new Master of Science in Neural Systems and Computation new

 

[Summary] [Studienordnung] [Qualification Profile] [Program overview] [Admission] [Credit point system]

   
 

Summary

 

The Master of Science in Neural Systems and Computation is affiliated with the University of Zurich (UZH) and will soon also be affiliated with the Physics Department of the Swiss Federal institute of Technology in Zurich (ETHZ).

The questions of how the brain effects computation; how that computation supports behavior; and how to transpose these principles into useful technologies, are amongst the foremost intellectual challenges of our age. The answers to these questions will have great consequence for medical health and the development of artificial intelligent systems. The answers lie at the interface between the disciplines of Physics, Biology, Engineering, Mathematics, Computer Science, as well as Cognitive and Medical Sciences. No single discipline can provide suitable training for students who wish to pursue this future. The masters program proposed here aims to provide the trans-disciplinary background, skills, and the facility with key questions that will support students during their first decade of independent research, or contributions to industry.

   

[top]

 

Qualification Profile

 

Graduates of the Master Program in Neural Systems and Computation will have acquired skills and expertise in experimental and theoretical neurosciences, and in neuromorphic engineering disciplines. The following is a list of qualifications provided by the Program:
 

  In-depth knowledge of classical research in systems neurosciences, reflecting our current understanding of the architecture of the brain to its sensory, motor, and cognitive functions.
• In-depth knowledge of concepts and theories of neural computation, and their relationship to classical theories of computation.
• Theoretical and practical knowledge of relevant experimental techniques of neurobiological investigation such as electrophysiology, optical imaging, and electron microscopy.
• In-depth practical knowledge of the theories, methods, and algorithms employed in the computational analysis of neurobiological data.
• Theory and design principles for the construction of neuromorphic hardware and systems that interact intelligently with the world.
• Ability to conduct independent scientific research in the field; including the completion of a specific research project.
• Ability to analyze, evaluate, and summarize scientific literature; and to write a research proposal.
• Ability to present research results in scientific talks and reports; for disciplinary, trans-disciplinary, and public audiences.

 

  [top]
 

Program overview

 

The program consists of a set of core modules, a set of elective courses, and a Master Thesis. Students may choose, in consultation with the course coordinator, a selection of core and elective courses that suit their backgrounds and future requirements. The Master Thesis is obligatory; however students have the option of shortening the duration of this project in favor of semester thesis or seminars. The core courses provide a common foundation for students with different educational backgrounds. The set of core courses reflects the main areas of research covered by the Institute of Neuroinformatics: experimental (systems) neurosciences, theoretical neurosciences, neural computation, and neuromorphic engineering. The credit point requirement is such that students must attend core course from at least three different disciplines. In addition to the standard teaching courses, the core modules include a module that provides a practical education in instrumentation, measurement, and data analysis relevant to neuroinformatics; and a module in which students study, discuss, and report on a list of foundational research papers in neuroscience and computation. In addition, a journal club together with graduate students and staff at INI will provide a forum for the analysis and evaluation of recently published high-profile research and so establish a state-of-art awareness of progress in the field.

 

  [top]
 

Admission

 

The proposed Master program is a specialized program because Bachelor degrees in the field are issued by UZH or ETHZ. The program will be open for students with a Bachelor degree in the following relevant disciplines: biology, chemistry, mathematics, physics, computer science, electrical engineering, information technology, and mechanical / chemical / control engineering. Applicants with a Bachelor degree from an Applied University in relevant disciplines or with a Bachelor degree in a non-relevant discipline (as above) can be admitted as well, but might have to complete additional coursework in the fields of physics, computer science, engineering, or biology (to be decided by the admission committee on a case-by-case basis).

All admission decisions are based on an interview with the applicant. The admission committee is formed by three group leaders with backgrounds in quantitative sciences (physics / mathematics / computer science / engineering) and in life sciences (biology / medicine). The admission committee will decide on (i) classification of students according to conditions for admission (ii) required courses in case of conditional admissions, and (iii) admission based on the results of entrance exams.

Send application material: one English paragraph stating why you are interested in the Master program, a CV, copies of Bachelor diploma (including list of attended courses and grades), and two references to:

Richard Hahnloser, Institute of Neuroinformatics UZH / ETHZ, Winterthurerstrasse 190, 8057 Zürich, Switzerland. Email: masterini.phys.ethz.ch

Deadline for applications: April 30th, 2007

The Master of Science in Neural Systems and Computation starts on September 17th, 2007

 

  [top]
 

Note for international students

 

Would you like to do obtain a Ph.D. from a Swiss Institution? Current regulations dictate that you must obtain a Master Degree first. The combined duration of a Master / Ph.D. in Switzerland is roughly equivalent to the duration of a typical Ph.D. from a US university (~5 yrs).

 

  [top]
 

Credit point system

 

Students must accumulate a total of 90 credit points (CPs) within the recommended duration of 3 semesters (1.5 years). See the table below for detailed information.

Oral examinations of courses always take place in the first periods of the two annual examination sessions.

 

  Exam CP
  Core Modules    
    Journal Clubs No 5
    Basics of Instrumentation No 4
    Research Projects (Master Thesis, Projects, Seminars)   37
    Master Exam   8
  Elective Core Courses Yes 18
  Elective Courses   18
  Total   90
     
 
 

Core Modules

 

CP

Exam

   

Core Courses

     
    1. Systems Neurosciences      
       - Systems Neuroscience (2h lectures/ 1h exercises) [uni|eth] 6 oral
       - Computational Vision (2h lectures/ 1h exercises) [uni|eth] 6 oral
           
    2. Theoretical Neurosciences      
       - Theoretical Neuroscience (2h lectures/ 1h exercises) [uni|eth] 6 oral
       - Introduction to Neuroinformatics (2 h lectures / 1 h exercise) [uni|eth] 6 oral
           
    3. Computational Sciences      
       - Models of Computation (2 h lectures / 1 h exercises) [uni|eth] 6 oral
       - Theorie, Programmierung und Simulation Neuronaler Netze (2 h lectures / 1 h exercises) [uni|eth] 6 oral
       - Introduction to Computational Sciences I (3 h lectures/ 1 h exercises) [uni|eth] 8 reports
           
    4. Neuromorphic Engineering      
       - Neuromorphic engineering I (2 h lectures / 3 h lab) [uni|eth] 6 oral
           
   

Tools Modules

     
       - Foundational Literature (read and discuss classical works) [uni|eth] 3 present
       - Journal Club (read and discuss contemporary research articles) [uni|eth] 2 present
       - Basics of instrumentation, measurement, and analysis [uni|eth] 4 report
           
 
 

Elective Core Courses (must obtain 18 points)

 

The Elective Core Courses are divided into four categories, covering the basics of neural computation in experiment, theory, and technology.

 

 

• Systems Neuroscience covers the anatomy and physiology of vertebrate brain areas with an emphasis on computational function.
• Theoretical Neuroscience covers state-of-art approaches to understanding the information content of neural signals, and biophysical models of neural systems at the level of single cells and of networks.
• Neural Computation covers aspects of computation in a broader sense based on neuron-like computational primitives.
• Neuromorphic Engineering covers the basics of transistor physics and of electronic circuits mimicking neural sensing and signal processing.

   
 

Students must obtain a total of 18 CPs from elective core courses. Courses must be taken from at least three categories and from each of these three categories at least 6 CPs must be obtained. For example, students may take the following three courses: Systems Neuroscience, Theoretical Neuroscience, and Neural Computation. Credit points for each course are obtained after successfully passing an oral examination.

 

  [top]
 

Tools Modules

 

The purpose of Tools Modules is to convey an in-depth understanding of important neuroscientific questions, tools, and results; and to maintain exposure to new developments.
In Foundational Literature students read and discuss classical works in the fields of Systems and Computational Neurosciences. To obtain credit points, participants must each present at least one article.
The Journal Club is a weekly event at the Institute of Neuroinformatics where participants including Masters students discuss recently published articles. Discussions are animated by a weekly changing presenter. To obtain credit points, participants must each present at least one article.
There is a Tool Module on the basics of instrumentation, measurement, and analysis. Students learn to operate basic lab equipment, perform simple signal operations and measurement, and the basics of data analysis. To obtain credit points, students must hand in a written report at the end of the module.
The Colloquium is a weekly event held at the Institute of Neuroinformatics where a guest speaker presents his/her recent work.
 

   
 

Project Modules, first option

CP

    Master Thesis Long 37
    Examination 8
    Total 45
   
 

Project Modules, second option

CP

    Master Thesis Short 21
    Project/Seminar 8
    Project/Seminar 8
    Examination 8
    Total 45
   
 

The goal of the Master Thesis is to single-handedly carry out a research project, to write a Master Thesis and to present the results in a 20 minute oral presentation. The duration of the Master Thesis is 6 or 9 months. Students who choose to do a short Master Thesis of 6 months duration must do additional Projects or Seminars of total three months duration (16 CPs). For Projects a written report must be produced and for Seminars a presentation must be given. Students are free to choose the topic of their Projects, Seminars, and the Master Thesis, subject to agreement with the project supervisor and the Program Coordinator. In principle all group leaders at the University of Zurich and the ETH qualify as possible project supervisors.

The Masters Examination has two parts, an oral part and a written part. In the oral part students present their Master Thesis in a 20 minute talk. The talk must contain a general introduction to the research topic of the Master Thesis. Also, during and after the talk, students are tested on their general knowledge by questions within the broad context of their Master Thesis. The written examination is meant to test the students’ ability to produce a clearly written and concise English text. Given a question in the context of their Master Thesis, students have one hour to produce a written response to the question.

 

 
 

Elective Modules (must obtain 18 points)

 

The following is an incomplete list of ETHZ/UZH courses that may be selected as Elective Modules. Courses in physical, biological, engineering, and computational sciences not listed here may apply as Elective Modules as well; students are encouraged to consult with the Masters Program Coordinator (masterini.phys.ethz.ch) about the applicability of individual courses.
 

  All elective Core Courses listed above

402-0804-00 Neuromorphic engineering II (2h lectures 2 CP, optional 4h lab 3 CP)
402-0826-00L Auditory informatics (2 CP)
402-0588-00L Dynamische Systeme in der Biologie I: Mathematische Grundlagen (6 CP)
402-0805-00L Dynamische Systeme in der Biologie II: Anwendungen (6 CP)
402-0802-00 Information Processing in Neural Networks (5 CP)
402-0981-00 Computersimulationen sensorischer Systeme (6 CP)
402-0811-00 Programmiertechniken für physikalische Simulationen (5 CP)
402-0809-00L Introduction to Computational Physics (8 CP)
327-0703-00L Electron Microscopy (4 CP)
227-0127-00L Micro and Nanosystems (6 CP)
402-0175-00L Moderne Mikroskopiemethoden und deren Anwendungen in Physik, Chemie und Biologie (4 CP)
227-0147-00L VLSI II: Entwurf von hochintegrierten Schaltungen (5 CP)
402-0804-00L Design of Neuromorphic analog VLSI Systems (DNS) (6 CP)
402-0577-00L Quantum Systems for Information Technology (6 CP)
402-0340-00L Medizinische Physik (9 CP)
402-0341-00L Medizinische Physik I (6 CP)
402-0791-00L Introductory Course in Neuroscience I (2 CP)
402-0793-00L Consciousness: From Philosophy to Neuroscience (3 CP)
551-0427-00L Advanced Course in Neurobiology I (2 CP)
551-0429-00L Advanced Course in Neurobiology III (2 CP)
402-0673-00L Physics in Medical Research: From Humans to Cells (6 CP)
402-0207-00L Theorie der Wärme (12 CP)
701-1418-00 Modeling course in population and evolutionary biology (4 CP)
251-0540-00L Computational Science (in English) (4 CP)
251-0523-00L Computational Biology (5 CP)
227-0427-00L Signal and Information Processing: Modeling, Filtering, Learning (6 CP)
251-0535-00L Introduction to Machine Learning (6 CP)
SPI 301 Computergestütztes Experimentieren I (6 CP)
SPI 202 Einsatz der Computersimulation in den Naturwissenschaften II (5 CP)
BIO 350 Physiological Processes in Vision (2 CP)
BIO 402 Struktur und Funktion des ZNS und der Sinnesorgane, Teil II (6 CP)
BIO 328 Neurobiology (12 CP)
MAT192 Lineare Algebra für die Biologie (3 CP)

 

  [top]
 

Note: Similar Master Programs at UZH / ETHZ

 

Similarities and differences of the proposed MSc Program in Neural Systems and Computation with existing or planned MSc programs at the ETH and the University are listed in the following:

 
 


• Master in Biomedical Engineering (associated with D-ITET and D-MAVT of the ETH): this master program shares similarities to our program in terms of visualization, signal processing, and engineering techniques relevant to biological system, but lacks an adequate education in neural and computational sciences.
• Neuroscience track of the Masters in Biology offered by the UZH: this master provides an in-depth education of neurobiology with a focus on the biology of the brain and its pathologies, but lacks a quantitative and engineering perspective of biological sciences.
• Master in Computational Biology and Bioinformatics (associated with D-INFK and the UZH): this master conveys computational methods mainly relevant for molecular and genetic data in relation to systems biology, but not neural data (bioinformatics versus neuroinformatics).
• Master in Rechnergestützte Wissenschaften (ETH): This master program conveys an in-depth education in the art of scientific computation, but lacks an emphasis on biological sciences.
• Master in Computational Sciences (associated with the UZH): This master program provides and introduction to computational sciences mainly in the fields of chemistry, physics, and biology, and comprises a substantial part devoted to elective coursework.


 

  [top]
 

Studienordnung für den Masterstudiengang in Neural Systems and Computation (available in german only)

 

§ 1 Allgemeines

Dieser spezialisierte Masterstudiengang wird mit einem “Master of Science in Neural Systems and Computation” abgeschlossen. Der Studiengang empfiehlt sich für Studierende mit einem Bachelorabschluss in Mathematik, Physik, Chemie, Informatik, Ingenieurwissenschaften oder Biologie. Studierende mit Bachelordiplomen aus anderen Disziplinen und Studierende mit einem Fachhochschulabschluss können unter Auflagen ebenfalls aufgenommen werden, falls sie die nötigen Qualifikationen erfüllen. Als Zulassungsbedingung für alle Bewerber gilt ein persönliches Interview.

§ 2 Ziel des Studiengangs

Der Studiengang vermittelt Studierenden eine vertiefte wissenschaftliche Ausbildung und bereitet sie auf eine Forschungstätigkeit in Gebieten der Neuroinformatik und der systemorientierten Neurowissenschaften vor.

§ 3 Strukturierung des Studiengangs

Für die Definition der Begriffe Modul, Pflicht-, Wahlpflicht- und Wahlmodul verweisen wir auf die Rahmenordnung für das Studium an der MNF.

Der Masterstudiengang umfasst 90 Kreditpunkte (KP) and dauert in der Regel 3 Semester. Im Verlauf dieser Zeit müssen die Studierenden Lehrveranstaltungen besuchen, Forschungsprojekte (Master- und Semesterarbeiten) verfassen, und eine Masterprüfung bestehen.

Die Pflichtmodule von insgesamt 54 KP beinhalten einen theoretischen und einen praktischen Teil. Im theoretischen Teil lesen, präsentieren und erörtern die Studierenden klassische und zeitgenössische Forschungsarbeiten (Journal Club). Der Leistungsnachweis des theoretischen Teils wird durch Präsentation einer wissenschaftlichen Publikation erbracht. Im Praktischen Teil absolvieren die Studierenden ein Mess- und Instrumentationspraktikum und bearbeiten ein oder mehrere Forschungsprojekte.
Der Leistungsnachweis des Messpraktikums besteht in der Verfassung eines schriftlichen Berichts. Für die Forschungsprojekte stehen den Studierenden zwei Optionen zur Auswahl. In der ersten Option wird eine Masterarbeit von 37 KP verfasst und in der zweiten Option eine kleinere Masterarbeit von 21 KP und Semesterarbeiten (Projects) von 16 KP. Die Masterprüfung besteht aus einem mündlichen Teil an dem die Masterarbeit vorgestellt wird, und einem schriftlichen Teil an dem eine wissenschaftliche Fragestellung mit beschränkten Hilfsmitteln erarbeitet werden muss.

Die Wahlpflichtmodule sind in die vier Wissensbereiche Systemneurowissenschaften, theoretische Neurowissenschaften, computergestützte Wissenschaften, und neuromorphe Ingenieurwissenschaften eingeteilt. Studierende sind verpflichtet Wahlpflichtmodule aus mindestens drei dieser vier Disziplinen zu besuchen und davon mindestens 18 KP zu erwerben. Kreditpunkte werden nach bestandener mündlicher Prüfung erteilt.

Als Wahlmodule stehen den Studierenden Lehrveranstaltungen aus verwandten Bereichen der Neuroinformatik zur Auswahl (siehe Wegleitung). Insgesamt müssen 18 KP aus Wahlveranstaltungen gesammelt werden.

Pflichtmodule, Wahlpflichtmodule und die Masterprüfung werden in der Regel in englischer Sprache gehalten. Die folgende Tabelle listet die Kreditpunktzuordnung auf. Die Wegleitung zum Masterstudiengang kann auf http://www.nsc.uzh.ch konsultiert werden.

    Prüfung KP
Pflichtmodule    
  Journal Clubs   Nein 5
  Messpraktikum   Nein 4
  Forschungsprojekte (Master Thesis, Project/Seminar)     37
  Masterprüfung     8
Wahlpflichtmodule   Ja 18
Wahlmodule     18
Total     90