from journals.physiology.org/journal/jn at University Library Zurich (083.077.250.028) on May 1, 2024.



LINEARITY OF TEMPORAL AND SPATIAL SUMMATION IN SIMPLE CELLS 1125 

TFopt 
25- i 

20-- 

Spatial Frequency (cyclesldeg) Temporal Frequency (Hz) 

FIG. 5. Fitting procedure used to extract tuning parameters for quanti- 
tative analyses. A : measured spatial frequency tuning is shown for a simple 
cell from an adult cat. Average firing rates in response to drifting gratings of 
various spatial frequencies are plotted as filled symbols. Error bars, f.  1 SE 
for each average response. The solid curve is the Gaussian function (see 
J!@. 1) which best fits these tuning data. From this fit, 3 spatial frequency 
parameters are extracted: SF,,,, SF,,, , and SF,,, , as indicated by the 
dashed vertical lines (see text). B: measured temporal frequency tuning 
data (filled symbols) and the gamma distribution function (solid curve, see 
Eq. 2) that best fits the data are presented here for the same simple cell as 
shown in A. Three parameters ( TFOpt, TF,,,, and TFhi&) are extracted 
from the curve. 

A 6 

shows, however, that estimates of TF,, obtained with the 
use of gratings are not as repeatable as estimates of SF,,,. 
For TFop, 9 the correlation coefficient between successive 
grating measurements is 0.8 1 (F, 21 . = 40.4, P < 0.00 1 ), 
which is similar to the coefficient (r = 0.77) obtained from 
comparing grating and reverse correlation estimates (Fig. 
6A). Note that the data points in Fig. 8 D are scattered 
throughout the shaded region, indicating that values of 
TF,,, from repeat trials can differ by as much as 50%. Fig- 
ure 8 only shows repeat measurements of the optimal spa- 
tial and temporal frequencies, but very similar results are 
obtained for the high-frequency and low-frequency cutoffs. 

If one compares grating measurements with reverse 
correlation measurements for a population of neurons, the 
strength of the correlation between the grating data and the 
reverse correlation data is limited by the variability within 
each type of measurement. Figure 8, A and C, shows that 
estimates of the optimal spatial frequency, SF,,,, obtained 
from either grating measurements ( r = 0.97) or reverse 
correlation measurements ( r = 0.98) are highly repeatable. 
This permits the correlation between grating and reverse 
correlation measurements of SF,,, to be very strong (r = 
0.97; see Fig. 7A). In contrast, comparison of Fig. 8, B with 
D , reveals that estimates of the optimal temporal frequency 
obtained with the use of gratings are less repeatable (r = 
0.8 1) than estimates of TFop, obtained from reverse correla- 
tion measurements (r = 0.96). As a result, the correlation 
between grating and reverse correlation measurements of 
TFop, is not very strong ( r = 0.77; see Fig. 6A). Similar logic 
applies to the measurement of high- and low-frequency cut- 
offs. Therefore it appears that the lower correlation coeffi- 
cients in Fig. 6, as compared with Fig. 7, result from variabil- 
ity in grating measurements of temporal frequency tuning 
curves, rather than from nonlinearities of temporal sum- 
mation. It is not clear, however, why grating measurements 
of temporal frequency tuning parameters should be more 
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nn 

FIG. 6. Quantitative comparison between temporal frequency parame- 
ters obtained from measured tuning curves and parameters derived from 
linear predictions. In each panel, grating data are plotted on the vertical 
axis, and linear predictions (from reverse correlation data) are plotted on 
the horizontal axis. A: comparison is shown of optimal temporal fre- 
quency (TF,,,) estimates obtained from grating measurements and linear 
predictions. Data are presented for a total of 118 simple cells, recorded 
from adult cats (0 ) , 8-wk-old kittens ( n ) , and 4-wk-old kittens ( A ) . The 
diagonal line of unity slope indicates a perfect correspondence between 
measured and predicted values. The shaded area contains points for which 
the measured and predicted values differ by ~50%. The correlation coeffi- 
cient is 0.7 7. B : comparison between measured and predicted estimates of 
the high temporal frequency cutoff (TFhia) is displayed here. In this case 
the correlation coefficient is 0.83. C: a scatter plot is given of measured and 
predicted values of the low temporal frequency cutoff (TF,,,) . Most points 
lie above the diagonal and outside of the shaded region, indicating a poor 
correspondence. The correlation coefficient is 0.56. 
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n 8 weeks 

r = 0.97 A 4 weeks 
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0.0 0.2 0.4 0.6 0.8 

Predicted SF low (cYcles/deg) 

FIG. 7. Quantitative comparisons between measured and predicted 
spatial frequency tuning parameters are exhibited here. The format is iden- 
tical to that of Fig. 6. A : this scatter plot shows the relationship between 
measured and predicted values of the optimal spatial frequency ( SF,,,). A 
strong correlation (Y = 0.97) is evident. B: a scatter plot showing that linear 
predictions of the high spatial frequency cutoff (SFhi&) agree well with 
measured values (Y = 0.95 ) . C: linear predictions of the low spatial fre- 
quency cutoff (SF,,,) tend to underestimate the measured values, hence 
most of the points lie well above the diagonal. 

variable than grating measurements of spatial frequency 
tuning parameters. 

Direction selectivity 

If simple cells behave as linear spatiotemporal filters, 
then direction selectivity may be predicted from the spatio- 
temporal impulse response (see for example Adelson and 

Bergen 1985; Watson and Ahumada 1983, 1985). Specifi- 
cally, cells with X-T profiles that are “tilted” in the space- 
time domain (i.e., space-time inseparable) should exhibit a 
preference for the direction of motion of a visual stimulus. 
In the companion paper (DeAngelis et al. 1993) we com- 
pute a direction selectivity index (DSI, see Eq. 7 of the 
companion paper) from the spatiotemporal amplitude 
spectrum obtained via Fourier analysis of the X-T profile. 
Here we compare estimates of DSIs obtained from the X-T 
profiles with measurements of DSIs made, in traditional 
fashion, with the use of drifting sinusoidal gratings. 

Figure 9 illustrates the analysis of direction selectivity for 
a typical simple cell. A bi-directional orientation tuning 
curve for this cell is shown in Fig. 9A, where diamonds 
denote responses to gratings of variable orientation that 
drift in the preferred direction and squares indicate re- 
sponses to stimuli moving in the opposite direction. The 
orientation tuning curve for this cell, and all others, is ob- 
tained with the use of gratings of the optimal spatial fre- 
quency that drift at a temporal frequency of 2 Hz. The solid 
curves in Fig. 9A are Gaussian functions that best fit the 
orientation tuning data. Response in the preferred direc- 
tion, R,, and response in the nonpreferred direction, Rnp, 
are determined by the peak values of the best-fitting Gauss- 
ians. The DSI is defined as 

R, - Rn, DSI = - 
R, + Rn, 

(3) 

Values of the DSI range from 0.0 (no direction selectivity) 
to 1 .O (complete direction selectivity). For the cell of Fig. 
9A, the DSI obtained from grating measurements is 0.79, 
indicating that the cell is strongly direction selective. 

If linearity is assumed, a predicted DSI can be computed 
from the spatiotemporal receptive-field profile and com- 
pared with the DSI measured with the use of gratings. Fig- 
ure 9 B shows the X-T profile for the same simple cell from 
which the grating data of Fig. 9A were recorded. Fourier 
analysis of the X-T data yields the spatiotemporal ampli- 
tude spectrum shown in Fig. 9C. As noted above, positive 
temporal frequencies correspond to motion in the preferred 
direction, and negative temporal frequencies correspond to 
motion in the nonpreferred direction. To obtain a linear 
prediction of the DSI, we find the values of the amplitude 
spectrum corresponding to the motion of a grating having 
optimal spatial frequency and drifting at a temporal fre- 
quency of 2 Hz. These values are indicated by the intersec- 
tions of the cross-hairs in Fig. 9C. R, is taken to be the value 
of the amplitude spectrum at a spatial frequency of 0.3 cy- 
cles/deg and a temporal frequency of +2 Hz; R,, is defined 
as the amplitude at 0.3 cycles/deg and -2 Hz. From these 
values, a predicted DSI is computed with the use of Eq. 3. 
The predicted DSI for this cell has a value of 0.43, which is 
roughly one-half of the value (DSI = 0.79) obtained with 
gratings. This discrepancy is typical of most cells. 

Figure 9 D shows the predicted DSI (from reverse corre- 
lation data) plotted against the measured DSI (from grating 
data) for a population of 190 simple cells from adult cats 
and kittens. Each point in this scatter plot represents one 
neuron. Large positive values of the DSI indicate a strong 
preference for motion in one direction, whereas negative 
values indicate a preference for motion in the opposite di- 
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rection. The data of Fig. 9D show that the reverse correla- 
tion data correctly predict the preferred direction of motion 
for -95% of the cells tested (i.e., almost all data points lie 
within the shaded quadrant). For 11 cells the reverse corre- 
lation and grating data predict opposite direction prefer- 
ences; however, the directional indexes for most of these 
cells are close to 0.0. Because these cells are nearly equally 
responsive to both directions of motion, a small amount of 
variability in the response can yield measured and pre- 
dicted DSIs of opposite sign. For all cells that exhibit a 
strong directional preference in response to gratings (DSI > 
0.5 ), the reverse correlation data correctly predict the pre- 
ferred direction of motion. 

Although the reverse correlation data are accurate in pre- 
dicting the direction preference of most simple cells, DSI 
values predicted from the X-T profiles typically underesti- 
mate the actual DSIs measured with gratings (i.e., most 
points in Fig. 9 D lie below the diagonal). This means that 
the actual direction preference is more pronounced than 
that predicted from the spatiotemporal receptive-field pro- 
file. Thus linear predictions of direction selectivity are not 
accurate. Similar findings have been reported in studies 
that compare responses to drifting gratings with responses 
to counterphase modulated gratings ( Albrecht and Geisler 
199 1; Reid et al. 1987, 199 1; Tolhurst and Dean 199 1) . For 
the data of Fig. 9 D, linear regression yields a correlation 
coefficient of 0.64, which is significant (F, 188 = 128.1, P < 
0.00 1). The regression line (shown dashed) has a slope of 
0.47 and an intercept of 0.06. There is no significant differ- 

FIG. 8. An evaluation is shown of variabil- 
ity in spatial and temporal frequency tuning 
parameters obtained from reverse correlation 
data (A and B) and from responses to gratings 
(C and D). A: comparison is made between 
optimal spatial frequency ( SF,,,) estimates ob- 
tained from repeated measurements of the X-T 
profile. Each data point represents 1 neuron. 
For each of these cells, 2 separate measure- 
ments of the X-T profile were obtained with 
the use of the reverse correlation method. Lin- 
ear predictions of SF,,, from the 1st trial are 
plotted on the horizontal axis, and estimates of 
SF,,, from the 2nd trial are plotted on the ver- 
tical axis. Points are clustered tightly around 
the diagonal line, indicating that estimates of 
SF,,, obtained from reverse correlation data 
are highly repeatable ( r = 0.98 ) . B: a scatter 
plot shows the correspondence between esti- 
mates of the optimal temporal frequency 
(TF,,,) obtained through Fourier analysis of 
repeated measurements of the X-T profile. 
Again, the linear predictions of TF,,, are 
shown to be very repeatable (Y = 0.96). C: 
comparison between repeat measurements of 
SF,,, obtained with gratings is shown here. For 
each neuron, 2 separate measurements of the 
spatial frequency tuning curve were obtained. 
Values of SF,,, from the 1 st trial are plotted on 
the horizontal axis, and values of SF,,, from 
the 2nd trial are plotted on the vertical axis. 
The correlation is very strong (Y = 0.97). D: 
comparison of repeated measurements of 
TF,,, obtained with gratings. Comparison of 
these data with those in C shows that there is 
more variability in repeat measurements of 
TF,,, (Y = 0.8 1) than in repeat measurements 
of SF,,, (r = 0.97). 

ence between kittens and cats with regard to the relation- 
ship between measured and predicted values of the DSI. 
Overall, the DSI predicted on the basis of linearity is approx- 
imately one-half as large as the DSI measured with gratings. 

Recently, Albrecht and Geisler ( 199 1) have shown that 
the disparity between linear predictions and measured val- 
ues of DSIs can be reconciled by accounting for the expan- 
sive nonlinearity revealed in the contrast-response func- 
tion. In the present study we have not measured contrast- 
response functions as part of the standard experimental 
protocol; hence we cannot directly test the method of Al- 
brecht and Geisler for the whole population of cells shown 
in Fig. 9 D. In a couple of experiments, recently, we have 
obtained contrast-response data, as well as X-T profiles, for 
a small group of simple cells. For each of these cells, we 
have fit the contrast-response data with the use of the 
method described by Albrecht and Geisler ( 199 1) and Al- 
brecht and Hamilton ( 1982). This fitting procedure is illus- 
trated in Fig. 1OA for a representative simple cell. The dia- 
monds show the response of the neuron to drifting sinusoi- 
dal gratings of variable contrast from 3 to 60%. The solid 
curve is the best-fitting function of the form 

(4) 

where R,,, , n, and c,~ are free parameters, and c denotes 
contrast. In this formulation, response [R(c)] increases ex- 
ponentially with contrast for contrasts below the semisatura- 
tion coefficient (c,,); for contrasts above Cam, response be- 
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FIG. 9. A : comparison between direction selectivity measurements 
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made with the use of gratings and linear predictions is shown here. A: 
traditional direction selectivity measurements are obtained with the use of 
drifting sinusoidal gratings. This panel shows an orientation tuning curve 
for a typical simple cell. Seven orientations ( 15” apart) are tested around 
the preferred direction of motion (0) and around the opposite direction 
(0). Smooth curves show the best-fitting Gaussian functions to these orien- 
tation tuning data. A direction selectivity index (DSI) is computed (see 
Ey. 3) with the use of the peak responses in the preferred (R,) and nonpre- 
ferred (R,,) directions. The drifting grating stimulus used for this test had a 
spatial frequency of 0.3 cycles/deg, a temporal frequency of 2 Hz, and a 
contrast of 50%. B: space-time (X-T) receptive-field profile for the same 
simple cell. Note that the subregions are clearly tilted toward the left in the 
space-time domain. C: a 2-dimensional Fast Fourier Transform is applied 
to the X-T data shown in B to obtain the spatiotemporal amplitude spec- 
trum, shown here as a contour map. A linear prediction of R, is obtained 
by finding the value of the amplitude spectrum at a spatial frequency of 0.3 
cycles/deg and a temporal frequency of +2 Hz (indicated by the intersec- 
tion of the cross-hairs), because these are the parameters of the grating 
stimulus used to collect the data shown in A. Similarly, an estimate of R,, 
is the amplitude at a spatial frequency of 0.3 cycles/deg and a temporal 
frequency of -2 Hz. From these values, a predicted DSI is computed, with 
the use of Eq. 3. D: in this scatter plot, the DSI measured with gratings is 
plotted on the horizontal axis, and the predicted DSI (assuming-linearity) 

gins to saturate rather quickly as a function of contrast. The 
exponent, n, is taken as a metric of the expansive nonlin- 
earity (see Albrecht and Geisler 199 1). 

If we assume that the expansive exponent given by the 
contrast-response function is the only response nonlinear- 
ity affecting the output of the simple cell, we can correct the 
values of the DSI obtained from grating measurements and 
linear predictions (see APPENDIX). After this correction, the 
predicted DSI (from reverse correlation data) and the mea- 
sured DSI should agree, provided that other nonlinearities 
do not have a significant contribution. Figure 1OB shows 
that correcting for the contrast-response nonlinearity elimi- 
nates most of the discrepancy between measured and pre- 
dicted values of the DSI. The open circles in Fig. 1 OB show 
uncorrected estimates of the direction selectivity index for 
eight simple cells. As for the larger population of cells 
shown in Fig. 9 D, the DSI measured with gratings is consis- 
tently larger than the DSI predicted from reverse correla- 
tion (0). The filled circles in Fig. 1 OB show corrected esti- 
mates of the DSI for the same eight simple cells. Note that 
most of the points now cluster closely around the diagonal, 
which represents the linear prediction. The average value of 
the expansive exponent, n, for these cells is 2.28, which is 
close to the mean value ( n = 2.5 ) reported by Albrecht and 
Hamilton ( 1982) and Albrecht and Geisler ( 199 1). Thus 
the data of Fig. 1OB support the findings of Albrecht and 
Geisler ( 199 1) (but see DISCUSSION) and show that DSIs 
can be predicted on the basis of linear spatiotemporal re- 
ceptive-field structure, if the contrast-response nonlinearity 
is known. 

In Fig. 10, we have used measurements of the expansive 
exponent nonlinearity to “correct” measured and predicted 
DSIs. In an alternative approach, we can compute the value 
of the exponent that is necessary to bring the measured and 
predicted DSIs into exact correspondence. This computa- 
tion has been performed for each of the 190 simple cells 
shown in Fig. 9 D, and the distribution of computed expo- 
nents is shown in Fig. 11 A. Statistical analysis (Tukey’s 
HSD test) reveals that there is no significant difference be- 
tween the distributions of exponents for adult cats (m), 
&&-old kittens (m), and &&-old kittens (~7). As a re- 
sult, we have combined data across these three age groups, 
as shown in Fig. 11 B. 

Figure 11 C shows the distribution of exponents mea- 
sured by Albrecht and Hamilton ( 1982) for a population of 
127 cortical cells from adult cats. These data were obtained 
by fitting curves to contrast response functions, as illus- 
trated in Fig. 1On. Note that the distribution of exponents 
measured by Albrecht and Hamilton ( 1982) is strikingly 
similar to the distribution of computed exponents shown in 
Fig. 1 1 B. In fact, these two distributions are statistically 
indistinguishable (x2 = 3.3; P = 0.65). This finding further 
supports the notion that direction selectivity may be ex- 

is plotted on the vertical axis. Data are shown for a total of 190 simple cells: 
65 from adult cats (a), 55 from 8-wk-old kittens ( n ), and 70 from 4-wk- 
old kittens (A). The diagonal line of unity slope (solid) indicates the ideal 
behavior of a linear spatiotemporal filter. The dashed line shows the result 
of linear regression analysis (slope = 0.47, y-intercept = 0.06, r = 0.64). 
Points that lie within the shaded quadrant indicate cells for which linear 
predictions correctly determine the preferred direction of motion. 
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FIG. 10. Correction of direction selectivity estimates based on measure- 

ment of the contrast-response nonlinearity. A: a contrast response func- 
tion is shown for a simple cell. Responses to gratings (that have optimal 
orientation and spatial frequency, and drift at a temporal frequency of 2 
Hz) as a function of contrast are indicated by diamonds. The solid curve 
shows the best fit to these data, as formulated in Eq. 4. For this cell, the 
expansive exponent, n, has a value of 2.7, and the semisaturation coeffi- 
cient, c50, has a value of 14.2. B: a scatter plot shows the relationship 
between measured and predicted values of the direction selectivity index 
(DSI). Open circles show the data for 8 simple cells before correction for 
the expansive exponent nonlinearity. As for the data of Fig. 9D, the points 
generally fall well below the diagonal. Filled circles show the data for these 
same 8 neurons after correction for the expansive nonlinearity. Note that 
the filled circles cluster closely around the diagonal. 

plained by the combination of a linear spatiotemporal filter 
and a static (i.e., exponent) nonlinearity. 

DISCUSSION 

For a linear filter, the magnitude of the response to sinu- 
soidal inputs (i.e., the modulation transfer function) can be 
predicted from the responses to very narrow pulse inputs 
(i.e., the impulse response). We have evaluated the linear- 
ity of spatial and temporal summation in simple cells by 
comparing the responses to drifting sinusoidal-luminance 
gratings with linear predictions computed from spatiotem- 
poral receptive-field profiles. Our main findings are as fol- 
lows. 1) For most cells, measured spatial frequency tuning 
curves match fairly well with linear predictions. However, 
there is some tendency for predicted spatial frequency tun- 
ing curves to be too broad. These results are generally con- 
sistent with previous work (Andrews and Pollen 1979; De- 

Valois et al. 1978; Glezer et al. 1980, 1982; Kulikowski and 
Bishop 198 la; Maffei et al. 1979; Movshon et al. 1978; 
Tadmor and Tolhurst 1989; Webster and DeValois 1985 ). 
2) For most cells, measured temporal frequency tuning 
curves match reasonably well with linear predictions. 
Again, deviations from linearity are manifested in pre- 
dicted tuning curves that are too broad. In some cases, lin- 
ear predictions differ from measured tuning curves only at 
low spatial and temporal frequencies. 3) Linear predictions 
are accurate for determining the preferred direction of mo- 
tion for virtually all cells. However, linear predictions typi- 
cally underestimate the strength of directional selectivity by 
about a factor of two. This result is similar to those reported 
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FIG. 1 1. Distributions are shown of exponent values required to bring 
measured and predicted values of the direction selectivity index into corre- 
spondence (i.e., to make all the data points of Fig. 9D fall exactly on the 
diagonal line). A : the distribution of computed exponents ( n) for the popu- 
lation of 190 simple cells shown in Fig. 9 D. Data for cells from adult cats, 
8-wk-old kittens, and 4-wk-old kittens are shown as black, gray, and white 
bars, respectively. The distributions of n for the 3 age groups are not signifi- 
cantly different. B: histogram shows the distribution of n for all simple cells 
(n = 190), combined across the 3 age groups. The mean value of n is 2.4. 
C: histogram here (lJ) shows the distribution of exponents measured by 
Albrecht and Hamilton ( 1982) for a population of 127 cells from the 
striate cortex of adult cats. The mean of this distribution is 2.5. Note that 
this distribution is nearly indistinguishable from that shown in B. 
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previously in studies that used a different method (Albrecht 
and Geisler 199 1; Reid et al. 1987, 199 1; Tolhurst and 
Dean 199 1). Compensation for the expansive nonlinearity 
revealed in the contrast-response function reconciles the 
disparity between measured DSIs and linear predictions, as 
previously reported by Albrecht and Geisler ( 199 1) . 

Overall, our findings are consistent with the notion that 
simple cells sum their inputs approximately linearly over 
space and time. Some of our results are also consistent with 
the idea that linear summation is followed by a static (out- 
put) nonlinearity ( Albrecht and Geisler 199 1; Andrews and 
Pollen 1979; DeValois et al. 1985; Heeger 199 1; Kuli- 
kowski and Bishop 198 la; Mancini et al. 1990; Tadmor 
and Tolhurst 1989). As discussed below, several other types 
of nonlinearities are known to modulate the response prop- 
erties of simple cells. Nevertheless, our data show that these 
nonlinearities do not severely affect the accuracy of linear 
predictions based on the spatiotemporal receptive-field 
profile. X- T profiles obtained from simple cells by the use of 
reverse correlation can be used to predict, with reasonable 
accuracy, a variety of response properties, including spatial 
and temporal frequency tuning. These results validate the 
methodology used in the companion paper (DeAngelis et 
al. 1993). 

Temporal summation 

Results of several previous studies have suggested that 
spatial summation in simple cells is approximately linear 
(Andrews and Pollen 1979; DeValois et al. 1978; Glezer et 
al. 1980, 1982; Kulikowski and Bishop 198 la; Maffei et al. 
1979; Movshon et al. 1978; Tadmor and Tolhurst 1989; 
Webster and DeValois 1985 ) . Our findings are generally 
consistent with these results. With regard to linearity of 
temporal summation, previous studies (Dean et al. 1982; 
Mancini et al. 1990; Tolhurst et al. 1980) have reached 
widely differing conclusions. Tolhurst et al. ( 1980) report 
that linear predictions of the temporal frequency tuning 
curve, obtained through Fourier analysis of the response to 
a flashed grating, match very poorly with measured tem- 
poral frequency tuning curves. Thus they conclude that 
temporal summation in simple cells is grossly nonlinear. In 
contrast, Mancini et al. ( 1990) have analyzed the temporal 
response properties of simple cells with the use of a white 
noise technique, and they conclude that temporal summa- 
tion within simple cells is approximately linear. 

We have taken a similar approach to that used by Tol- 
hurst et al. ( 1980), namely comparing measured temporal 
frequency tuning curves with linear predictions, but our 
findings are more in accord with those of Mancini et al. 
( 1990) than with those of Tolhurst et al. ( 1980). These 
differences may be attributed primarily to methodological 
considerations. In our reverse correlation experiments, sim- 
ple cells are stimulated with a long, pseudorandom se- 
quence of briefly flashed (i.e., 40-ms duration) bar stimuli 
(see Fig. 2 of the companion paper, DeAngelis et al. 1993). 
The response of most cells under these conditions is a 
steady, unpatterned discharge at a mean rate of a few spikes 
per second. Qualitatively, the response is similar to the 
maintained discharge of cortical cells that fire spontane- 
ously (such as some complex cells). Thus during the course 

of a reverse correlation run most simple cells are operating 
at an approximately steady-state response level that is well 
within their dynamic range. The appearance or disappear- 
ance of a single bar stimulus produces only a small modula- 
tion of the cell’s response, on top of a relatively constant 
state of ongoing neuronal activity. A similar type of re- 
sponse is undoubtedly obtained during white noise experi- 
ments, as noted by Mancini et al. ( 1990). 

In contrast, the predicted temporal frequency tuning 
curves of Tolhurst et al. ( 1980) are obtained through analy- 
sis of the response to a grating that is flashed on for 2 s. This 
yields a “step response” that is differentiated to obtain an 
impulse response; the impulse response is subsequently 
Fourier transformed to obtain a predicted temporal fre- 
quency tuning curve. In this situation, the neuron is quiet 
before the stimulus, produces a large transient response at 
the onset of the stimulus, and subsequently exhibits some 
sustained discharge during the remainder of the stimulus 
presentation. This paradigm induces a large change in the 
operating point of the cell being recorded, as well as changes 
in operating point for many nearby ceils that may interact 
with the recorded cell. This large disturbance may reveal 
nonlinearities in the cortical neuronal network (e.g., the 
rapid contrast gain control described by Bonds 199 1) that 
are not stimulated in our experiments. 

An engineering analogy may help to clarify the differ- 
ences between our experimental paradigm and that of Tol- 
hurst et al. ( 1980). Many nonlinear systems exhibit approx- 
imately linear behavior when the input signal consists of 
small variations about a fixed operating point. These same 
systems may show gross nonlinearities when the input con- 
tains large disturbances that change the operating point of 
the system. The response of simple cells to the reverse corre- 
lation stimulus is more reminiscent of the former (small- 
signal) case, whereas the response to a single flash of a grat- 
ing is more reminiscent of the latter case. Thus the differ- 
ences between our findings and those of Tolhurst et al. 
( 1980) may be related, at least partially, to the conditions of 
stimulation. 

Another methodological issue involves the use of both 
luminance increments and decrements in characterizing 
the temporal response of simple cells. In the paradigm of 
Tolhurst et al. ( 1980), a stationary grating is flashed on at a 
single position within the receptive field. Thus, at a given 
receptive-field position, there is either a luminance incre- 
ment or a luminance decrement. Because simple cells have 
little spontaneous discharge, inhibitory phases in the tem- 
poral (impulse) response cannot be observed. Failure to 
detect these inhibitory phases would lead to erroneous pre- 
dictions of the temporal frequency tuning curve. In the re- 
verse correlation method, each spatial position is tested 
with luminance increments and luminance decrements. By 
taking the difference between the responses to increments 
(bright bars) and decrements (dark bars) (see Figs. 2 and 3 
of the companion paper, DeAngelis et al. 1993 ), inhibitory 
phases in the spatiotemporal response profile can be ap- 
proximated. In other words, the effects of a threshold non- 
linearity can be minimized by combining the responses to 
bright and dark stimuli. The assumption in this subtraction 
procedure is that the inhibition produced by a bright bar at 
a particular location within the receptive field may be 
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equated with the excitation produced by a dark bar at the 
same location. See the discussion below, as well as Palmer 
et al. ( 199 1 ), for more on this point. Use of both incre- 
ments and decrements may help to explain why we observe 
a better match between measured and predicted temporal 
frequency tuning curves, as compared with Tolhurst et al. 
(1980). 

It has often been proposed that simple cells serve to en- 
code scenes by performing a linear filtering of the visual 
image (Geisler and Hamilton 1986; Kulikowski and 
Bishop 1981b; Robson 1975, 1983; Sakitt and Barlow 
1982; Watson 1983, 1987). In these models, only the spa- 
tial filtering characteristics of simple cells are generally con- 
sidered. However, for these models to perform correctly on 
a spatiotemporal sequence of images, simple cells must be- 
have linearly over both space and time. Our finding that 
both spatial and temporal summation in simple cells are 
approximately linear allows such models to be extended to 
the general case of a time-varying image. 

Sources of nonlinearity 

We have shown that the spatial and temporal frequency 
tuning of many simple cells (see Figs. 2 and 3) can be pre- 
dicted from their spatiotemporal receptive-field profiles. 
However, Figs. 6 and 7 show that linear predictions of spa- 
tial and temporal frequency tuning parameters are not 
quite accurate. In particular, large errors are observed for 
the low-frequency cutoffs (Figs. 6C and 7C). We now con- 
sider nonlinearities that may account for these observa- 
tions. One obvious candidate is a response threshold (or 
half-wave rectifier), because it is well known that most sim- 
ple cells exhibit little maintained discharge in the absence of 
a visual stimulus. Tadmor and Tolhurst ( 1989) report that 
linear predictions of the spatial frequency tuning curve ob- 
tained via Fourier analysis of the line-weighting function 
can be markedly improved by incorporating a response 
threshold. 

Overall, the data of Figs. 6 and 7 are consistent with the 
hypothesis that a response threshold is the main source of 
deviation from linearity. To see this, consider a hypotheti- 
cal tuning curve that is Gaussian shaped on a linear fre- 
quency axis (which is a good approximation for spatial fre- 
quency tuning curves). Assume that the optimal frequency 
is 0.4 cycles/deg, the high cutoff frequency is 0.7 cycles/ 
deg, and the low cutoff frequency is 0.1 cycles/deg. If we 
compute a predicted tuning curve via Fourier transform of 
a receptive-field profile, the effect of a response threshold 
will be to make the predicted tuning curve too broad (e.g., 
see Fig. 2 of Tadmor and Tolhurst 1989). Assume that the 
predicted tuning curve is broadened symmetrically such 
that it has a high cutoff frequency of 0.75 cycles/deg and a 
low cutoff frequency of 0.05 cycles/deg. The difference be- 
tween the measured and predicted cutoff frequencies is 0.05 
cycles/deg. For the high cutoff, this difference represents 
-7% of the measured value; for the low cutoff, this differ- 
ence amounts to 50% of the measured value. Thus the error 
in the low-frequency cutoff should be visible in our mea- 
surements, whereas the error in the high-frequency cutoff 
may be obscured by variability in the data. 

The spatial frequency tuning data summarized in Fig. 7 

are reasonably consistent with the effects of a response 
threshold. Predicted values of SF,,, are, on average, 0.05 
cycles/ deg larger than measured values, and predicted val- 
ues of SF,,, are, on average, 0.08 cycles/deg smaller than 
measured values. The error at high frequencies is barely 
noticeable in Fig. 7 B (because it represents a small fraction 
of the actual cutoff values), whereas the error at low fre- 
quencies is quite obvious in Fig. 7C. Although temporal 
frequency tuning curves are typically not Gaussian shaped 
on a linear frequency axis, a similar argument can be made 
concerning the effects of a response threshold on linear pre- 
dictions. The data of Fig. 6 may also be consistent with the 
effects of a response threshold. Predicted values of TFhib 
are, on average, 0.25 Hz larger than measured values, and 
predicted values of TF,,, are, on average, 0.32 Hz smaller 
than measured values. Again, the error is not very notice- 
able at high temporal frequencies (Fig. 6 B) but is promi- 
nent at low temporal frequencies (Fig. 6C). 

Although the data for our population of cells may be 
consistent with the effects of a threshold nonlinearity, some 
of the data from individual neurons are not consistent with 
this hypothesis. Some cells exhibit large deviations from 
linearity only at low spatial frequencies (Fig. 4A) or low 
temporal frequencies (Fig. 4 B). These results are not con- 
sistent with the effects of a threshold because a threshold 
would effect both the low-and high-frequency ends of the 
curve. The combination of a threshold and an expansive 
nonlinearity (e.g., Albrecht and Geisler 199 1; Heeger 199 1, 
1992b) also cannot account for these data, because the ex- 
pansive nonlinearity would also act to broaden predicted 
tuning curves at both ends (see Heeger 1992b). One possi- 
ble explanation for the data of Fig. 4, A and B, is that devia- 
tions from linearity at high spatial and temporal frequen- 
cies are masked by the blurring effect of finite dimension 
stimuli. If the bar stimuli used in the reverse correlation 
algorithm are too large (in space or time), high-frequency 
components in the data will be attenuated (see the compan- 
ion paper for more on this point). Thus it is possible that 
the measured and predicted high cutoff frequencies match 
just by coincidence for some cells. However, this possibility 
can be discounted because we have corrected the data of 
Figs. 6 and 7 for any blurring effects of the stimulus, which 
are usually very small (see APPENDIX of the companion 
paper, DeAngelis et al. 1993 ) . 

Another possibility is that deviations at low spatial and 
temporal frequencies arise through frequency-specific in- 
tracortical inhibition. It has been reported (Bauman and 
Bonds 199 1; DeValois and Tootell 1983 ) that the responses 
of many simple and complex cells to a grating of optimal 
spatial frequency can be inhibited by the superposition of a 
second grating having a different spatial frequency. This 
mechanism may act to sharpen the spatial frequency selec- 
tivity of some neurons (Bauman and Bonds 199 1). How- 
ever, it does not appear that this mechanism operates only 
at low frequencies. DeValois and Tootell ( 198 3 ) report that 
spatial frequency-specific inhibition is only effective at high 
spatial frequencies for most cells. Bauman and Bonds 
( 199 1) report finding inhibition at both the low- and high- 
frequency ends of the tuning curve, with equal probability. 
Therefore it does not appear that this mechanism can ac- 
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count for deviations from linearity that are limited to low 
spatial frequencies. 

Dean et al. ( 1982) have reported nonlinear interactions 
between two grating stimuli of different temporal frequen- 
cies. They report that the response of cells to a high tem- 
poral frequency stimulus is enhanced by the presence of a 
low temporal frequency stimulus, and that the response to a 
low-frequency stimulus is suppressed by the presence of a 
high-frequency stimulus. Recently, Reid et al. ( 1992) have 
confirmed and extended this finding with the use of a stimu- 
lus consisting of the sum of eight sinusoids of different tem- 
poral frequencies. It is possible that this type of nonlinearity 
accounts for some of the deviations from linearity that we 
have observed. 

Another potential explanation for error in our linear pre- 
dictions is that there are components of the receptive field 
that are not observable with the use of the techniques we 
have employed. Because simple cells do not produce any 
maintained discharge in the absence of a visual stimulus, 
we can only measure the excitatory inputs to a given neu- 
ron. The inhibitory inputs cannot be measured directly, 
without artificially raising the maintained discharge of the 
neuron. In constructing spatiotemporal receptive-field pro- 
files with the use of the reverse correlation technique, we 
approximate the inhibitory inputs to a cell by taking the 
difference between responses to bright and dark stimuli. 
This procedure has also been used by several other re- 
searchers (e.g., Field and Tolhurst 1986; Jones and Palmer 
1987a; Movshon et al. 1978; Palmer et al. 199 1; Tadmor 
and Tolhurst 1989). The basic assumption is that inhibi- 
tion produced by a bright stimulus is equivalent to excita- 
tion produced by a dark stimulus, and vice versa. As 
pointed out by Tadmor and Tolhurst ( 1989 ) and Palmer et 
al. ( 199 1 ), failure of this assumption may account for 
errors in linear predictions of the responses to gratings. By 
allowing the inhibitory inputs to a neuron to differ in 
strength or spatial localization from the excitatory inputs, 
Palmer et al. ( 199 1) have constructed a model that predicts 
the types of deviations from linearity that we have observed 
at low spatial frequencies. Further study will be necessary to 
determine whether explicit measurement of the inhibitory 
inputs to a neuron can improve predictions of spatial and 
temporal frequency selectivity. 

Before leaving this topic, it should be pointed out that 
there are other types of nonlinearities known to modulate 
the response properties of simple cells (and complex cells). 
Most of these are probably generated within the local corti- 
cal neuronal network and can be considered dynamic non- 
linearities, because their effect may depend on the recent 
history of the pattern of visual stimulation. One such non- 
linearity is contrast gain control (Bonds 199 1; Ohzawa et 
al. 1985; Sclar et al. 1989), which adjusts the dynamic 
range of a neuron on the basis of the recent history of con- 
trast levels in the visual scene. Bonds ( 199 1) has recently 
demonstrated that a contrast gain control mechanism may 
act rapidly when a cortical cell is stimulated by changes in 
contrast. Another well known nonlinearity is “cross-orienta- 
tion” inhibition (Bonds 1989; DeAngelis et al. 1992; 
Morrone et al. 1982), by which the responses of two stimuli 
of different orientations interact nonlinearly for most cells. 
It is also known that many simple cells exhibit nonlineari- 

ties of summation when tested with stimuli of different 
lengths (end-inhibition: e.g., Hubel and Wiesel 1965; Or- 
ban et al. 1979a,b) or widths (side-inhibition: Born and 
Tootell 199 1; DeAngelis et al. 1990, 199 1 b; DeValois et al. 
1985 ) . Whether or not these various nonlinear interactions 
reflect different mechanisms is not yet clear. However, a 
recent model (Heeger 1992a) suggests that at least some of 
these effects may be explained by a single contrast normal- 
ization scheme, for which there is some physiological sup- 
port (Bonds 1989, 199 1; DeAngelis et al. 1992). 

Direction selectivity 

One of the prominent features of visual cortical cells is 
their direction selectivity for moving stimuli (see Orban 
199 1 for review). Despite many studies of direction selectiv- 
ity in cortical neurons, there is no consensus in the litera- 
ture concerning the mechanisms that underlie direction se- 
lectivity. Hubel and Wiesel ( 1959, 1962) reported that the 
responses of simple cells to moving stimuli could be pre- 
dicted, qualitatively, from a mapping of the ON and OFF 
subregions of the receptive field. They suggested that a pref- 
erence for a light bar moving in one direction might arise 
through summation of synchronized ON and OFF responses 
as the bar leaves an OFF subregion and enters an ON subre- 
gion. Several investigators (Bishop et al. 1974; Heggelund 
1984; Henry and Bishop 1972; Peterhans et al. 1985; Ya- 
mane et al. 1985 ) have made predictions of direction selec- 
tivity from the arrangement of ON and OFF subregions in 
the spatial receptive-field profile (or line-weighting func- 
tion) of simple cells. The consensus is that direction selectiv- 
ity cannot be predicted from the spatial receptive-field pro- 
file. This result is not surprising, in retrospect, because the 
spatiotemporal receptive fields of direction-selective simple 
cells are not space-time separable. Hence, for these cells, 
there is no unique spatial receptive-field profile (see the 
companion paper for more on this point). 

Failure to predict direction selectivity from the spatial 
receptive-field profile has led some researchers (cf. Hegge- 
lund 1984) to the conclusion that direction selectivity is 
mediated by (nonlinear) inhibitory interactions. Indeed, 
several models for the generation of direction selectivity in 
visual neurons (i.e., Barlow and Levick 1965; Bishop et al. 
197 1; Ruff et al. 1987; Schiller et al. 1976) have been for- 
mulated that rely on nonlinear (mostly inhibitory) interac- 
tions to explain the observed responses of cortical cells. Al- 
ternatively, theoretical studies ( Adelson and Bergen 1985; 
Watson and Ahumada 1983, 1985) have suggested that the 
direction selectivity of simple cells in the visual cortex 
might derive from their linear spatiotemporal receptive- 
field structure. In particular, cells with X-T profiles that are 
inseparable, or tilted in space-time, are expected to exhibit a 
directional preference. Reid et al. ( 1987, 199 1) have shown 
that linear predictions are accurate for determining the pre- 
ferred direction for most simple cells. However, they report 
that the strength of the directional selectivity is typically 
underestimated by about a factor of two with the use of 
linear predictions. Similar findings have been reported by 
Albrecht and Geisler ( 199 1) and Tolhurst and Dean 
( 199 1). In each of these studies, linear predictions are com- 
puted from the responses to counterphase modulated grat- 
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ings. We have obtained linear predictions of direction selec- 
tivity from measurements of the spatiotemporal receptive- 
field profile, and our findings are quite similar to those of 
Albrecht and Geisler ( 199 1) and Reid et al. ( 1987, 199 1). 
Our findings (Figs. 9 and 10) also complement those of 
McLean and Palmer ( 1989 ), who report that the optimal 
velocity of simple cells in response to a moving bar stimulus 
can be predicted from the spatiotemporal receptive-field 
profile measured with the use of reverse correlation. 

The fact that linear predictions underestimate the mea- 
sured direction selectivity index by a factor of two, on aver- 
age (see Fig. 9 D), suggests that nonlinear mechanisms are 
involved in generating direction selectivity. Recently, Al- 
brecht and Geisler ( 199 1) have shown that measured and 
predicted DSIs agree well when one compensates for the 
expansive exponential nonlinearity evident in the contrast- 
response function. We have confirmed the findings of Al- 
brecht and Geisler ( 199 1) for a subset of the simple cells 
recorded in this study. This result suggests that the linear 
spatiotemporal receptive field of simple cells is the basis for 
direction selectivity, and that direction selectivity is en- 
hanced by a static exponential nonlinearity (Albrecht and 
Geisler 199 1; see also a similar proposal by Heeger 199 1, 
1992b). If so, then the combination of a linear spatiotem- 
poral filter and a static nonlinearity may account for both 
the direction selectivity and the temporal response proper- 
ties (Mancini et al. 1990) of simple cells. 

Although the exponent model (Albrecht and Geisler 
199 1; Heeger 199 1, 1992b) accounts for the discrepancy 
between measured DSIs and linear predictions, it should be 
noted that this may not be a complete explanation of direc- 
tion selectivity for simple cells. Both Reid et al. ( 199 1) and 
Tolhurst and Dean ( 199 1) report that linear predictions of 
a cell’s response in the preferred direction are accurate, but 
predictions of the response in the nonpreferred direction 
are consistently too large. The exponent model (Albrecht 
and Geisler 199 1) is consistent with the latter result but 
requires that linear predictions of the response in the pre- 
ferred direction are too small. Hence it is possible that other 
mechanisms are involved. Reid et al. ( 199 1) and Tolhurst 
and Dean ( 199 1) both suggest that suppression of the re- 
sponse in the nonpreferred direction may account for the 
difference between measured and predicted DSIs. Recently, 
Heeger ( 1992~) has demonstrated that the combination of 
a static (exponent) nonlinearity and a contrast gain control 
mechanism may explain the observations of Reid et al. 
( 199 1) and Tolhurst and Dean ( 199 1) concerning linear 
predictions of the responses in the preferred and nonpre- 
ferred directions. 

With the use of a white noise method, Emerson and Cit- 
ron ( 1989) and Emerson ( 1992) have shown that some 
simple cells exhibit nonlinear direction-selective subunits, 
which are similar to those found in complex cells (Emerson 
et al. 1987). These results may not be explained by a model 
consisting of a linear filter and a static nonlinearity (expo- 
nent). Jacobson et al. ( 1992) have also found, with the use 
of a white noise method, that the input-output relationships 
of simple cells in the monkey’s striate cortex cannot be ex- 
plained completely with the use of a model consisting of a 
linear filter followed by a static nonlinearity. Further re- 
search is necessary to elucidate which types of nonlineari- 

ties may be involved in generating direction selectivity, so 
that a better model of simple-cell behavior may be formu- 
lated. 

In summary, we have shown that spatiotemporal recep- 
tive-field profiles may be used to predict the spatial and 
temporal frequency selectivity of simple cells with reason- 
able accuracy (except at low frequencies in some cases). 
Consequently, reverse correlation measurements yield a rea- 
sonable approximation to the spatiotemporal impulse re- 
sponse for most simple cells. Accounting for some basic 
response nonlinearities, such as a response threshold and an 
expansive exponent, may improve the accuracy of some 
predictions, such as predictions of direction selectivity. Al- 
though several types of nonlinearities are known to modu- 
late the responses of simple cells, these do not severely im- 
pair the usefulness of measurements of the spatiotemporal 
receptive-field profile. 

APPENDIX 

For a linear spatiotemporal filter, response increases propor- 
tionally with contrast (i.e., the contrast-response function is a 
straight line in linear coordinates). For a cortical neuron, how- 
ever, the contrast-response function is nonlinear (see Fig. lOA). 
For low contrasts, response generally increases exponentially with 
contrast; for high contrasts, response saturates. Recently, simple 
cells have been modeled as a linear spatiotemporal filter combined 
with an expansive (exponential) nonlinearity and a contrast nor- 
malization mechanism ( Albrecht and Geisler 199 1; Heeger 199 1, 
1992a,b). The expansive nonlinearity accounts for the exponen- 
tial increase in response for low contrasts. The contrast normaliza- 
tion mechanism accounts for the saturation of response at high 
contrasts. (We shall ignore the effect of a response threshold in the 
present discussion.) When the contrast of a visual stimulus is fixed 
(over some region of space and time), the contrast normalization 
factor becomes a constant. When one computes the ratio of two 
responses, this contrast normalization factor cancels out (see Al- 
brecht and Geisler 199 1 for additional details). Thus, to correct 
our estimates of DSIs (as in Fig. 1 OB) , we need only consider the 
effect of the expansive nonlinearity (exponent). 

We first consider the effect of the exponent on the DSI mea- 
sured with the use of gratings. Let us denote the responses of a 
simple cell to a sinusoidal grating drifting in the preferred and 
opposite directions as R, and Rnp, respectively. These responses 
can be written as 

R, = (L,)” and R,, = (L,,)” 

where L, and L,, denote the output of the underlying linear filter 
to gratings drifting in the preferred and nonpreferred directions, 
respectively, and y2 is the exponent. We have computed a neuron’s 
DSI, in response to gratings, by the formula 

R 

DSI = Rp - RI, l-2 -=- 
R, + RI, RP 

1+R 
P 

A DSI that is corrected for the effect of the exponent, ~2, can be 
written as 

L 
l--z 1 - /R”PYn 
I  

L 
P-I \RPI DSI,,, = - - 

where y2 is measured by fitting E’q. 4 to the contrast response func- 
tion of the neuron (see Fig. 1 OA ). 
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The procedure described above allows us to correct the DSI 
measured in response to grating stimuli. It is also necessary to 
correct the predicted DSI obtained via Fourier transform of the 
X-T profile ( see Fig. 9, B and C) . As described in the companion 
paper, the spatiotemporal receptive-field profile, R (X, T), is ob- 
tained by taking the difference between responses to bright bars, 
B(X,T), and responses to dark bars, D(X,T) 

R(X, T) = B(X, T) - D(X, T) 

An X-T profile that is corrected for the effect of the exponent, yt , is 
computed as follows 

Rc,,(X, T) = B(X, T)“” - D(X, T)% 

R,,(X, T) is then Fourier transformed to obtain a spatiotem- 
poral amplitude spectrum. A predicted DSI is then obtained as 
shown in Fig. 9C. 

Corrected estimates of the measured and predicted DSI are 
shown for eight simple cells in Fig. 1 OB ( 0). 
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