

ONLINE-LEARNING IN HUMANOID ROBOTS

Diploma Thesis

submitted to the Department of

Real Time Systems and Robotics

Institute of Computer Science

Technical University Berlin

by Jörg Conradt

Matrikel Number 180.002

Berlin, Winter Term 2000/01

TABLE OF CONTENTS

FOREWORD...1

1. INTRODUCTION...2

1.1 INTRODUCING THE AREA OF HUMANOID ROBOTICS ...2

1.2 MECHANICAL DESIGN FOR HUMANOID ROBOTS ..3

1.3 CONTROLLING HUMANOID ROBOTS ...4

1.4 EXAMPLES OF TODAY'S HUMANOID ROBOTS ...5

1.5 THE PURPOSE OF THE THESIS ...9

2. A BRIEF RECAPITULATION OF BASIC ROBOT CONTROL.........................10

2.1. INTRODUCTION TO ROBOT CONTROL ..10

2.2. CONTROLLING THE EXECUTION OF DESIRED TRAJECTORIES12

2.3. THE FEEDBACK CONTROL FUNCTION..14

2.4. THE FEED-FORWARD CONTROL FUNCTION ...17

2.5. ESTIMATING DYNAMICS USING RIGID BODY ASSUMPTIONS18

2.6. RECAPITULATION ..22

2.7. CONTROL OF HUMANOID ROBOTS...23

3. INTRODUCTION TO ROBOT LEARNING ..25

3.1 GENERAL REMARKS ON ROBOT LEARNING ..25

3.2 THE BIAS / VARIANCE TRADEOFF ..27

3.3 GLOBAL VERSUS LOCAL LEARNING STRATEGIES ...29

3.4 THE CURSE OF DIMENSIONALITY ...31

3.5 ONLINE-LEARNING...32

3.6 LEARNING INVERSE DYNAMICS..34

3.7 RESULTS...34

4. THE LEARNING ALGORITHM LWPR ...36

4.1 ADVANTAGES OF LEARNING APPROACHES ..36

4.2 DESIRED ALGORITHMIC PROPERTIES..38

4.3 INPUT DATA PREPROCESSING...45

4.4 PREDICTING OUTPUT DATA USING LWPR ..47

4.5 LEARNING PARAMETERS ..50

4.6 THE FINAL LWPR ALGORITHM ..57

4.7 PROPERTIES OF LWPR..59

5. EVALUATION OF LWPR'S PERFORMANCE ON ARTIFICIAL DATA.........61

5.1 INTRODUCTION...61

5.2 ONE DIMENSIONAL FUNCTION FITTING..61

5.3 TWO-DIMENSIONAL FUNCTION FITTING WITH SHIFTING INPUT DISTRIBUTIONS65

5.4 LIMITING THE COMPUTATIONAL COMPLEXITY...68

5.5 DISCUSSION..69

6. THE HUMANOID ROBOT...71

6.1 HARDWARE FOR ROBOT CONTROL...71

6.2 SOFTWARE FOR ROBOT CONTROL ..74

6.3 THE SARCOS ROBOTIC ARM ...77

7. EVALUATION OF THE ARM’S MOTION..81

7.1 GENERATING TRAJECTORIES FOR LEARNING..81

7.2 LEARNING INVERSE DYNAMICS..85

7.3 LEARNING RESULTS ON SAMPLED DATA..87

7.4 VERIFYING THE RESULTS ON REAL MOTION ..91

8. CONCLUSION..96

8.1 DISCUSSION..96

8.2 BRIEF INTRODUCTION TO USING LWPR FOR INVERSE KINEMATICS ESTIMATION97

8.2 FUTURE RESEARCH ..99

REFERENCES ..101

SHORT GERMAN SUMMARY ...104

EIDESSTATTLICHE ERKLÄRUNG..105

 1

Foreword

The basis for this thesis was laid in the academic year 1999/2000, which I spent as an

exchange student at the University of Southern California (USC), Los Angeles, and as a

guest at the CLMC laboratory. The Computational Learning and Motor Control

laboratory (CLMC laboratory), headed by Dr. Stefan Schaal, is pursuing research in the

border areas of neuroscience, computer science, statistics, and robotics (control theory).

The focus of the laboratory is to study the principles of biological behavior.

During the previous years, research has realized that even simple biological

systems achieve by far superior sensory-motor competence compared to any artificial

system today. On this basis, trying to understand and imitate these biological principles

for artificial systems seems to be a promising approach. In this thesis, the motor control

for a human-like robotic arm was learned based on a biologically plausible model.

 During my time at the USC, I had the opportunity to participate in the research

activities of the CLMC laboratory. I am very thankful for the discussions, for help, and

for much interesting information that I experienced there. Especially Dr. Stefan Schaal

and Dr. Sethu Vijayakumar have been patient and good-humored, and with their

generosity in respect to equipment and other resources they have tremendously eased my

start in the new environment. I sincerely hope that the time at the CLMC laboratory has

generated a link that will last for much longer. The students belonging to the CLMC lab,

Gaurav Tevatia and Biren Metha, also deserve my gratitude for discussing the first results

and offering generous help on various topics.

I am also particularly grateful to the Fulbright Commission for providing funds to

stay for one year at an American university. I could never have studied in the U.S.

without their generous support.

Prof. Dr. Hommel from the TU Berlin was the person who first brought me into

contact with the field of robotics. I especially wish to thank him for the encouragement

and the careful supervision of this thesis. In addition, he kindly offered advice on all

questions of research, by no means limited to the scope of this thesis.

Furthermore, I owe thanks to all the people who have read and commented on

parts of earlier drafts and helped to improve the thesis.

 2

1. Introduction

1.1 Introducing the Area of Humanoid Robotics

Humanoid Robotic Systems have gained an increasing significance in the research world

within the last few years. Just five years ago, there were hardly any human-like robots in

the world, and those available did not represent human properties at all. They neither

looked nor behaved like human beings. Today, a variety of research groups around the

world is starting to work on topics related to humanoid robots, and it is very likely that

these robots will become important within the upcoming decades even beyond the realm

of science.

 Trying to determine what humanoid robots are, a first draft of a definition might

read as follows: such robots are to be called humanoid robots which - to some extent - are

able to live and interact with the everyday human world, and represent certain human

features, like cognitive or acting abilities. The main strength of such humanoid robots lies

in their ability to operate in surroundings that have been designed for humans in the first

place. Humanoid robots can be imagined to become useful assistants for every-day life in

areas as diverse as

• Rescue and clearing of dangerous situations

• Janitorial services, Housekeeping

• Security services

• Care-taking in hospitals, recreational facilities

• Entertainment

In all these fields, close human interaction is a core issue and can be regarded as the

minimum common basis. The interaction happens on many different levels, from

physical touch to gesture recognition and the processing of spoken language. On

cognitive issues like the two last named, much research has been done in the past few

years. One has, however, to keep in mind that also the physical appearance, e.g.

smoothness of motions, is an important issue when designing humanoid robots.

 3

1.2 Mechanical Design for Humanoid Robots

Given the close interaction with humans and the potential working spaces listed above,

some core requirements for the design of humanoid robots can be set out:

First of all, humanoid robots need the ability to act in environments tailored for

human needs and to operate devices originally designed for humans, e.g. when turning

knobs. Therefore, they need the basic equipment, e.g. manipulator arms, and legs, which

can perform independent tasks. Their movements have to be fast and accurate, and their

grip fine and powerful. Their links have to be lightweight to reduce the influence of

inertia. It is also desirable to have compliant joints, because only these will allow the

robot to react flexibly to external stimuli. This might be the case when the robot is pushed

aside during the performance of a task. A natural result of building robots according to

these prerequisites is a high degree of redundancy in the whole system - an issue, which

has to be handled appropriately.

Moreover, humanoid robots have to be equipped with sensory and processing

capabilities to interact with their environment, and they must be mobile within a wide

range. In general, their mechanical design has to ensure that they can operate in normal

living environments without extensive modifications of these surroundings.

With these requirements, the mechanical design of humanoid robots differs

substantially from that of today's robots, e.g. robots used for manufacturing. Such

industrial robots are obviously designed according to very different needs: One of their

main purposes is to repeat tasks with high accuracy. This requires stiff joints, solid links,

and strong actuators. To allow simple control, they are designed to behave as linear as

possible.

The amount of compliance in the joints is a particularly important issue for

biologically plausible motion and shall now be set out in some more detail. As has been

said above, compliance in the joints is not only important for the smoothness of motion.

It is above all the central prerequisite for the robot's ability to react appropriately to

external stimuli. Such stimuli occur frequently in natural environments and it seems to be

one of the most remarkable abilities of living organisms to react to such changes and

adapt their own behavior and actions. Such changes might be local impediments while a

task is performed, or pushes. Assume shaking hands with the robot: If the robot consists

 4

of stiff joints, shaking hands cannot be performed well as one has to follow exactly the

robot's desired motion. If the joints are compliant, much more variation in the movement

is possible - a human partner can always force the robot to slightly adjust its own

position.

 On the mechanical level, motion in the joints can be achieved by different means.

The two major approaches are electric motors combined with gearboxes, and hydraulic

actuation. When using electric motors, gearboxes are a necessary complement, because

only they provide sufficient torques for the robot's movements. Gearboxes, however,

increase the stiffness in all joints by a considerable amount, since they do not offer back-

drive ability. Therefore, motors with gearboxes are unsuitable as actuators for humanoid

robots.

 Alternatively, robots can be equipped with hydraulics to generate high torques for

the joints. When using hydraulics together with load sensors in every joint, the joints'

behaviors can be anywhere between very stiff and very compliant, only depending on the

controller. This means, the problem of compliance is moved to the level of software.

 The only problem that remains is that any increase of compliance goes along with

a decrease of accuracy. It is therefore highly important to find a good tradeoff between

accuracy of motion and compliance in the joints. The quality of a controlling method can

be directly correlated with its ability to find such a balance.

1.3 Controlling Humanoid Robots

Let us assume that all the mechanical desires described in chapter 1.2 can be fulfilled,

and that the problems with stiff joints and heavy material used in the links can be solved.

There still remains a major problem: By what means could such a robot be controlled?

What kind of algorithms allows the robot to use the whole variety of motion that is

usually associated with biological motion? For Example, how could it be accomplished

that a humanoid robot gives way for external motion, such as pressure enforced by

contact with humans? And given the desired compliance is achieved using lightweight

material as described in chapter 1.2: How can we cope with the constraints that such

materials add on the control algorithms? It is obvious that traditional algorithms, e.g.

 5

those based on rigid body dynamics assumptions, are not well suited to control such

mechanics. A fairly novel way to solve the question of controlling the robot is the

application of learning approaches. The major advantage of a learned control strategy is

that it adapts the control schema based on how the system behaves. This means that a

well-suited learning algorithm will always stay accurate.

1.4 Examples of Today's Humanoid Robots

In this chapter, I would like to provide a short overview of today's humanoid robots, and

present some examples.

Probably the best-known robot was build by Honda during the last 10 years (e.g.

Hirai, 1987, Hirai, Hirose, et al., 1998). Figure 1.1 shows a picture of the robot, which

looks very much like a human.

a) b) c)

Figure 1.1 The Honda Robot P3: a) Frontal View b) Side View c) Technical Diagram

The main goal of Honda's development was to create an autonomous robot that can move

about in a human environment. The robot can walk, climb stairs, and manipulate simple

objects. Every singe step, however, needs to be carefully programmed in advance. As

soon as more-complex tasks arise, the robot has to be switched to tele-operation mode

and becomes controlled by a human supervisor. Corresponding to that, the robot is highly

stiff in all joints and the sensing capabilities are very limited. The size of stair-steps it has

to climb, for example, has to match exactly the preprogrammed values. Very little visual

feedback or other sensor-information is used to correct for unexpected changes in the

 6

environment. This robot appears to be a human, but does not at all behave like a

humanoid robot.

The robot’s technical parameters are summarized in the following table:

Weight: 130 kg

Height: 160cm

Width: 60cm

Depth: 55,5cm

Walking speed: 2.0 km / hour, ca. 25 minutes autonomous walking

Operated on DC servo motors with gears

Lift Capacity per Hand: 2kg

Degrees of Freedom: 28 (Legs: 2x6, Arms: 2x7, Hands: 2x1)

Table 1.1 Technical Parameters of the Honda Humanoid Robot

Another example of a humanoid robot is COG, a robot torso developed at MIT. A picture

of COG is shown in figure 1.2:

Figure 1.2 COG, the Robot Torso developed at MIT

COG is used to study the question how far a humanoid robot can become 'cognitive';

therefore, the focus of research is on the robot's interaction with people. The robot

realizes what people want and acts properly, sometimes also following its own 'desires'. It

is not designed for complicated motion. Though the robot's physical behavior is very

much different from humans, experiments have shown that it can help to understand the

 7

way people interact with each other. In the near future, the research objective of the

development team is to achieve a robot's perception that is comparable to that of a six-

months-old baby.

The third example for a humanoid robot is DB (Dynamic Brain), a robot at the

ATR human resources research laboratories in Kyoto, Japan. DB is a hydraulically

actuated anthropomorphic robot with legs, arms (with hand palms but without fingers), a

jointed torso, and a head. It was designed and built by Sarcos, a company that usually

builds tele-operated robots for entertainment purposes like movies and amusement parks.

The robot offers a variety of motions; however, it is mounted on a pelvis, so free standing

or walking experiments cannot be performed. The research performed at the ATR

laboratories focuses on upper-body movement (e.g. arm motion).

DB’s technical parameters are summarized in the following table:

Weight: 80 kg

Height: 185cm

Width: 60cm

Depth: 35cm

Operated on hydraulic actuators with 650 psi pumps

 25 linear actuators, 5 rotary actuators

Degrees of Freedom: 30 (Legs: 2x3, Trunk: 3, Arms: 2x7, Neck: 3, Eyes: 2x2)

Position and load sensors in every Degree of Freedom (except eyes)

Video cameras providing stereo fovea and panoramic view

Table 1.2 Technical Parameters of the DB robot

Comparing DB's parameters with those of the Honda robot, one can easily recognize that

DB represents human properties much better, especially in terms of the weight and size.

Moreover, being actuated by hydraulic pressure, the joints can be controlled in a

compliant way, as discussed in chapter 1.2. Figure 1.3 shows the robot.

 8

a) b)

Figure 1.3 a) DB balancing a pole, b) DB reading 'Science'

Other laboratories, where humanoid robots are developed and much research is done are

the University of Tokyo, the Waseda University and at the Vanderbilt University.

a) b)

Figure 1.4 a) Hadaly and b) Wabian from Waseda University

 9

1.5 The Purpose of the Thesis

The following study focuses on the control problem of compliant joints used in humanoid

robots. As described in chapter 1.2, humanoid robots should be designed and operated

with compliant joints. These joints allow biologically plausible motion, i.e. motion that is

efficient, differentiated, energetically economic, and offers a wide variety of positions. In

addition, it enables the robot to interact in an environment shared with humans. For

example, it minimizes the risk of injuring people during interaction. Now the problem is

that controlling compliant joints is extremely difficult when at the same time motion shall

be accurate. Traditional linear high-gain control methods are not suitable for compliant

control. And the model-based nonlinear control with rigid body dynamics models is often

too inaccurate (see the further discussion in chapter 2.5).

My thesis offers a new approach to control the motion of humanoid robots. This

method is based on neural net learning techniques, and leads to superior motion

performance compared to traditional approaches. My test case is learning the inverse

dynamics model of a seven degree-of-freedom robot arm. This anthropomorphic robot

arm was built from lightweight materials to resemble human arm dynamics. It is

hydraulically actuated and has load sensors in each joint to allow compliance.

 The learned inverse dynamics model can be used in a computed torque feed-

forward controller. In contrast to traditional feed-forward control, the new controller

increases the accuracy of the arm motion to a significant degree without reducing its

compliance. The results show that with the help of this new approach, natural motion of a

human-like robot can be achieved with high accuracy.

My research aims to help closing a gap that opens in the robot control framework.

Today, broad research efforts are spend on algorithms to decide what a robot does in a

given situation. But if a robot decided what to do, it may not know how to execute the

desired motion accurately. Motion execution using compliant joints becomes more

relevant as robots start to interact with people.

 10

2. A brief Recapitulation of basic Robot Control

2.1. Introduction to Robot Control

For moving a manipulator (e.g. a robot arm) from a discrete state to another desired

discrete state, an appropriate control command (e.g. current for an electric motor) has to

be generated all the time during the robot’s motion. This is achieved by updating the

previous command at discrete time steps, equivalent to the reciprocal value of the control

loop’s frequency: f
1=∆Τ . The control loop usually runs at a high frequency to allow fast

command update and accurate motion.

For generating commands to achieve desired robot behavior, one has to

distinguish three different phases: 1st planning a trajectory in end-effector space, 2nd

translating the desired trajectory into joint space,1 and 3rd executing the planned

trajectory. Concerning the first phase, let us assume throughout this thesis that a desired

trajectory in end-effector space exists. E.g., a desired behavior can be relatively simple to

plan like a point-to-point reaching. This can easily be planned using a direct line as

desired line-of-motion and adding constraints, such as bell shaped velocity and

acceleration profiles. When these constraints are known, it is possible to estimate all

coefficients of an nth order polynomial that describes the desired fingertip position

between start and end position. Typically, third or fifth order polynomials are used for

planning. They allow 4 or 6 constraints in total. These constraints usually are given by

the start- and end-position, and the start and end-velocity. The accelerations can be added

if 6 unknowns are used. A path in end-effector space given by a set of via-points can be

decomposed into several short paths from point np to point 1+np .

 The second part of robot control, transferring the desired trajectory from end-

effector space into joint space, is called the inverse kinematics problem. To solve this

problem, a coordinate transformation from Cartesian space into joint space is needed. If

we define the intrinsic coordinates of a manipulator as the n-dimensional vector nℜ∈è ,

and the position and orientation of the manipulator's end-effector as the m-dimensional

1 It is also possible to directly plan a trajectory in actuator space, without the need to translate it. However,
this is hardly done in practice, as the joint space of a reasonable sized robot is huge and not simple to
understand for humans.

 11

vector mℜ∈x , the kinematics function can be written as)(èx f= . What we need here is

the inverse relationship:)(1 xè −= f .

There are two general approaches to solving inverse kinematics problems with

optimization criteria: 1. One can use global methods to find an optimal path of with

respect to the entire trajectory, or use 2. local methods, which only compute an optimal

change in ,è ,è∆ for a small change in x, x∆ . In this case, one would have to integrate

è∆ to generate the entire joint space trajectory. An example of a local method is

Resolved Motion Rate Control (e.g. Whitney, 1969). It uses the Jacobian J of the forward

kinematics to describe a change of the end-effector’s position by èèJx &&)(= . This

equation can be solved for & by taking the inverse of J, if it is square, i.e. mn = , and

non-singular. For redundant manipulators (hence for almost all robots), solutions to the

inverse equation are usually non-unique (Craig, J. 1986), so that additional optimization

criteria have to be introduced. Alternatively, other methods can be used to invert J, like

the pseudo-inverse method (e.g. Liegeois, 1977), or the Extended Jacobian Method

(Baillieul, J., 1985). There exists a variety of literature on inverse kinematics.2

The robot used for research at the CLMC-lab consists of seven joints, hence 7

degrees of freedom (DOFs). Our motion algorithms usually calculate a single desired

end-effector position in Cartesian space (with no particular constraints on the orientation

of the fingertip). This explains our need for an inverse dynamics mapping from

73 ℜ→ℜ (which must be ill-defined, as it maps from lower into higher space). My

thesis, however, does not concentrate on the inverse kinematics problem. It will only give

an idea of how the learning algorithm LWPR can be applied for solving inverse

kinematics in the conclusion in chapter 8.2.

The remaining problem, executing the desired trajectory in joint space, will be

described in more detail in the following section. One of its subcomponents, the Inverse

Dynamics Problem, with a learning approach to solve this problem, will be discussed

carefully in the thesis. Therefore, let us assume that a planned desired trajectory in joint

space is available at any time.

2 E.g. Schwinn, W., 1992, Rieseler, H., 1992, Kovács, P., 1993

 12

2.2. Controlling the Execution of Desired Trajectories

The following chapter presents a simple controlling method for joint position's during

motion. Additional components are added step by step to increase the accuracy:

Controller

Open Loop Control Diagram

Robot
u è

~
des

~
è

Controller

Open Loop Control Diagram

Robot
u è

~
des

~
è

Figure 2.1 Open Loop Control

)áè(u tf ,,
~

des= (eq. 2.1)

As can be seen in figure 2.1 and in the according equation, this is a very simple model,

which controls the robot ‘in a blind way’. The controller generates commands (u) using a

function)(of based on a desired state (des
~
è),3 constant parameters of the system () and

the time (t). The robot changes its state to a new state (è
~) based on the control command

it receives. The controller sends a command to the system without monitoring how the

system responds. There is no error correction because the controller does not know what

the system really does. To solve this problem, we can include a feedback mechanism:

Controller

Closed Loop Control Diagram

Robot
u è

~
des

~
è

Controller

Closed Loop Control Diagram

Robot
u è

~
des

~
è

Figure 2.2 Closed Loop Control

)t
~

,
~

(des á,,èèu f= (eq. 2.2)

3 Throughout this chapter, è
~

denotes the state of a system, given by its position, velocity, and acceleration:

),,(
~

èèèè &&&= .

 13

Figure 2.2 illustrates that the controller is now enabled to correct errors, because it knows

about the state of the system and can verify, whether a previously sent command has

moved the robot into the expected state. If the result was not satisfactory, the controller

can change the subsequent command u+1 appropriately.

Feedback
Controller

Negative Feedback Control Diagram

Robot
ufb

∑
-+

è
~

des
~
è Feedback

Controller

Negative Feedback Control Diagram

Robot
ufb

∑
-+

è
~

des
~
è

Figure 2.3 Negative Feedback Control

)t
~~

(desfb á,,èèu −= f (eq. 2.3)

A special case of closed loop control is negative feedback control, illustrated in figure

2.3. The controller does not know the desired state of the robot, but only the difference

between the desired and the real state (èè
~~

des −). This difference can be interpreted as an

error signal of the robot’s state. Generating appropriate commands (ufb) to minimize the

input (and thus the error signal) will lead to a control solution. The negative feedback

approach will become infinitesimal accurately when using proper command generation

functions)(fb of . The major disadvantage of the negative feedback control is the time

delay, which causes a significant loss of accuracy in the robot's movements. This control

strategy is further explained in chapter 2.3. in the context of PID-controllers. To further

minimize the error, we can add a feed-forward controller:

 14

Feedback
Controller

Negative Feedback and Feedforward Control Diagram

Robot
ufb

∑
-+

∑

Feedforward
Controller

uff

+

+ è
~

des
~
è uFeedback

Controller

Negative Feedback and Feedforward Control Diagram

Robot
ufb

∑
-+

∑

Feedforward
Controller

uff

+

+ è
~

des
~
è u

Figure 2.4 Negative Feedback and Feed-forward Control

)t,,
~

()t,,
~~

(desffdesfb áèáèèu ff +−= (eq. 2.4)

In figure 2.4, a computed-torque feed-forward controller is introduced to reduce the error

and thus improve the robot's performance. The feed-forward controller uses a dynamics

model of the robot. It is now able to predict the actuator commands, which correspond to

a desired motion. Intuitively, the feed-forward controller moves the robot towards the

desired state in big steps and as accurately as possible. The dynamics model used in

)(ff of to compute the feed-forward commands (uff) will never be absolutely accurate: It

leaves a remaining error to be corrected by the feedback controller. The feed-forward

controller operates as a set-top-box, which generates commands (uff) independently of the

negative feedback controller. The final command sent to the robot thus is the addition of

both commands, feed-forward and negative feedback: fffb uuu += .

We will have a closer look at both, the negative feedback and the feed-forward

control functions, in the following two chapters.

2.3. The Feedback Control Function

PID-controllers are widely used as control policy in negative feedback controllers. These

controllers correct errors in position and velocity. They are usually based on a linear

control function. The name PID-controller is derived from:

 15

• Proportional Control ('Position Error')

• Integral Control ('Steady State Error')

• Derivative Control ('Damping')

The Control Function fbf of a PID-Controller is given by

∫ −⋅+−⋅+−⋅= dtè)(èk)èè(kè)(èku IDP desdesdesfb
&& (eq. 2.5)

with

ufb: the (n×1) vector of computed neg.-feedback commands

kP, kD, kI: the (n×1) gain vectors for P-, D-, and I–control

èè −des : the (n×1) vector of errors in positions

&& −des : the (n×1) vector of errors in velocities

The term)(des èè − in equation 2.5 will become non-zero, whenever the robot is in a

position)(è that differs from the desired position)(desè . This position error)(des èè −

multiplied by a fixed gain (kP) yields in an appropriate command to compensate for that

error, given that the gain is properly adjusted: Too small gains will cause the system to

only slowly correct for errors; too high gains may lead to overcompensation (and

ultimately to unstable systems).

 The second term,)(des èè && − in equation 2.5, has the same effect on the velocities:

whenever a velocity differs from the desired velocity, a correction command will be

calculated by the difference multiplied with a gain kD. This part of the feedback

controller introduces a damping term.

 The integral part additionally corrects very small errors once a steady state is

reached. Those errors might be introduced by external forces, e.g. gravity. To understand

the term, assume the robot has reached its target, but gravity makes it drop slightly under

the desired position. The first term)(des èè − in equation 2.1 will provide compensation,

but only proportional to the distance-error. If this error is small, or the arm is heavy, the

generated command may not succeed in moving the arm upwards. Ultimately, there will

be an equilibrium state below the desired target, when the correction of the PD-controller

compensates for gravity. The arm will not move upwards to the desired target anymore.

 16

 The integral controller will trace and accumulate the error. The integral will only

stop adding to the accumulation, when)(des èè − is zero, i.e. when the robot is exactly at

the target position. This means, it will continue until the accumulation can achieve a

compensation for the position offset (considering the gain kI). In case the robot

overshoots, the accumulation will decrease, as)(des èè − changes signs. Choosing an

appropriate gain kI, the correction introduced by the integral part of equation 2.5 will

keep the robot exactly at the desired position.

 Finding a gain kI is probably the most difficult task in this process. A poor choice

can easily lead to an unstable system with catastrophic results. Integral controllers

compensate for steady states only, but this study concentrates on robot arms in motion.

Therefore, integral controllers have not been used as part of the negative feedback

control. All feedback controllers were modeled by a proportional and a derivative part

only.

Looking for appropriate gains kP and kD to design a PD-controller as shown

above, one faces a tradeoff between stiff and accurate systems:

• Assume high gains:4 Whenever the desired state differs from the robot's state, the

command sent for compensation is relatively big. This will ensure fast

compensation. However, if you need the robot to give in, e.g. due to a push or

when hitting an object, a high gain controller will exert a high force to

compensate for this ‘position-error’.

• Assume low gains: The position error is multiplied by a smaller number. Thus,

the command send to the robot to correct the error is significantly smaller. Hence,

the robot is much more flexible when it hits an object or is being pushed aside. On

the other hand, it also needs longer to correct for ‘real’ position errors.

Especially in the context of Humanoid Robotics, this tradeoff is very difficult. Humanoid

robots are supposed to work in close human interaction and may not hurt anyone in

interacting; but at the same time, they need to be capable of fast and accurate motion. The

4 High gains can also result in instable systems, as the robot may increase the absolute distance to the
desired target with every discrete step. Let us assume that the gains do not exceed the maximal value that
guarantees safe operation.

 17

approach usually taken today is to use low gain feedback controllers and add a feed-

forward path to enhance performance. I will explain this mechanism in more detail in the

following chapters.

2.4. The Feed-forward Control Function

As seen in chapter 2.2, the feed-forward control function uses the dynamics of a system

to generate feed-forward commands. Then, these commands are used to move the system

quickly along a desired trajectory:

)t
~

(desffff á,,èu f= . (eq. 2.7)

The dynamics of the system is hidden in the parameter vector á .

In general, the dynamics model provides a description of the relationship between

the joint actuator torques and the motion on the structure. It relates the vectors of

positions (), velocities (&), and accelerations (&&) to the torque vector (). This last

vector is necessary to accomplish the acceleration in order to reach the desired state.

The direct dynamics problem assumes a given initial state of the system (position,

and velocity) and an incoming stream of joint torques. It will then predict the acceleration

in all joints for times 0tt > . Updates of velocities and positions can be calculated using

integration techniques over the accelerations. The direct dynamics is a useful model for

simulations, as it allows predictions of the physical system’s motion, when the exerted

joint torques are known.

In contrast, the inverse dynamics model predicts the joint torques needed to

generate a specified motion. Solving the inverse dynamics problem will allow the

execution of a desired trajectory, once the trajectory is specified in terms of positions,

velocities, and accelerations in joint space. Usually, this is a result of an inverse

kinematics process (see chapter 2.1). Simulating the trajectory before executing the

motion can be used to verify the trajectory's feasibility: e.g., torques may not exceed a

maximal value, nor may they change abruptly.

 18

Using the inverse dynamics model for feed-forward command predictions leads to

improved performance of the controller, compared to a ‘simple’ feedback controller. This

combined controller will always move the robot close to the correct position using feed-

forward commands. Then, the ‘slowly adjusting' feedback part only has to compensate

for small position errors. Hence, the overall performance will increase. If we had a

perfect robot and knew the dynamics model, no feedback control was necessary at all.

But as our robot is not perfect, we do need to find the inverse dynamics model. Thus, the

question of how to estimate the dynamics model remains.

2.5. Estimating Dynamics using Rigid Body Assumptions

The Rigid Body Dynamics assumptions5 are frequently used to estimate the dynamics of

a robot system6. The assumptions include, that the system to be modeled consists of

single stiff bodies. These rigid bodies are assumed to behave like perfect 'single link

robots', being connected to form a robot with multiple degrees of freedom. In addition,

the link’s motion is not supposed to have influence on any other of the links and joints.

Only the link's weight and its position are modeled. The joints connecting two links are

not allowed to have friction or position inaccuracies. The dynamics of the system is

therefore described by the shape and weight of the links, not by their joint behavior.

The general structure of rigid body dynamics, also called the 'Joint space dynamic model',

can be estimated in two different ways:7

The Lagrange formulation offers the system's dynamics in a closed form based on

the Lagrangian of the systems’ total energy.

The Newton-Euler formulation allows describing the model in a recursive form by

forcing a torque balance on every link. This is computationally more efficient. However,

parameter estimation for unknown systems is more difficult compared to a closed form

model. For this reason, we will have a closer look at the Lagrangian formula of a

mechanical system. It is defined as:

5 E.g. Sciavicco & Siciliano, 2000 or An, Atkeson & Hollerbach, 1988
6 E.g. Sciavicco & Siciliano, 2000 or Pfeiffer & Reithmeier, 1987

 19

L = T – U, (eq. 2.8)

where T and U denote the total kinetic energy and, respectively, the total potential energy

of the system. The Lagrange’s Equation is expressed by

i
ii èè

ξ=
∂
∂

−
∂
∂ LL
&dt

d
, n1,...,i = (eq. 2.9)

where n denotes the number of joints in the robot and iξ the generalized force associated

with the coordinate iè . The forces include all non-conservative forces, such as joint

actuator torques, the joint friction torques, and the joint torques induced by end-effector

forces at the contact with the environment. As we have seen earlier, equation 2.5

establishes the relation between generalized forces (i.e. the joint torques) and joint

positions, velocities and acceleration. Consequently, it is possible to derive the dynamic

model, once the kinetic and potential energy of all links are known. For details of the

computation of these energies, please refer to e.g. Sciavicco & Siciliano, 2000. The

general formula of the equation of motion derived by the Lagrangian method is

ôèGèèèCèèB =+⋅+⋅)(),()(&&&& (eq. 2.10)

with:

B(n × n): a positive definite inertia matrix,

 only depending on the robot’s current position

C(n × n): a matrix containing the centripetal and Coriolis forces,

 depending on the robot’s current position and its current velocities

G(n × 1): a vector of gravitational forces,

 only depending on the robot’s current position

(n × 1): a vector of the active torques at the joints 1, …, n

7 The thesis will only provide a brief overview on the Lagrange method; for further information, please
refer e.g. Sciavicco & Siciliano, 2000 or Pfeiffer & Reithmeier, 1987.

 20

A physical interpretation of the parameters in equation 2.10 gives an intuitive

understanding of the formula:

• The coefficients bjj (i.e. the elements on the diagonal of the matrix B) represent

the moment of inertia at joint axis j in the current manipulator configuration,

when all other joints are blocked. The coefficients bij with ji ≠ account for the

effects of acceleration from joint i on joint j.

• The coefficients in the C matrix represent the influence that one joint has on

another, as well as the Coriolis effect induced on a joint by the velocities of two

other joints.

• The terms gi (components of the vector G) represent the momentum generated at

the joint i axis of the manipulator in the current configuration, due to gravity.

Some of these parameters in the matrices can be simplified during the design process of

the robot, e.g. by using massive and stiff materials for the links. Another simplification

would be the use of gearboxes with high transmission ratios in the joints: in this case, all

the coefficients in the G and C matrices can be neglected, and the B matrix becomes

almost diagonal. This means, that every joint has influence on itself only. However, the

objective of this work is to find a model for a humanoid robot. Recalling the constraints

on humanoid robots from chapter 1.2 (e.g. compliant, lightweight), there are not many

possibilities for simplification. Gearboxes, e.g., may not be used, as the robot will

become too stiff; massive materials will make the robot unbearably heavy.

 No matter how simple the robot setup is designed, there still remains the problem

of estimating appropriate coefficients in B, G, and C. Modern CAD systems provide

parameter estimation based on the design data of real systems. But this estimation is not

simple, and the results are poor most of the time. Usually, the process includes idealized

assumptions of the system’s mechanics and uncertainties in the manufacturing process. In

addition, some properties of the links change during the robot’s lifetime because of

material wear. So this does not seem to be a useful tool for such complex designs as such

of humanoid robots.

 21

An alternative approach could be to estimate the parameters by using the running system

and collecting data from it. One advantage of this approach is that the matrices B, G, and

C offer linearity in the dynamic equations. This can easily be verified during the

derivation of the energies when using the Lagrange approach, e.g. Sciavicco & Siciliano,

2000. This is a remarkable property, because it also means that linear methods can be

used to estimate the parameters, e.g. least squares error measurement.

Knowing that linear parameter estimation is possible, one can impose a suitable

motion on the robot and measure the appropriate quantities for estimation:

• the joint positions

• the joint velocities &

• the joint accelerations è&&

• the joint torques ô

Joint positions and velocities can easily be measured with appropriate sensors. For joint

accelerations, however, no such sensors exist. Hence, numerical differentiation

techniques have to be used to estimate the acceleration, and these cause non-negligible

errors. In addition, most robots are equipped only with joint position sensors, which

means that already velocities have to be differentiated. To obtain information about the

acceleration, the error-containing velocities have to be differentiated again. The result

may be that the overall quality of the sampled data is very low. A similar problem arises

for the joint torques: hardly any robot is equipped with highly accurate torque sensors. In

case of electrical actuation, a current measurement can be used as a substitute.

Alternatively, a wrist force measurement also provides torque information.

 Sampling data that represents the dynamics of motion in a significant area of the

robot's workspace requires a variety of different trajectories to be imposed on the robot.

Sampling data from circular motion, for example, can estimate good parameters for

further circular motion, but it will not capture the essentials of point-to-point motion. The

ideal procedure would be to sample the entire possible robot’s motion and to us it for the

parameter calculation. But this does of course exceed a realistic set of data in terms of

time and size.

 22

For the design of trajectories, special care has to be taken: If any of the robot’s physical

limits are violated (e.g. joint limits, or current limits for actuators), the measurements

contain invalid data and thus false parameters are calculated. Usually, an iterative process

returns the best results, by increasing the parameters' accuracy in every iteration.

 Coming back to the equation 2.10, we can now add some summarizing remarks: it

is possible to estimate the unknown parameters hidden in the B, G, and C matrices, by

using the rigid body assumptions and running trajectories to collect sensor information.

With these parameters, the general form of the equation of motion can be used to

calculate the required torques () to accomplish a desired motion specified in positions

(), velocities (&), and accelerations (&&):

GèèèCèèB =+⋅+⋅)(),()(&&&& (same as eq. 2.10)

2.6. Recapitulation

In the second chapter, we have introduced the basic problems of robot control: trajectory

planning, inverse kinematics. In this thesis, I concentrate on the last issue, trajectory

execution. In order to execute a trajectory specified in desè , desè& , and desè&& , I have

presented an error-correcting PID-controller in chapter 2.3. The concept of a feed-

forward controller based on the system's dynamics is introduced in chapter 2.4. to

improve the performance. The Lagrange concept for estimating the dynamics model of

the system, is briefly described in chapter 2.5, resulting in the general formula given in

equation 2.10.

 It is now possible to merge the PD- and the feed-forward controller into one single

equation, which controls the robot’s behavior (as illustrated in figure 2.4). The proper

control function in joint space is to be found:

)()()()()(desdesdesdesdesdesdesdes èèkèèkèGèèèCèèBu DP
&&&&&& −+−++⋅+⋅= , (eq. 2.11)

with

u denoting the generated control command.

 23

As can be seen, the first three terms come from the inverse dynamics, the last two from

the PD-controller.

This strategy makes the control of the robot much faster and more accurate

compared to only PID control. There is, however, a big problem: the inverse dynamics

has to be computed online all the time. This expensive computation might cause

problems in high frequent servo loops. Furthermore, higher derivatives of sensor readings

are required to calculate velocities and accelerations accurately. To obtain good values

for the derivations, the sensor readings have to be filtered. But high frequent servo loops

are required for filtering. So on one hand, low frequent servo loops are needed because of

the computational complexity, but on the other hand, high frequent servo loops are

required by the filter. Given these constraints, the servo loop frequency might become a

critical parameter. Thirdly, the formulae are based on the assumption that perfect

knowledge of the dynamics model exists. In reality this is, of course, never the case. All

these limitations will cause unpredictable errors in real systems’ motion. Still, the control

function is extensively used it and achieves good results.

A further aspect to point out is the fact that the control function shown in equation

2.11 uses a hybrid centralized-decentralized control strategy. The PID controller is

decentralized, i.e. it works independently on all joints: Thus, the error-correction

components of the command (u) are calculated independently of the other joint-states. In

contrast, the feed-forward component of the command considers all other joint-states.

The later approach needs to be taken, when coupling terms between joints cannot be

neglected. In our case and for our robot system, an appropriate solution is, to have one

central feedback controller and n independent PID-controller, one for every joint. A

decentralized feed forward controller cannot work properly, as the robot runs on low

gains and has high coupling influences between the joints.

2.7. Control of Humanoid Robots

In this chapter, the previous discussion about control strategies will be applied to

humanoid robots. These robots have to be lightweight, have compliant joints, and use low

 24

gain controllers to maintain the joints' compliance.8 The PID-controller discussion in the

previous chapters can directly be transferred to humanoid robots. The Rigid Body

Dynamics Framework, however, is not well suited for humanoid robots, as the

assumptions are not met. The rigid body model assumes stiff links between the joints no

other non-linearities than those modeled by the Newton-Euler equations. Traditional

industrial robots are build as much as possible to match the rigid body dynamics

framework. Humanoid robots, on the other hand, are built to mimic human dexterity.

Light-weight design and compliant control in a human-like arrangement of the degrees-

of-freedom introduce non-linearities that are not captured by the rigid body dynamics.

All these reasons reveal, that rigid body dynamics, and hence the above-described

model for generating feed-forward commands, is not an appropriate choice for humanoid

robots.

The underlying assumption of my approach is that learning the feed-forward

control function can be done and will result in superior performance compared to

parameter estimation for rigid body dynamics. In this study, I concentrate on finding an

alternative way to calculate feed-forward commands for performing a desired motion.

This means, mathematically speaking, that the overall goal must be to exchange the first

three terms of equation 2.11 by 'something else' that will perform better. Ultimately, the

control function

)()()()()(desdesdesdesdesdesdesdes èèkèèkèGèèèCèèBu DP
&&&&&& −+−++⋅+⋅= ,

(same as eq. 2.11)

becomes

=u Something that replaces the Analytical Inverse Dynamics

)()(desdes èèkèèk DP
&& −+−+

8 Please refer to chapter 1

 25

3. Introduction to Robot Learning

3.1 General Remarks on Robot Learning

Robot learning can be seen as a subclass of learning control, which again is a subclass of

general function learning. The main idea is to acquire a sensory-motor control strategy

for a particular motion task. Usually, this is done by trial-and-error approaches; hence,

the robot is allowed to fail during training. During an initialization stage, for example

errors in the position of the end-effector may be tolerated if the robot enhances its

performance while learning.

 Referring to the discussion in chapter 2.1, there are three separate control

problems that can be learned in terms of motor control: trajectory planning, trajectory

transformation (e.g. from Cartesian to joint space, the inverse kinematics problem) and

motion execution. It is advantageous to learn these problems independently, opposed to

learning one single relation between desired behavior and motor commands. If only one

mapping was learned, every small change in the prerequisites of the desired task requires

a new model and complete relearning. As an example, a robot carrying an object will also

have to relearn trajectory planning (instead of only trajectory execution), if the whole

mapping was melted in one big function. In the case of separately learned modules, an

unknown desired trajectory might be composed of pieces that the execution module has

learned before during other tasks. Thus, only the planning module has to re-learn. These

simple examples highlight the advantages of learning different stages of control with

different modules.

In this thesis, I will concentrate on the execution of previously planned motion.

Hence, I will focus on topics in learning that are relevant for motor control. A brief

introduction on learning inverse kinematics is provided in the conclusion, chapter 8.2.

A closer look at the concept of the PID-controller (equation 2.5) reveals, that there

are no open parameters or uncertainties to be learned: The only unknown parameters are

the gains kP, kD, and kI, and these gains can be used as a tradeoff parameter between the

system’s stiffness and its accuracy in keeping a position. Usually, the range of the gain is

determined by the desired task, e.g. humanoid robots will operate on very low gains.

 26

In contrast to the PID-controller, the feed-forward controller (equation 2.7), that has so

far been approximated using rigid body dynamics (equation 2.10), needs to be improved.

The following diagram (figure 3.1) provides an intuitive view of the way a learning

system will interact with the control system presented so far:

Controller Interacting with a Learning System

Feedback
Controller

Robot
ufb

∑
-+

∑

Feedforward
Controller

uff

+

+

Learning
System

des
~
è

~
u

Controller Interacting with a Learning System

Feedback
Controller

Robot
ufb

∑
-+

∑

Feedforward
Controller

uff

+

+

Learning
System

des
~
è

~
u

Figure 3.1 Learning the Feed-forward Control Policy

The diagram shows a learning system that adjusts the feed-forward controller based on

what it observes the system doing. The learning system will retrieve data samples in

pairs, consisting of a command and the robot's state after executing this command. These

pairs are given by data vectors (èu
~

,). The learning system will try to draw general

conclusions from the data it has experienced.

Unfortunately, a core question remains: what is it that should be adjusted by the

learning system? As described in 2.7, the rigid body dynamics assumptions will not hold

for humanoid robots. Therefore, estimating the parameters hidden in the B, G, and C

matrices (equation 2.10) will not provide an adequate solution. Very generally speaking,

the learning system is searching a function that will map the state vector of a system (~)

to a control vector (u) - and this is exactly what is done by the feed-forward controller:

)t
~

(desffff á,,èu f= , (eq. 3.1, same as eq. 2.7)

Using a general learning approach (e.g. on the basis of neural net techniques), not only

the parameters (á) of given function will be learned, but also the function)(ff of itself. In

 27

the beginning of the procedure, the knowledge about the function to be approximated is

very limited. In the case of humanoid robots, hardly anything is known about the inverse

dynamics model. So, learning can be seen as approximating unknown functions by

averaging over given samples of input/output relations. The only assumption I use about

the function to be learned is that it holds the standard form:

)(+= xfy , (eq. 3.2)

where nℜ∈x is an n-dimensional input vector, the noise term9 has mean zero, 0}å{ =E ,

and the output is one-dimensional.10 This assumption implies that the relation between

input and output can be expressed by a function at all. The local telephone book, for

example, contains a huge amount of data; nevertheless, any learning approach will fail, as

there is no way to generalize from names to numbers. The only chance to learn it is to

store every piece of information and retrieve it when needed.

3.2 The Bias / Variance Tradeoff

Data samples that are used to learn are most likely contaminated with noise, so no single

data measured from the system can be assumed to be absolutely correct. Still, the

function has to be estimated only based on the data presented. Further knowledge about

the function is not available, e.g. the order of a polynomial or the fact that the function is

a polynomial at all. This introduces a well-known problem in learning, the 'bias-variance

tradeoff':11 How much shall an algorithm generalize, i.e. smooth between data samples, or

assume the data seen is exact. A visualization of this problem is given in figure 3.2:

9 Modeling e.g. sensor noise
10 Multi-dimensional output can be learned by learning multiple one-dimensional outputs independently of
each other.
11 Geman, Bienenstock, & Doursat, 1992

 28

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

input

ou
tp

ut

Interpolation by Polynomial
Interpolation by Spline
Sampled Data

Figure 3.2 Bias / Variance Tradeoff for Sampled Data

The diamonds represent noisy data samples from sensor readings. The solid line shows a

spline interpolation, and it is easy to see that it definitely over-fits the data. It is not

difficult to imagine that new sensor readings will only accidentally fall on the line. And it

becomes clear that a spline interpolation will not result in a perfect prediction of

unknown data. The dotted line, however, representing a third order polynomial may over-

smooth the data.

The problem may be solved by using distinct sets of data for training and

validation. If the performance of the regression is evaluated from previously unknown

data, i.e. the test-set, then the regression has to generalize in order to match the 'new' data

properly. Otherwise, if the algorithm learned every single training information only, it

will fail to predict the test set, as it has never seen the test data before. Thus, the

algorithm has to capture the essentials of the function to achieve good predictions for the

test set. Evaluating the approximation's performance on unseen data is a widely used

method in unsupervised learning.12

 In order to evaluate the regression’s performance, a cost function must be

introduced. This function, usually a squared error criterion, has to be minimized to

achieve best performance:

12 The term 'unsupervised learning' refers to a learning system without a teacher providing feedback on how
to increase performance.

 29

()∑
=

−=
N

i

yyJ
1

2
iides, (eq. 3.3)

where (iides, yy −) is a measure of the displacement between the prediction at a given

query point i (iy), compared to the real function value of point i (ides,y). N denotes the

total number of test data samples available. Squaring the error will additionally penalize

big errors. The underlying idea is that it is worse to have one big error compared to

having few smaller errors. The cost function represents a measure of the learning

system’s overall approximation quality. Minimizing the cost function implies that there

are parameters in the learning model that can be adjusted during learning. This

adjustment can happen in a variety of ways, with many possible functions in the learning

system. Only two examples are given by polynomials with adjustable coefficients, or by

neural nets with adjustable connection strength between single neurons.

3.3 Global versus Local Learning Strategies

A major differentiation in learning models is the distinction between local and global

approaches. Global approaches use activation functions that are not limited to a finite

domain in the input space x. Such can be polynomials, or, in the case of neural nets, a

sigmoidal activation function. Let us take a more detailed look at the second, which is

given by

xe
y α−+

=
1

1
 (eq. 3.4)

with α being a parameter to adjust the slope of the activation function. Once a threshold

is passed (0thres ≈x in equation 3.4), the activation function will return values

significantly different from zero. Also, polynomials are valid for all the input range of x.

In contrast, local learning uses activation functions that are non-zero in a restricted

domain only, like Gaussian activations given by

 30

2xey σ−= (eq. 3.5)

where σ denotes the variance of the Gaussian. Figure 3.3 shows the graphs of these two

functions that are mainly used as activation functions in neural nets.

a)

b)

Figure 3.3 Sigmoidal (a) and Gaussian (b) Activation Function

The parameter estimation for rigid body dynamics from chapter 2.5 can be seen as a

global function approximation. The equation of motion (equation 2.10) is valid for the

whole input range and thus, all parameters in B, C, and G have to be valid for the whole

range.

From a theoretical point of view, both approaches (local and global learning) are

capable of approximating arbitrarily complex functions. However, the learning speed, the

time for convergence and their applicability towards high dimensional input data differs a

lot. This is especially important for the type of input data we expect from robotics.

 A closer look at global function approximation will help to understand the

difference: Imagine that data from a limited range is used to train the learning algorithm,

like a robot performing a certain task. The approximation will become highly accurate in

this area. If however, during further training only data from another input range is

learned, the approximation will focus on the new range only and re-adjust the parameters

appropriately for this range. This means it will 'forget' what it has been trained before:

The approximation will become significantly worse in the old training range compared to

how it has performed before. This effect of forgetting what has been learned before is

termed 'Negative Interference' and will be discussed in chapter 4.2.2. The only solution to

this problem is to store all data and re-learn everything once new input ranges come into

 31

play. But storing all data from real robots’ motion is unfeasible due to the huge amount of

information.

 Another important aspect of global learning is the adjustment of meta-parameters.

These parameters have to be set before learning begins and they remain unchanged while

learning. Examples for these meta-parameters are the order of a polynomial or the

number of neurons in a neural net. If these meta-parameters turn out to be inappropriately

adjusted, they can only be changed when re-starting the whole learning process. A meta-

parameter modification has significant influence on the overall performance and will

make it necessary to re-learn all parameters.

 In contrast to global learning, local approaches use activation functions that are

non-zero in a limited range of the input dimension only, as shown in figure 3.3b. An

intuitive approach to understand local learning starts with the assumption that a complex

function is represented by small, simple local patches, e.g. constants or low order

polynomials. The size of a local patch is determined by its activation function. Not only

the activation function, but also parameters like the position and the approximation

function of a patch have to be adjusted. Additionally, the overall number of patches used

to achieve accurate function representation throughout the input domain has to be

estimated. A significant difference of local learning compared to global learning

techniques lies in their ability to learn data from different input domains sequentially, and

without suffering from negative interference. Intuitively, data from new domains will

activate only those local patches that 'live' close to the new domain, and, thus, they will

update only these patches. The patches from previously learned domains remain

unchanged.

3.4 The Curse of Dimensionality

Another problem which local learning approaches face copes with the fact that the

number of patches needed for good approximation explodes in high dimensional spaces.

This problem is called the 'Curse of Dimensionality' and can be illustrated by a simple

example:

 32

Assume that every input dimension shall be divided in only 10 local regions. This means

there are 10 total patches for one input dimension, 10010 2 = patches for two dimensions,

1000103 = patches for three dimensions; up to n10 patches for n input dimensions. For

only 12 input dimensions, we get 1210 which roughly compares to the number of neurons

in the human brain - and, as all local patches have to be checked for activity, an output

prediction can definitely not be computed in reasonable time. As a solution, one might

increase the size of the patches, i.e. use fewer patches along every input dimension. But

increasing the size does not seem to be a very satisfying solution, as this will also

decrease the accuracy of the prediction.

 Facing the problem from the other side will lead to better results: Collecting data

samples at 100Hz will roughly need 300 years of continuous, non-repetitive data to

obtain 1210 data points. No robot will collect motion trajectories for 300 years to explore

its workspace! This observation leads to the assumption that real motion data is locally

distributed in very few dimensions, even if it is globally high dimensional.13 Thus, the

implementation of local dimensionality reduction techniques can help to learn efficiently

in high dimensional spaces.

3.5 Online-Learning

Another problem to keep in mind is how the stream of incoming data is processed. While

the robot is in motion, a huge stream of data arrives, summing up to several KB every

second. This data has to be used for learning; either it is stored and processed later in total

(called 'batch learning') or it is processed online and discarded afterwards (i.e. it is

learned immediately when new data arrives). The second possibility of data processing is

by far superior. In the first, data will sum up to huge sets. They will have to be stored,

and learning on such huge sets of data needs much time. Online learning in the contrary

makes it possible to continue learning once the robot is performing its desired task, and to

continuously improve the learned function as the robot moves. This, of course, implies

13 Explaining the learning algorithm in chapter 4 will raise this question again and provides further
examples.

 33

real-rime learning, meaning that the data has to be used for learning as soon as new data

arrives. If the data is not processed within a fixed time, a continuously increasing pile of

incoming data rises. This pile cannot be processed in total, until the robot finishes its

motion. To process data in real time, one has to force constraints on the computational

complexity of the learning approach. In our case, local linear models (i.e. with only few

adjustable parameters) will lead to a computational complexity that is online solvable for

all seven joints with sensor readings at a frequency of 50Hz.

 An additional advantage of using online learning is that it offers the possibility to

increasing the quality of the learned function continually. This is especially valuable once

the robot is performing its desired task and therefore moving close to the desired

trajectory. Repetitive motion close to the desired trajectory will generate data in the

neighborhood of the desired motion, and the learning approach can focus on

improvements in this region.

Continuous learning will cure another problem that arises due to material wear

and change of dynamics properties. As the robot ages, its mechanics changes slightly, and

thus the previously learned function (or the estimated parameters in B, C, and G in the

case of rigid body dynamics) are no longer accurate. With continuous learning, the new

sensor readings will reflect these changes and the learning algorithm can incorporate the

changes appropriately. The learned regression will always stay accurately no matter how

much change in dynamics properties is accumulated over time.14

 Using the robot's motion to learn its inverse dynamics also bears risks. E.g., one

has to be careful in designing trajectories to explore the workspace: A good starting

exploration will lead to fast learning and good performance in further explorations. In

contrast, a bad exploration decreases the ability to learn and leads to poor further

exploration. It has therefore to be ensured that the robot covers a representative range of

distinct motions from the very beginning.

14 Assuming that the change happens continuously.

 34

3.6 Learning Inverse Dynamics

After the above discussion on robot learning and the discussion on the inverse dynamics

model of humanoid robots in the previous chapter, one can easily realize that learning is a

suitable approach for the approximating of the feed-forward function.

 Sensory-motor transformation in high dimensional spaces for the inverse

dynamics problem is one of the basic prerequisites to ensure the success of autonomous

robots. Engineering models, on the other hand, are often not capable of modeling the

mechanisms used to build humanoid robots accurately, and it turns out that using rigid

body dynamics is a poor approach when working with humanoid robots. An alternative

way can be seen in function learning without any prior assumptions on the function to be

learned. A learning algorithm that reads sensor information and automatically acquires

useful local models to predict feed-forward commands can easily replace the rigid-body-

dynamics equation of the feed-forward model. This learned approach leads to superior

performance and further improvement while the robot is operating. The ultimate goal

must be to compare the robots' performance with human motion, as well as to compare

the algorithm's learning behavior in terms of speed and complexity to those of humans.

3.7 Results

In this chapter, I have introduced the basic concepts and problems of robot learning. The

first issue was the bias/variance tradeoff. It deals with the question how much the

interpolation between the noise-contaminated data shall be smoothened to represent the

real function accurately. A solution was found in using separate data sets for training and

testing. We saw that consequently the parameters of the learning algorithm have to be

adjusted in such a way that a cost function on the test data is minimized.

 In the second section, I have introduced global learning strategies. Local strategies

seem to be more successful for learning a robot control problem, as they can deal with

shifting input distributions and can change meta-parameters more easily than global

strategies. The third section discussed the 'Curse of Dimensionality' - the problem of

needing a huge number of patches for local function representation with high dimensional

 35

input data. When working on motion data from real robots, this problem can be solved by

projecting the input data on a few local projection dimensions. Finally, the topic of online

learning was discussed. Online learning addresses the computational speed needed to

incorporate incoming data and offers further increasing accuracy while keeping the robot

in motion.

Local learning techniques can deal with all these issues, using local

dimensionality reduction techniques and local simple models for function fitting.

Additional questions address the number and position of local models, which are needed

to approximate the function accurately. The parameter adjustment of the local models

also has to be thought of.

In the following chapter, the learning algorithm Locally Weighted Projection

Regression (LWPR) will be introduced. This algorithm is designed to deal with the

above-mentioned problems - name the problems arise with online-learning of motion data

for the inverse dynamics problem. The algorithm will demonstrate that learning the

inverse dynamics model can lead to far superior performance compared to the analytical

approach using rigid body dynamics assumptions.

 36

4. The Learning Algorithm LWPR

This chapter explains the algorithm Locally Weighted Projection Regression (LWPR)

that will be used for learning the inverse dynamics controller. It follows the outline and

recapitulates the basic ideas of the publications Schaal & Atkeson, 1998, Vijayakumar &

Schaal, 2000a, Conradt, Tevatia, et al., 2000, Vijayakumar & Schaal, 2000b. Please refer

to these publications for references and topics that could not be covered in more detail in

this thesis.

4.1 Advantages of Learning Approaches

One of the most significant properties of biological systems is their capability to adapt to

constraints induced by their environment. They can change their behavior into a

somehow advantageous way and perform better and better in their natural surroundings.

This 'learning' from the interaction with the environment happens in real time and based

on incrementally incoming data from a variety of sources. Of course, biological sensors

like tactile-, odor-, and acoustic-sensors are not free of errors, so the biological 'input' for

learning is contaminated by noise.

It seems, thus, that biological learning has to face the same problems as the

artificial learning approach introduced in chapter 3. In the case of motor control, animals

learn how to generate motion from noisy data distributions in unknown high dimensional

spaces. Biology has solved the problem very well, whereas engineering solutions still

perform comparatively poor unless the respective system maintains very special

properties, e.g. the rigid body dynamics assumptions as shown in chapter 2.5.

Unfortunately, there is nothing like a black box labeled 'learning' that can be connected

between input and output and that will do the learning job for every possible function to

be learned. However, such a black box is a desirable goal, so that one can use it for

regressing the dynamics of the robot without any prior knowledge. Up to today, artificial

learning approaches have to incorporate prior knowledge of the data distributions and the

amount of data that has to be learned.

 37

Spatially localized learning is a possible way to deal with these shortcomings. Local

information processing has been known for a long time from neuro-physiological

experiments (e.g. Mountcastle, 1957, Hubel & Wiesel, 1959), and since then, a huge

amount of research has been done to show advantages of local information processing in

neurobiology (e.g. Lee, Rohrer, & Sparks, 1988, Georgopoulos, 1991, Field, 1994,

Olshausen & Field, 1996, Daughman & Downing, 1995). Roughly a decade ago learning

with spatially localized functions has started to become a popular paradigm in machine

learning and neurobiological modeling, e.g. with radial basis networks (e.g. Moody &

Darken, 1988, Poggio & Girosi, 1990). The theoretical issues in local learning can be

solidly grounded in approximation theory (Powell, 1987). A learning system suitable for

inverse dynamics control that is based on local models should fulfill at least the following

properties:

• it should be able to learn from noisy continually arriving data without the need of

storing and without the danger of forgetting previously seen data

• it should have the ability to estimate the appropriate number of resources, i.e.

local models, and change these models depending on the input data

• it must be capable of dealing with a large number of possibly redundant and / or

irrelevant inputs

This chapter will present a new algorithm called Locally Weighted Projection Regression

(LWPR) developed by Stefan Schaal, Chris Atkeson and Sethu Vijayakumar that is well

suited to fulfill the above requirements. LWPR is the latest child in a series of algorithms

that incrementally improved the function approximation quality in terms of accuracy and

computational performance by modifying the methods used for predictions. The

statistical assumption underlying the approach is that the unknown function to be

modeled holds the form åxy +=)(f , with x being an n-dimensional input vector, y an

m-dimensional output vector. The term denotes an additive random noise with the

assumption that is independently distributed, 0),(=jiE εε for ji ≠ and mean zero.

The basic idea of the LWPR-algorithm is to locally approximate the unknown

function by linear models. Predictions for a given query point will then be made from

local neighborhoods around the query point only. The area of validity of each local

 38

approximation is called a 'Receptive Field'. Each receptive field is trained independently

of all other receptive fields, i.e. it adjusts its parameters (the size and shape of the region

of validity and the coefficients of the linear function) without knowing the other fields'

parameters. New receptive fields are allocated as needed, whereas those fields that are

not needed anymore become pruned.

4.2 Desired Algorithmic Properties

4.2.1 Infinite Incremental Update

The basic concept of incremental update is that data produced by the robot's motion will

not be stored and ultimately processed - it will rather be processed immediately once it is

generated. This is useful, as the amount of data will grow all the time during the robot's

motion. Not only storing but also processing the huge amount of data leads to a

computational complexity that is not feasible. Additionally, incremental learning will

enable the system to continue learning once the first learning stage has past. There is no

time when training stops and the robot continues with only using the learned function to

generate motion. Instead, motion will be predicted by the learned function and while

executing the motion, the learning system can continue to improve its performance. The

system will learn throughout its life.

 The continuous learning approach does also address another problem in motion

generation: It enables the robot to cope with input domains that have not previously been

learned. For example, when performing two very different tasks like driving a car and

riding a bike, very different strategies for motion control are required. If learning has

stopped before the new task has started, the robot will perform poorly and will not have a

chance to improve. A continuous learning system in contrast will allow the robot to

increase the performance everywhere in his workspace. This scenario resembles the

learning of sensory motor transformation in biology and, again, biological systems are

performing very well at it.

 Two major problems arise, when using a continually learning system: Firstly, the

robot might forget what has been learned before when it learns data in new input

 39

domains. Secondly, the problem of allocating the appropriate number of local receptive

fields in order to represent the data accurately has to be addressed. Both issues, which all

incremental learning systems have to face, will be discussed further in the following two

chapters.

4.2.2 Limited Negative Interference

Interference is a natural side effect of the ability to generalize. Every learning approach

needs to generalize from the data it has seen; otherwise, it would simply behave like a

huge look-up table and not 'learn' the underlying model that generated the data. So,

predictions for unseen data will always be made by generalizing from similar previously

encountered data. Generalization is achieved by adjusting those parameters of a learning

system that have non-local effects. If these effects reduce the overall correctness rather

than improve it, the interference is called 'negative' or even 'catastrophic interference'.

The question of interference is especially important for incremental learning, as

incremental learning systems cannot balance positive interference (i.e. generalization of

the presented data) with negative interference. Because old data is not present anymore,

every parameter update happens with respect to the current data only. For learning

inverse dynamics model, this might lead to the problem that a robot learning to play

tennis (with fast swinging arm motion) forgets that it previously learned how to chop

vegetables in a kitchen.

However, localized receptive fields have a potential robustness towards

interference: if learning is spatially localized, the interference will be spatially localized

as well. This means, that during learning only such local fields will be active, that

contributed to the prediction at the given input. Thus, only these local fields will be

updated, and only their parameters will be changed. It is easy to imagine, that for the two

tasks described above (playing tennis and cooking), only distinct receptive fields will be

active due to the very different input data. In this case, training data has negligible effect

on the parameters of distant receptive fields, and cannot change learned predictions from

distant local models.

 40

An artificial example to illustrate the interference problem in a one dimensional input

space is shown in figure 4.1:

• original training data

+ new training data

true y predicted y predicted y after new training data

•••
•
••

•

•

•••••

•

•
•••

•
•

•
•

•

••
••
•

•
•
•

••
•••

•
•

••
•

•••
•
•••••••

•
•••

•

•
••
••
••
•
•
•
••
••
•
••
•

•••
•
••••

••••
•

••
•
•
••
•
•••
•
•••••
••

••
•••••

•
•
••

•
•
•

•
•
••
•
••
•

•
•

+
++
+
+
+
+
+
++

+
++
++
+
+

++
++

+

+

+
++++

++
++
++++

+++++++
++++

+
++

++
+
+++

++++++++
+
+
+
+
++

-6

-5

-4

-3

-2

-1

0

1

2

3

4

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

y

x

a) Global Function Fitting With Sigmoidal Neural Network

•••
•
••

•

•

•••••

•

•
•••

•
•

•
•

•

••
••
•

•
•
•

••
•••

•
•

••
•

•••
•
•••••••

•
•••

•

•
••
••
••
•
•
•
••
••
•

••
•

•••
•
••••

••••
•

••
•
•

••
•
•••
•
•••••
••

••
•••••

•
•
••

•
•
•

•
•
••
•
••

•

•
•

+
++
+
+
+
+
+
++

+
++
++
+
+

++
++

+

+

+
++++

++
++
++++

+++++++
++++

+
++

++
+
+++

++++++++
+
+
+
+
++

b) Local Function Fitting With Receptive Fields

-6

-5

-4

-3

-2

-1

0

1

2

3

4

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

y

x

• original training data

+ new training data

true y predicted y predicted y after new training data• original training data

+ new training data

true y predicted y predicted y after new training data

•••
•
••

•

•

•••••

•

•
•••

•
•

•
•

•

••
••
•

•
•
•

••
•••

•
•

••
•

•••
•
•••••••

•
•••

•

•
••
••
••
•
•
•
••
••
•
••
•

•••
•
••••

••••
•

••
•
•
••
•
•••
•
•••••
••

••
•••••

•
•
••

•
•
•

•
•
••
•
••
•

•
•

+
++
+
+
+
+
+
++

+
++
++
+
+

++
++

+

+

+
++++

++
++
++++

+++++++
++++

+
++

++
+
+++

++++++++
+
+
+
+
++

-6

-5

-4

-3

-2

-1

0

1

2

3

4

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

y

x

a) Global Function Fitting With Sigmoidal Neural Network

•••
•
••

•

•

•••••

•

•
•••

•
•

•
•

•

••
••
•

•
•
•

••
•••

•
•

••
•

•••
•
•••••••

•
•••

•

•
••
••
••
•
•
•
••
••
•
••
•

•••
•
••••

••••
•

••
•
•
••
•
•••
•
•••••
••

••
•••••

•
•
••

•
•
•

•
•
••
•
••
•

•
•

+
++
+
+
+
+
+
++

+
++
++
+
+

++
++

+

+

+
++++

+
•••
•
••

•

•

•••••

•

•
•••

•
•

•
•

•

••
••
•

•
•
•

••
•••

•
•

••
•

•••
•
•••••••

•
•••

•

•
••
••
••
•
•
•
••
••
•
••
•

•••
•
••••

••••
•

••
•
•
••
•
•••
•
•••••
••

••
•••••

•
•
••

•
•
•

•
•
••
•
••
•

•
•

+
++
+
+
+
+
+
++

+
++
++
+
+

++
++

+

+

+
++++

++
++
++++

+++++++
++++

+
++

++
+
+++

++++++++
+
+
+
+
++

-6

-5

-4

-3

-2

-1

0

1

2

3

4

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

y

x

a) Global Function Fitting With Sigmoidal Neural Network

•••
•
••

•

•

•••••

•

•
•••

•
•

•
•

•

••
••
•

•
•
•

••
•••

•
•

••
•

•••
•
•••••••

•
•••

•

•
••
••
••
•
•
•
••
••
•

••
•

•••
•
••••

••••
•

••
•
•

••
•
•••
•
•••••
••

••
•••••

•
•
••

•
•
•

•
•
••
•
••

•

•
•

+
++
+
+
+
+
+
++

+
++
++
+
+

++
++

+

+

+
++++

++
++
++++

+++++++
++++

+
++

++
+
+++

++++++++
+
+
+
+
++

b) Local Function Fitting With Receptive Fields

-6

-5

-4

-3

-2

-1

0

1

2

3

4

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

y

x

•••
•
••

•

•

•••••

•

•
•••

•
•

•
•

•

••
••
•

•
•
•

••
•••

•
•

••
•

•••
•
••

•

•

•••••

•

•
•••

•
•

•
•

•

••
••
•

•
•
•

••
•••

•
•

••
•

•••
•
•••••••

•
•••

•

•
••
••
••
•
•
•
••
••
•

••
•

•••
•
••••

••••
•

••
•
•

••
•
•••
•
•••••
••

••
•••••

•
•
••

•
•
•

•
•
••
•
••

•

•
•

+
++
+
+
+
+
+
++

+
++
++
+
+

++
++

+

+

+
++++

++
++
++++

+++++++
++++

+
++

++
+
+++

++++++++
+
+
+
+
++

b) Local Function Fitting With Receptive Fields

-6

-5

-4

-3

-2

-1

0

1

2

3

4

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

y
-6

-5

-4

-3

-2

-1

0

1

2

3

4

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

y

x
Figure 4.1. An example for interference using neural nets and local receptive fields

(taken from Schaal & Atkeson, 1998)

The data generating function used for learning is given by

() ())16.0,0(16exp22sin 2 Nxxy +−⋅+= (eq. 4.1)

in the range of []0.2,0.2−∈x . This synthetic data set suggested by Fan and Gijbels

(1995) was used to train a three-layer sigmoidal feed-forward neural net with six hidden

units. The training took place in two regions: First 130 noisy points of data were drawn

from []5.0,0.2−∈x , shown as • in figure 4.1a. The excellent function fit is shown by the

'predicted y' trace. Then, training the network was continued using 70 noisy inputs from

the range []0.2,5.0∈x , illustrated by + in figure 4.1a. The network learned to predict the

new data accurately, but in doing so, it significantly changed the prediction in the

previously learned range []5.0,0.2−∈x . The resulting prediction for the whole input

range is illustrated by the dotted line in figure 4.1. This change of the prediction happens

due to the global activation of the hidden neurons that change their properties to adapt for

the new data.

 41

In strong contrast to the neural network, the local learning approach with receptive fields

used for consecutively learning the same function hardly shows any change after training

on the new data (figure 4.1b). Interference cannot be seen in predicting the function. This

robustness towards negative interference is accomplished by the local nature of the

learning approach: Only those receptive fields are updated that accomplish function

approximation in the region of the input data. Therefore, input data from a different

region cannot modify previously learned data.

4.2.3 Automatic Resource Allocation

Traditional learning approaches have to estimate meta-parameters before the learning

process starts to achieve a good compromise between over-smoothing and over-fitting the

data (please refer to chapter 3.2). Usually, this is done on the first representative set of

data during a model selection phase. Alternatively, a human supervisor can estimate the

meta-parameters while designing the learning system. These parameters must remain

unchanged once they are selected; otherwise learning has to start all over again. The

question is: How many free parameters should be adjusted, and can appropriate values for

these be found to achieve good learning results?

Unfortunately, this question cannot be answered in general, so it remains unclear

how to find good meta-parameters for general function approximation. For spatially

localized function approximation, however, the question arises in a slightly different way:

How wide is the region of validity for a certain local model? The total number of local

models is directly correlated to the width of all single models, as the whole input range

has to be covered by one model at least. This also implies, that the number of local

models can change (only increase), when new regions of input data are explored. This

means that the global problem has been transformed to a local one: each receptive field

has to find good parameters to regress the function.

But how wide can the region of validity be expanded so that the assigned linear

model still fits the data? Figure 4.2 illustrates a local model with a maximal tolerated

error bound by µ . The region of validity (shown as a Gaussian function) will be adjusted

such that the bound µ will hold within the valid region. If the model learns new data that

 42

does not fit in the linear model with respect to µ anymore, it will shrink the region of

validity of this receptive field. The original function is more like a linear function in a

smaller region, which will allow to hold the bound µ . Eventually, a new receptive field

will be introduced to model the data between two receptive fields that have shrunken.

Region of Validity

Linear
Model

Receptive Field
Activation w

0

1

2 kµ

Region of Validity

Linear
Model

Receptive Field
Activation w
Receptive Field
Activation w

0

1

2 kµ

Figure 4.2 Region of Validity of a Local Linear Model
(adapted from Schaal & Atkeson, 1998)

Having a set of error-bound locally valid receptive fields will allow the system to model

complex functions within a wide input range. All the input range has to be covered by at

least one local active model to get a prediction for this input. If more local models are

active, the overall prediction will be the weighted average over all active models'

predictions (as will be explained in chapter 4.4.). Calculating a weighted average of the

active fields will ensure that the overall prediction is also bound by µ . Indeed, having

more active models predicting for a certain input will tend to improve the overall

accuracy (Perrone & Cooper, 1993).

Despite of this simplification, it is hard to find the optimal local bias-variance

tradeoff (Friedmann, 1984, Fan & Gijbels, 1996). Local models allow new ways to find

solutions that are satisfying and computationally affordable. The leave-one-out cross-

validation approach (see chapter 4.5.3) in conjunction with regularization techniques can

be used to realize local bias-variance tradeoffs and to control the expected bias µ in each

linear model.

 43

4.2.4 Dimensionality Reduction of the Input Data

Another problem is the sparsity of data in high dimensional spaces. Due to this sparsity,

learning requires a huge amount of prior knowledge about the learning task, usually

provided by a human supervisor. Unfortunately, this knowledge does not exist for the

inverse dynamics model of a humanoid robot, because humanoid robots suffer from high

non-linearities induced by their mechanical limitations. Non-parametric learning

algorithms have advantages in learning such tasks (e.g. Geman, Bienenstock & Dursat,

1992), but they fail in high dimensional spaces. The concept of neighborhood is without

use in these high dimensional spaces, as all data points have roughly the same distance to

each other (Scott, 1992). So the power of describing similar properties of neighboring

areas used by local learning approaches is gone. Given this problem, it seems that non-

parametric learning algorithms have little merit for sensory-motor control.

However, when examining real motion data of human and robot studies,

Vijayakumar and Schaal (1997) found that this data is locally very low dimensional.

Original data that was sparse in a 21 dimensional space reduces to locally dense data in 3-

6 dimensions only. This observation triggered the idea of using a preprocessing step to

project the input data into a low dimensional space before using a linear regression to

model the function. The dimensionality of the local low dimensional space for every

receptive field must have the ability to grow dynamically as new data samples are used

for training. If the dimensionality was fixed, new significant properties might not be

represented in the local model.

There exists a variety of algorithms that perform a dimensionality reduction,

among them principle component analysis, independent component analysis, factor

analysis and partial least squares (PLS). A specially adapted variant of the last named

PLS is used by the LWPR algorithm. Further details will be provided in chapter 4.3,

which deals with the preprocessing of input data.

 44

4.2.5 Summary of the Desirable Properties

Spatially localized receptive fields seem to be a promising route towards robust

incremental learning. However, implementing local learning techniques for function

approximation also requires some care for additional desired properties. In the case of

inverse dynamics for humanoid robots the main properties are:

• Capability of Incremental Learning

As data will be generated by the robot's motion all the time, it would be a waste

of information to stop learning at all. But as no system can store and process an

infinite amount of data, learning algorithm has to learn from incoming data and

discard the data immediately after learning.

• Avoiding Negative Interference

The robot's motion might explore new areas within its range of motion. While

learning in the new range, previous knowledge must be kept unaltered such that

the robot can return to its old operating area and continue moving accurately.

• Automatic Resource Allocation

Meta-parameters like the size and number of receptive fields have to be adjusted

automatically without a human supervisor. Only this property ensures superior

performance for previously unknown function estimation.

• Dimensionality Reduction of the Input Data

The important concept of neighborhood is lost in high dimensional input spaces;

thus, the main strength of local learning approaches is gone. As high dimensional

motion data is locally very low dimensional, a dimensionality reduction has to be

performed as a preprocessing step on the input data.

The following chapters will demonstrate how all these properties are integrated in the

learning algorithm LWPR that is especially suited for learning motion data.

 45

4.3 Input Data Preprocessing

The only input-data-preprocessing that is necessary is the dimensionality reduction

discussed above. In the previous years, research found good global projections for fitting

non-linear one-dimensional functions, e.g. projection pursuit (Friedmann & Stutzle,

1981). LWPR however, is needs good local projections, that can be used to accomplish

local function approximation in the neighborhood of a given query point. This will allow

fitting simple functions with high accuracy on the given data in a local region. The

regression problem is much simpler, when using linear instead of complex one-

dimensional functions.

However, principle component regression does not provide help in finding

efficient local projections, nor does it detect irrelevant input dimensions that might be

falsely interpret as important directions. LWPR needs an algorithm that discovers

efficient projection directions for locally weighted linear regressions. The basic idea is to

project the input data X onto r orthogonal directions u1, u2, …, ur along which they carry

out univariate linear regressions, hence the name projection regression. If the linear

model of the data were known, it would be easy to determine the optimal projection

direction. It would then be given by the vector of regression coefficients beta, which is

the gradient of the data. Only a single projection along this direction would result in the

optimal regression. Unfortunately, the projection direction u has to be estimated from the

data and usually remains sub-optimal.

The projection-technique used in LWPR, Partial Least Squares, is extensively

used in chemometrics (Wold, 1975, Frank & Friedman, 1993). This projection technique

recursively computes orthogonal projections of the data and performs single variable

regressions along these projections on the residuals of the previous iteration step. The

important difference between PLS and most other projection algorithms is that PLS

chooses projection directions according to the correlation of the input data with the

output data, not on the basis of the input alone. Table 4.1 illustrates PLS in a pseudo-code

implementation. For simplicity, a batch process is described instead of an incremental

version. It is assumed that all the input data exists in the columns of the matrix X and the

output data in vector y. The derived incremental version will be shown in chapter 4.6,

embedded in the pseudo-code implementation of the complete LWPR algorithm.

 46

 Partial Least Squares (PLS) Pseudo-Code

1. INITIALIZE: XX =res , yy =res

2. FOR i = 1 TO r DO (r denotes the number of projections)

 (a) res
T
resi yXu =

 (b)
i

T
i

res
T
i

i ss

ys
â = where iresi uXs =

 (c) iiresres âsyy −=

 (d) T
iiresres psXX −= where

i
T
i

i
T
res

i ss
sX

p =

Table 4.1. Pseudo-Code of PLS projection

The first line in table 4.1 initializes the Matrix Xres (input) and the vector yres (output)

with the data given for approximation. The iteration itself starts with step 2a, which

calculates the direction of maximal correlation u between the residual input and output

data. Step (b) performs the univariate regression along the direction u, and returns the

regression coefficients . The regression itself will be explained in chapter 4.5.2.

Additionally, PLS regresses the data of the previous step against the projected data of this

step (s). PLS therefore subtracts the used information from the input and output data to

ensure the orthogonality of consecutive projections u (steps (c) and (d)). The regression

in (d) modifies the input data resX such that each resulting data vector has coefficients of

minimal magnitude and, hence, pushes the distribution of resX to become more spherical.

This simple, yet efficient algorithm will return the desired number of projection

directions (r) in ui.

As an open question remains, how the number of local projections r can be

estimated. LWPR uses a simple trial-and-error approach: The initial number is set to r=2.

Starting from this, LWPR recursively keeps track of the mean-squared-error (MSE) as a

function of the number of projections included in a local model (i.e. step j in the LWPR

pseudo-code in table 4.2). The algorithm will stop adding new projections locally, if the

MSE at the next projection does not decrease by more than a certain percentage, i.e.

 47

φ>+

i

1i

MSE

MSE
, where]1,0[∈φ .

This criterion leads to a good upper bound for the number of needed projections.

Adjusting the parameter φ has no major influence on the algorithm's performance, as

additional dimensions will not decrease the regression results.

Using these simple mechanisms, the number and directions of the projections will

be learned by the algorithm without human supervision and with only φ as a rather

insensitive meta-parameter that needs to be adjusted. From now on, the input vector x for

the linear regression will be assumed to be the projection of the original input x. The

position of the local model in input space however will be with respect to the original

input x. This distinction is necessary to locate appropriate receptive fields and activate

only these.

4.4 Predicting Output Data using LWPR

The LWPR algorithm constructs a system of K local linear models that will give

individual predictions kŷ for a query point x. The weighted sum of all these single

predictions is the algorithm's overall prediction:

∑

∑

=

=

⋅
= K

1k
k

K

1k
kk ˆ

ˆ
w

w y
y (eq. 4.2)

In equation 4.2, kŷ denotes the individual prediction of the receptive field k, whereas kw

is the weight (the importance) of this prediction. The weights kw correspond to the

activation strength of the receptive field, characterized by the shape of its kernel function.

The kernel function is a measure for the distance from a query point x to the center of the

receptive field. This follows the assumption that the distance is reciprocally correlated to

the quality of the approximation. A variety of kernel functions have been suggested

 48

(Atkeson, More, et al., 1997), LWPR uses a Gaussian kernel given by equation 4.3 for

analytical simplicity.







 −−−=)()(

2
1

exp kk
T

kk cxDcxw (eq. 4.3)

with k
T
kk MMD = (eq. 4.4)

Equation 4.3 characterizes the receptive field by its location in space (kc) and a positive

definite distance metric kD . For convenience reasons, the distance metric kD shall be

constructed from an upper triangle matrix kM , so that kD will stay positive definite.

Each receptive field models the relationship between input and output data by a

simple parametric function. For these functions, locally low order polynomials have

found widespread use in non-parametric statistics (e.g. Nadarayan, 1964, Watson 1964,

Wahba & Wold, 1975, Cleveland 1979, Cleveland & Loader, 1995). LWPR uses linear

functions according to equation 4.5, which seem to offer a good tradeoff between

computational complexity and accuracy (e.g. Hastie & Loader, 1993):

k
T

k0,k
T

kk
~bˆ âxb)c(xy =+−= (eq. 4.5)

with ()TT
k 1,~)c(xx −= (eq. 4.6)

 T
k0,

T
kk â),(ââ = (eq. 4.7)

Here, kâ denotes the regression parameters of the local linear model k and x~ is a

compact representation of the center-subtracted, augmented input vector to simplify the

notation. The additional '1' is used to represent a bias term 0â . Figure 4.3 gives a nice

illustration of the functional blocks that the LWPR algorithm is composed of.

 49

Figure 4.3 Architectural Overview of the LWPR Algorithm

(taken from Vijayakumar & Schaal, 2000b)

Three receptive fields shown in figure 4.3 each consist of a projection unit (u), a linear

regression unit (), and a Gaussian weighting unit (D). The input x is routed

independently to all receptive fields. The projections of the input x (achieved by

multiplication with PLS
ki,u) are routed to the linear regression units. In this figure, only two

projection directions are shown for each receptive field. The linear units generate a

prediction that is weighted by the weight kw from the Gaussian weighting unit. The sum

of all weighted predictions (kŷ) is the total system's output (ŷ).

 Assuming, that the parameters kc (center of receptive field k), kM (shape of the

receptive field k), and kâ (regression parameter of the linear model) are known, the

model predicts an output y for every given input x. These parameters are independent for

every model, so every model predicts independently of each other. The important

question how these parameters can be calculated will be discussed in the following

sections.

 50

4.5 Learning Parameters

4.5.1 General Remarks

This chapter concentrates on learning the parameters needed for predicting an output at a

given query point. As shown in the previous chapter, these parameters are: the center of a

receptive field (kc), the shape of the distance metric (kM), and the regression

coefficients (kâ). For clarity, the subscript k will be dropped in the following description,

as all receptive fields are updated in the same way.

 I my explanation, I will first concentrate on updating the linear model in each

receptive field (chapter 4.5.2), and then discuss updating the distance metric of a

receptive field (chapter 4.5.3). The focus of the remaining two chapters, 4.5.4 and 4.5.5,

will be the question of updating the number of receptive fields, i.e. adding and pruning

these fields. Adding receptive fields also discusses finding a proper center in input space

for each field, because once a receptive field is generated, its center is not moved

anymore.

4.5.2 Learning the Local Linear Model

Learning the linear regression coefficients is by definition a linear problem and thus

straightforward. The process is easier to understand if we first leave out the incremental

learning and try to estimate in a batch update. In a second step, the algorithm will then

be modified to suit an incremental version. To start the batch process, we have to

summarize all input vectors in a matrix X and all outputs in a vector y.

 ()T
M321

~,...,~,~,~ xxxxX = (eq. 4.8)

 T
M321)y,...,y,y,(y=y (eq. 4.9)

Remember that x~ denotes the center subtracted projection of the input data x (equation

4.6). The weights are arranged in a diagonal weight Matrix W:

 51



















=

M

2

1

w00

0w0

00w

L

MOM

L

W (eq. 4.10)

Next, the parameter can be estimated with a standard weighted regression technique

that is widely used in non-parametric statistics (e.g. Cleveland, 1979, Cleveland &

Loader, 1995), in time series prediction (e.g. Farmer & Sidorowich, 1987, 1988), and in

regression learning problems (Atkeson, 1989, Moore, 1991, Schaal & Atkeson, 1994,

Atkeson, Schaal et al. 1995).

WYPXWYXWX)(Xâ TTT == −1 (eq. 4.11)

 with 1−= WX)(XP T (eq. 4.12)

These simple formulae will allow a calculation of the linear regression coefficients under

the assumption that all data is available in X and y, and that the weights W are known.

The weights kw are given in equation 4.3, but the representation of the data in X and y

has to be changed for an incremental learning approach, before using LWPR to predict

new outputs.

To modify the regression in equation 4.11 towards in incremental update, one can

make an astonishing observation: the result for equation 4.11. is exactly the same as if

is calculated from one swoop through the whole training set by only using one data point

at a time and without looking back at the other training data. Using recursive least

squares as update rules (Ljung & Söderström, 1986), one obtains the following formulae

for the incremental version:

 52

T11
CV

~w exPââ ++ += nnn (eq. 4.13)

















+
−=+

xPx

PxxP
PP

~~
w

ë

~~

ë
11

nT

nTn
nn (eq. 4.14)

)xâ(ye ~T

CV

n−= (eq. 4.15)

The initialization of P, which corresponds to the inverted covariance matrix, will be

discussed in chapter 4.5.4. Equation 4.14 contains an additional parameter: the forgetting

factor ë , []0,1ë ∈ . This factor describes the reliability of old data, and is one of the most

significant differences between batch and incremental updates. Imagine, that a robot's

mechanical properties change during its life, such that old data does not represent the new

mechanical properties anymore. Then, new data should be trusted more than old data. In

the case of LWPR, this forgetting factor is especially important, since the distance metric

M changes during the learning process. The update of M will be discussed in the

following chapter. The result is that old data was learned with inappropriate weights and

that this data will be misinterpreted for later queries. So helps to gradually cancel the

contribution from early data points when M was not yet learned properly (e.g. Ljung &

Söderström, 1986).

 Equations 4.13 - 4.15 offer an incremental update rule for the local linear models,

which satisfies the introduced constraint that the update should happen incrementally

without the need to store old data. Additional properties of these formulae are that they

• are guaranteed to converge to the global minimum of a weighted squared error

criterion (Atkeson, Moore, et al., 1997)

• avoid the matrix inversion (equation 4.12).

This update rule is implemented in LWPR, as will be seen in chapter 4.6, where the final

algorithm is described.

 53

4.5.3 Learning the Size and Shape of Receptive Fields

Updating the distance metric D needs to be done by updating the decomposed upper

triangular distance metric M, where MMD T= (equation 4.4) in order to ensure the

positive definiteness of D. The first idea might be that this can be done by using a

gradient descend technique with weighted mean-squared-error criterion, which is also the

basis of the locally weighted regression in equation 4.11:

∑
=

−=
p

i
iiiw

W
J

1

2
ˆ

1
yy (eq. 4.16)

with ∑
=

=
p

i
iwW

1

 (eq. 4.17)

This is, however, a very poor approach. It can easily be imagined that every input point is

modeled by exactly one receptive field, which has its center exactly at this point. Then

the distance metric can be very small and the model will predict this point with no error.

But it will only predict this single point, and there will be no generalization to capture the

essentials of the data generating function. This version has no error for known points, but

it will encounter strong over-fitting and, thus, not be able to predict unseen data

accurately. For this reason, a global competition among receptive fields has been

introduced (e.g. Moody & Darken, 1988, Jordan & Jacobs, 1994). The global competitive

process will not allow narrow distance matrices, since all receptive fields start competing

against each other for data points, at least if there are more points than receptive fields.

But the introduction of global competition among the receptive fields removes the ‘local

learning’ character from the system.

An alternative way to address this issue is to use leave-one-out cross validation:

The testing of data i is performed in a system that has been trained on all the data without

the single data i. This will lead to a new cost function:

 54

∑
=

−−=
p

i
iiiiw

W
J

1

2

,ˆ
1

yy (eq. 4.18)

with ii −,ŷ meaning that the prediction for point i is calculated from a net trained without

point i as input data. The major disadvantage of this approach is its computational

expense, as a new system has to be trained for every point of data. This will result in a p-

fold that has to be run through for p points in the training set. Another partially

unresolved problem is the question of how the p different systems should be merged into

one after learning.

For linear regression problems, however, the Sherman-Morrison-Woodbury

theorem, also known as the 'matrix inversion theorem', (e.g. Belsey, Kuh, et al., 1980)

allows a simplification of the expression in terms of computational complexity:

∑∑
==

− −
−

=−=
p

i iii

iii
p

i
iiii w

w

W
w

W
J

1

2

1

2

,)~~(1

ˆ1
ˆ

1
2xPx

yy
yy (eq. 4.19)

Instead of using the computationally expensive leave-one-out cross validation, the cost

criterion can be computed weighting the sum by the mean squared error calculated using

the inverted covariance matrix 1−= WX)(XP T (equation 4.12.). This means that a

criterion has been found, which can be used to adjust the distance metric M in a

computationally affordable way.

 But there is still one more problem: With an incrementally increasing number of

training data samples, more and more receptive fields will be generated. So the size of

each receptive field will shrink to small values, which again reduces the ability to

generalize. To avoid this behavior, an additional penalty term is introduced in equation

4.19, yielding in equation 4.20:

∑∑
==

+
−

−
=

n

ji
ij

p

i iii

iii

w

w

W
J

1,

2

1

2

)~~(1

ˆ1
D

xPx

yy
2 γ (eq. 4.20)

 55

where the scalar γ determines the strength of the penalty. The additional term penalizes

the second derivative of the distance metric, and therefore an abrupt decay of the

receptive field's region of validity.

 Equation 4.20. is an appropriate function to use as cost criterion for changing the

distance metric with a gradient descend method in a batch update. To modify the update

towards an incremental version, a learning rate is introduced:

M
MM

∂
∂

⋅−=+ J
αn1n (eq. 4.21)

The derivative of the cost function J with respect to the distance metric M can be found

in Schaal & Atkeson, 1998. The algorithm LWPR uses an approximation of this result,

which can be found in chapter 4.6 included in the finial algorithm.

4.5.4 Adding Receptive Fields

As LWPR is designed to perform incremental online learning, it will be necessary to add

receptive fields for such new data, which is living in previously unknown input domains.

The way LWPR decides whether a new receptive field has to be created is to monitor the

activation of all existing receptive fields for new data. If the new data point x does not

activate any receptive field by more than a threshold (geni ww < for all i), then a new

receptive field with the following properties is created:

• The center of the new receptive field is at the position of the data sample in input

space (xc =).

• The distance metric M is set to a manual default value defM . This default value

has to be chosen with attention: It should rather span the field too wide (resulting

in small numbers for M) than to narrow. Because a receptive field that spans a

wide domain in input space will be activated by many subsequent points of new

input data, it will quickly shrink to a roughly appropriate size. In the other case, a

 56

receptive field having a narrow valid region will need more time to find data that

allows it to increase its region of validity.

• All remaining parameters are initialized to zero.

Only the matrix P needs special treatment, since P is used as a ‘memory’ in estimating

the linear model. However, a new point does not have any memory. A reasonable

initialization is to create a diagonal matrix where the elements on the diagonal are set to

2
1

iriip = , with r having small quantities (001.0i ≈r for all i) (Ljung & Söderström,

1986). This initialization can be interpreted in two different ways. Firstly from a

probabilistic point of view: then, these r are priors that the coefficients of â are zero.

Secondly, from an algorithmic perspective: then they are fake data points of the form

]0),0,...,0,,0,...,0,0([2 == rir r yx (Atkeson, Moore, et al., 1997). Under normal

circumstances, the size of the coefficients of r is too small to introduce noticeable bias.

4.5.5 Pruning Receptive Fields

Two different criteria cause pruning of receptive fields: Overlap with other fields and an

excessively large mean-squared-error compared to other fields.

In the first case, the overlap of two receptive fields can be detected when new

training samples are added. If a data point activates two fields simultaneously with more

than a constant prunew , the field with the larger determinant of the distance metric D (i.e.

the one with the smaller receptive field) is pruned. For computational convenience,

det(D) can be approximated by ∑ j

2
jjD (Deco & Obradovic, 1996). However, pruning

due to overlap is only done to gain better performance in terms of computational

complexity. For the accuracy of the prediction, it does not make a difference, if two fields

are overlapping (see chapter 4.2.3).

The other cause for pruning is given if the bias-adjusted weighted mean-squared-

error

 57

∑
=

−=
n

1ji,

2
ijn

n

D
W
E

MSE γw (eq. 4.22)

of a linear model happens to become excessively large in comparison to other units.

Testing the size is necessary, because also 0M = will result in a minimum for the

optimization criterion, given in equation 4.20. Setting M to the zero matrix is equivalent

to performing global instead of local regression, using an infinite receptive field. This

global regression has a large MSEw and, thus, the receptive field will be pruned and a

local approach will be pursued.

 In general, pruning rarely happens. If it happens, it is usually due to an

inappropriate initialization, so it only occurs at the beginning of learning when pruning

does not cause big harm.

4.6 The Final LWPR Algorithm

We will now move on to provide a more complete description of the algorithm LWPR,

and will merge all the different functional blocks into a single algorithm in pseudo-code.

Table 4.2 shows an incremental update of the linear regression parameters (from

chapter 4.5.2) and the shape of the distance metric (from chapter 4.5.3) using projection

techniques on the input data. The variables SS, SR, and SZ are memory terms that allow

the univariate regression in step f) to happen in a recursive least squares fashion. All

recursive variables in table 4.2, i.e. those with the superscript n, will be initialized to zero

before the algorithm starts. Step g) regresses the projection ip from the current projected

data s and the current input data z. This step guarantees, that the next projection of the

input data for the consecutive regression will result in a 1i+u that is orthogonal to iu .

Step j) is recursively keeping track of the mean-squared-error in consecutive projections.

It is used to decide when to add a new projection direction, as described in chapter 4.5.4.

 58

Given : A training point (x, y)

Update the means of inputs and output:

x 0
n+ 1 =

λW n x0
n + w x

W n+1

β0
n+1 = λW

n β0
n +1 + w y

W n+1

where W
n+1 = λW

n + w

Update the local model:

Initialize: z = x, res = y − β0
n+1

For i = 1: r,

a) u i
n+1 = λ u i

n + w z res

b) s = z T u i
n+1

c) SS i
n+1 = λ SS i

n + w s 2

d) SRi
n+1 = λ SRi

n + w s res

e) SZ i
n+1 = λ SZ i

n + w z s

f) β i
n+1 = SRi

n+1
SS i

n+1

g) pi
n+1 = SZ i

n+1
SS i

n+1

h) z ← z − sp i
n+1

i) res ← res − sβ i
n+1

j) MSE i
n +1 = λ MSE i

n + w res 2

Table 4.2. Update Rule for every Receptive Field

Finally, the following table shows a pseudo-code implementation of LWPR's main loop

that has to be processed for new data. All the elements used are introduced and discussed

in the previous chapters.

 59

Locally Weighted Projection Regression (LWPR) Pseudo-Code

INITIALIZE THE SYSTEM WITH NO RECEPTIVE FIELD (RF)

FOR EVERY NEW TRAINING SAMPLE (X, Y):

 FOR I=1 TO #RF

 CALCULATE THE ACTIVATION FROM EQUATION 4.3

 UPDATE THE RF ACCORDING TO TABLE 4.2

 IF NO LINEAR MODEL WAS ACTIVATED BY MORE THAN genw

 CREATE A NEW RF ACCORDING TO CHAPTER 4.5.4

Table 4.3. Pseudo-Code of the LWPR algorithm

4.7 Properties of LWPR

The learning algorithm LWPR is capable of approximating unknown functions between

incoming streams of input and output data in high dimensional spaces.

Its core is formed by local linear models, which span a small number of univariate

regressions in selected directions in input space. The spatial localization of the linear

models offers robustness against negative interference. The parameters of these models,

i.e. the regression coefficients â and the region of validity given by the distance metric

D, are learned automatically. The learning algorithm only uses data from the local

neighborhood of the model, not interacting with other models. Competition between local

models is thus not necessary, and the local information processing approach remains

valid. The major strength of LWPR is that it uses incremental learning techniques, such

that data is discarded after learning and does not need to be stored. This allows

continuous learning even if the system is running for a very long time, eventually

infinitely. The algorithm can deal with a large number of possibly redundant and / or

irrelevant input dimensions, while its projection-technique PLS automatically determines

the appropriate number and direction for needed projections. LWPR's computational

complexity is linear in the number of inputs and linear in the number of projected input

 60

dimensions ()r(n⋅O). This makes LWPR very attractive from a computational point of

view.

To my knowledge, LWPR is the first incremental neural-network learning

algorithm that combines all these properties. It is thus very well suited for the high-

dimensional real-time learning problems posed by humanoid robots.

 61

5. Evaluation of LWPR's Performance on Artificial Data

5.1 Introduction

I would now like to start a first evaluation of LWPR's performance. Therefore, a set of

data artificially generated from a known function is learned. The algorithm only knows

the data, it does not know about the function itself. As has been explained in chapter 3.1,

the success of the learning can be measured by the fact how well the function is

approximated.

For the evaluation, I have used two functions, which are described in more detail

in chapters 5.2 and 5.3. They are composed of Gaussians and sinusoidals, such that no

abrupt changes, like steps or spikes, occur. The underlying assumption is that the inverse

dynamics that is going to be modeled will also be a smooth function without abrupt

changes. Both functions used for evaluation are designed to demonstrate special

properties of LWPR, like predictions in almost linear regions or rapidly changing non-

linear data.

The values of these functions at randomized positions within a limited interval are

used to generate a noise-contaminated set of training data. After learning, a regularly

spaced vector of query points is generated and the trained system is asked to predict the

function at these points. These predictions are used to reconstruct the function and to

estimate the quality of the regression against the original function. The generated training

set does not contain any of the query points for function reconstruction: The network

might simply have memorized all these points, and thus the estimation of the total error

would be influenced. The following two chapters will discuss one of the two training

functions each.

5.2 One Dimensional Function Fitting

The first function used for evaluation consists of three separate areas in the total range of

1010 +<<− x : A linear region from –10 to –2 with a narrow Gaussian bump superposed

 62

at 6−=x followed by the left half of a steep Gaussian centered at 0=x . For 0>x , the

function is given by a si-function:

()















+∞<≤

<<−−+
⋅

−⋅⋅

−≤<∞−+⋅−⋅+⋅

=

x
x

x

xx
x

x

xxx

y

0;
)sin(

02;)exp()
4

sin(1.0

2;)6(2exp4.01.0

2

2

π
 (eq. 5.1)

Equation 5.1 is used to generate two distinct sets: a set of training and a set of testing

samples. Additionally, all data in the training data set contain additional noise generated

by)01.0,0(N .15 The training set consists of 500 noisy points drawn uniformly from

random positions in the range 1010 +<<− x . The test data set consists of 200 testing

points without noise equally spaced in the same interval. The predictions of these training

points are used to reconstruct the function after learning. No data point belonging to the

test set is contained in the training set. LWPR is initialized using the following values:

The default distance metric ID ⋅= 8def ,16 the threshold for generating a new receptive

field 1.0=genw , the threshold for pruning two overlapping fields 9.0=prunew , and,

finally, the penalty for narrow distance matrices is set to 0001.0=γ (equation 4.20).17

 Figure 5.1a shows the original function without noise and the network prediction

after learning. Figure 5.1c shows the error of the learned function, i.e. the original

function subtracted by the network prediction: lwproriginal yyy −= . This allows recognizing

the difference easily.

15 N(0, 0.01) denotes a Gaussian noise distribution with mean zero and a variance of 0.01
16 I being the identity matrix; the size of I appropriate to the context
17 For a discussion, see Schaal & Atkeson, 1998.

 63

-10 -8 -6 -4 -2 0 2 4 6 8 10

-1

-0.5

0

0.5

1

x input

y
ou

tp
ut

network prediction
original function
without noise

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.03

-0.02

-0.01

0

0.01

0.02

x input

y
ou

tp
ut

error-function

Figure 5.1 Results of Learning a One Dimensional Function

Looking at the error plot in figure 5.1b, one can easily see that the prediction is almost

perfect in the linear range of the original function (8−<x and 26 −<<− x). The error at

2−=x might seem odd; but looking at the function y in equation 5.1, one can see that the

function changes at 2−=x which causes small perturbations that the algorithm cannot

resolve completely. Instead, LWPR uses the linear function regression as the best chance

and assumes that the real data is noise-contaminated. Of course, the error-plot uses the

real function and shows these linear predictions as errors in the regression.

 The following figure 5.2a shows the learning curve: the decrease of the

normalized mean squared error (nMSE18) over time on a double logarithmic scale. The

nMSE slowly decreases from the initial value until a sharp drop occurs. This is a

significant property of learning approaches, which usually happens after roughly one

swoop through the training set. Finally, the nMSE settles at an excellent value of roughly

5103 −⋅=nMSE

18 nMSE denotes the mean squared error (MSE) on the test set normalized by the variance of the outputs of
the test set. The nMSE can be used for simple comparisons of different regression problems.

 64

10
1

10
2

10
3

10
4

10
5

10
-5

10
0

trainig sample

no
rm

al
iz

ed
 M

S
E

normalized MSE

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

trainig sample

of

 r
ec

ep
tiv

e
fie

ld
s

of receptive fields

Figure 5.2 Learning Curves for the One Dimensional Regression

Figure 5.2b shows that the number of receptive fields allocated by LWPR continually

grows during training. Ultimately, it settles with #rf=37. One can see that the nMSE

decreases by a significant step whenever a new receptive field is added. This happens,

because a new receptive field will only be introduced at such positions that have not been

modeled well by the existent receptive fields. The new field will model the data with high

accuracy exactly at that position, such that the nMSE decreases.

 An interesting experiment can be performed forcing the algorithm to use a smaller

number of receptive fields. This can be achieved by increasing the penalty for narrow

distance matrices, e.g. by keeping all parameters the same and only increasing γ by a

factor of 100, such that 01.0new =γ . Figure 5.3 illustrates the results: Parts a and c show

that the function regression becomes significantly worse (note the changed y-axis scale in

figure 5.3c!), when using only a total of 23 receptive fields compared to 37 as before.

This is not surprising, as a smaller number of linear models will always perform worse in

modeling a non-linear function. However, this experiment can be used to display the

position and shape of the receptive fields. In figure 5.3b, one can see that a small number

of fields spawn a wide range in those areas where the function is almost linear. This

means, that good approximation can be achieved in a wide region with very little effort.

On the other hand, LWPR places many receptive fields with a small region of validity

 65

where the non-linearity is significant, e.g. at 0=x or 7−=x . Hence, the function needs

a big number of linear approximations to be reasonably represented. With this

experiment, one can understand that the learning algorithm adjusts the position and shape

(i.e. the width) of the receptive fields to resemble the data distribution appropriately.

Hence, the computational complexity (that is correlated to the number of receptive fields)

is adapted to the input data distribution.

-10 -8 -6 -4 -2 0 2 4 6 8 10

-1

0

1

x input

y
ou

tp
ut

network prediction
original function
without noise

-10 -8 -6 -4 -2 0 2 4 6 8 10

-1

0

1

x input

w
ei

gh
t o

f g
au

ss
ia

n

Distance Metrics of Receptive fields

-10 -8 -6 -4 -2 0 2 4 6 8 10

-0.1

0

0.1

x input

y
ou

tp
ut

error-function

Figure 5.3 Learning by using a Constrained Number of Receptive Fields

5.3 Two-Dimensional Function Fitting with Shifting Input Distributions

A more complex function that is still relatively easy to display is given by equation 5.2. It

is a two-dimensional function (along the directions 1x and 2x), which consists of three

Gaussian bumps in the rear and a slowly rising but quickly falling Gaussian slope in the

foreground:

a)

b)

c)

 66

()()2
2
1

2
2

2
1

12
1

1)()(15exp −++⋅−⋅= xxy (eq. 5.2)

()()2
2
1

2
2

12
2

2)(25exp −+⋅−⋅= xxy (eq. 5.3)

()()2
2
1

2
2

2
1

12
3

3)()(35exp −+−⋅−⋅= xxy (eq. 5.4)

() ()
() () 





+⋅−⋅+⋅−⋅+

⋅+⋅−⋅−= −

2
2

2
2
1

12
1

1
2

2
2
1

14

)1(10exp)(25exp

)2exp(1)(2exp

xx

xxy
 for 2

1
1 ≤x (eq. 5.5)

() () 1
2

2
2
1

14)2exp(1)(50exp −⋅+⋅−⋅−= xxy for 2
1

1 >x (eq. 5.6)

),,,max(4321 yyyyy = (eq. 5.7)

The Gaussian bumps in the rear (equations 5.2-5.4) have decreasing width and increasing

height from the left to the right. This implies very different slopes, which need to be

modeled with linear patches of different sizes. The foreground consists of a slowly rising

Gaussian slope with a small Gaussian bump superposed (equation 5.5). Once a threshold

is passed (2
1

1 =x), the function rapidly returns to zero (equation 5.6). A 3-D plot of the

function can be seen in fig 5.2a.

 In contrast to the 1-D-function in chapter 5.2, this time the training data is drawn

from two separate regions of the input space. The first training set consists of data from

the region 02 ≤x , whereas the second training set covers the other half of the input space

(02 >x). Each of these training sets consists of 5000 noisy data samples drawn

uniformly over half the unit square. During learning, only one training set is used at a

time: At first, the algorithm is trained on the set from the back with the three Gaussian

bumps. After learning finished (based on an evaluation using a temporary test data set

from the same region), the input data is switched and only the second training set from

the front is used to continue learning. This time, test data drawn from all over the unit

square is used. The algorithm is, however, not re-trained on data from the back anymore,

i.e. it has to remember what was learned before.

 The final test data set consists of 4489 testing points without noise, meaning that

the output values of the test data are the exact function values. These points correspond to

the vertices of a 67x67 grid equally spaced over the unit square that will also be used to

display the function. The initial parameters for LWPR are ID ⋅= 16def , 1.0=genw ,

9.0=prunew , and 0001.0=γ - so only the initial size of the distance metric is changed.

 67

For learning this two dimensional function, the smaller distance metric still is wide

enough, because with a second dimension, more training points fall into every receptive

field's active area.

 To evaluate the performance of LWPR, the network prediction and the error plot

are shown in figures 5.2b and 5.2c:

Figure 5.4 Function Approximation for the 2D Example

One can easily see that almost linear regions (like the Gaussian with the small slope in

the left corner) result in very accurate predictions. In contrast, regions that cannot be

regressed easily by linear functions cause a visible error (like the abrupt fall of the

Gaussian in the right corner or the high Gaussian in the rear). It is a remarkable result that

although training was split in two different regions, no interference is visible: There is no

sharp edge or a significant misclassification in the back. So local learning seems to be

robust against shifting input distributions and does not forget previously learned domains

while training on new domains.

The maximal error in approximating the function is 0.0606, which is equal to 4%

based on the total amplitude of the function. The average error in approximating over all

a)

b)

c)

 68

testing points is a much better 0.003, which equals to an excellent 0.2% based on the total

amplitude. So using a moderate number of linear models (roughly 400), the algorithm

achieves a good approximation of a complex function (cf. equation 5.2-7).

5.4 Limiting the Computational Complexity

There is always a tradeoff between the number of receptive fields allocated by LWPR

and the quality of the prediction (as shown in chapter 5.2). The number of receptive fields

is proportional to the computational speed during training. Additionally, the number of

receptive fields is proportional to the time needed for generating a prediction. If the later

two were not related, an infinite number of locally valid linear models could be used to

model arbitrarily complex non-linear functions. So if twice the number of receptive fields

were used for the regression, the result would be much better; but also the algorithm

would need twice as much time to calculate predictions for given query points.

 Luckily, there is a way to deal with this unsatisfying issue when working in motor

control. Under the assumptions that the robot behaves well, the query points will not

move arbitrarily within the input space, and thus, that consecutive query points will be

lying 'close' together. Therefore, we may assume that for little time steps the desired state

of the robot only changes slightly. Due to this reasoning, all active receptive fields must

be somewhere close to those fields that were active in the previous time step. Using an

intelligent structure, the closest neighbors of previously active receptive fields can be

found easily. Asking only these fields for predictions on the current query point will limit

the computational time needed for a new prediction. As the number of closest receptive

fields (n) can be specified by the user, the computational time needed for a prediction will

never exceed a user specified time, no matter how many receptive fields have been

learned by LWPR. For very fast motion or a small number n, however, one has to be

careful not to reduce the quality of the prediction as more receptive fields might be

actively contributing to the current prediction than assumed.

 69

5.5 Discussion

The examples of learning artificial data show that truly local learning is a feasible

approach that can compete with other state-of-the-art learning algorithms. In this context,

it has to be remembered that local learning means learning without competition, without

gating nets, and without global regression on top of local receptive fields. Additionally,

the algorithm learns in a truly incremental fashion: It can learn from continuously

incoming data without knowing the distribution of the input data. Such a carefully

designed local learning is robust against negative interference even without having prior

assumptions on the input data distribution.

The development of this algorithm followed the assumption that the complexity of

the input data is unknown, i.e. that the original data generating function can be of a very

complex type. If there was more knowledge about the data generation model, this

knowledge should be incorporated in the algorithm design. E.g., regressing a sinusoidal

function with a sinusoid is the best approach under the circumstances; no other learning

algorithm will outperform this 'regression'. However, in the case of a linear dynamics

model for a humanoid robot, prior knowledge about the generation of the data is not

available. Therefore, as little assumptions as possible have been made about the data. The

only prior assumption that is introduced for the learning is hidden in the penalty term γ

for small distance metrics. This term introduces an assumption on the smoothness of the

function that is going to be regressed.

 There are several open research issues connected to the learning approach, e.g.

estimating the size of the learning rate α . Another open question is how a good

initialization of the distance metric defD might be found. The initial distance metric,

which describes the size of newly created receptive fields, should be appropriate for the

data being modeled. Too large receptive fields face the danger to grow until they span the

entire input domain, too small metrics tend to over-fit the data and reduce the

generalization ability. All these parameters can easily be monitored using just a small

number of receptive fields during an initial training phase. As all fields learn

independently of the others, the experience gained by training only a few can be used to

adjust parameters for all fields.

 70

Further, one might wonder how far such a local learning system has any parallels with

neurobiological information processing. The human brain uses locally weighted receptive

fields for information processing. However, one major assumption about learning in the

brain based on receptive fields is that these fields are broadly tuned and widely

overlapping (e.g. Merzenich, Kaas, et al., 1983). Thus, the accuracy of the prediction is

achieved by calculating the average of many fields with a reasonable error each. If you

compare this with LWPR, you first note that LWPR rather achieves accuracy by every

single or only a few overlapping fields. Whether the learning principles of LWPR are

biologically relevant or not remains speculative. In either way, LWPR demonstrates that

there is an alternative and powerful method to accomplish incremental constructive

learning based on local receptive fields.

 Using LWPR for learning problems in the context of robot motion control might

be a promising way to gain better performance compared to traditional approaches. The

motion data generated with respect to the inverse dynamics problem involves many of the

issues that LWPR can easily deal with. This is especially true for coping with incremental

data and changing input distributions as was shown in this thesis. Further examples of

evaluating LWPR's performance can be found in Schaal & Atkeson, 1998. The authors'

tests include dealing with redundant or irrelevant input signals and highly noisy data.

 Next, I would like to present the application of LWPR on a real robot. The inverse

dynamics model used for computed torque feed-forward commands will be learned on

generated motion. But first, it might be useful to give a short description of the more

technical details of the robot setup.

 71

6. The Humanoid Robot

For testing the algorithm on real data, it is important to have a system that represents

‘human’ properties, i.e. redundancy, flexibility, and the ability of fast motion. As for the

test itself, it does not matter whether a robotic arm, a leg, or the whole robot is used for

estimating the inverse dynamics, as the concept remains the same. I worked with a

robotic arm. This offers a number of advantages: it allows evaluating the performance on

a system that has a high number of degrees of freedom and therefore redundancy in the

motion. Additionally, there is a significant influence from the motion of one joint to

another. A single leg would, in comparison, get on with a smaller number of degrees of

freedom and much smaller influence of one joint's motion to another.

 The arm of a humanoid robot does not comply with the rigid body dynamics

assumptions, such that the rigid body framework cannot be used to generate feed-forward

commands. These are needed, as the PD controller shall run on low gains (see chapter

2.7). Therefore, the learning algorithm LWPR that was described in chapters 4 and 5 will

be used to learn the inverse dynamics control. But first, the robot system used will be

introduced.

6.1 Hardware for Robot Control

Robot

AJC-Bus

VME-Board (1)

VME-Board (2)

VME-Board (n)

Busmaster

......V
M

E
 B

us

PC

RobotRobot

AJC-BusAJC-Bus

VME-Board (1) VME-Board (1)

VME-Board (2) VME-Board (2)

VME-Board (n) VME-Board (n)

Busmaster Busmaster

......V
M

E
 B

us

PCPC

Figure 6.1 Sketch of the Robot Hardware Environment

 72

The vxWorks programming environment from Windriver Systems offers a UNIX-like

real time operating system on the target computers (the VME-Boards) and a development

environment on a host computer. Figure 6.1 shows the connections in the system. The

host computer can address multiple targets and offers target communication from the host

to a target or between targets. This also includes shared memory and message passing.

Real time linking is allowed, such that objects can dynamically be added or removed

from any of the target computers without reloading the whole program. Additionally, the

real-time operating system running on the targets offers frequently used features, such as

low-level I/O, memory management, process communication, task scheduling, interrupt

handling, and many more.

The fact that the VME-Boards are connected to a host computer allows simple

integration into an existing TCP/IP computer network and at the same time to keep real

time functionalities. The host interface Tornado allows user interactions with the running

system. Still, it keeps as much workload as possible on the host computer, freeing the

targets to work in real time on their duty, the control of the robot. The host computer is

additionally used for developing programs that can run as tasks on the targets. Programs

written in C can easily be cross-compiled on a Unix system and downloaded (i.e. linked)

to any of the targets for execution.

The targets are Motorola MVME2700 boards each having a single Power PC

processor running at 360 MHz. All the targets are mounted in a single VME rack, with

only the bus master having a connection to the host computer. The bus master also

manages the shared memory and the initialization of all other boards in the systen. The

communication between the different targets is performed via the VME backplane. All

VME boards run tasks with certain functionality, called Servos, as shown in figure 6.2:

 73

Figure 6.2 General Functionality of the different VME Boards

The Task Servo handles the user interface and plans the desired trajectory in joint space,

resulting in desè , desè& , and desè&& . The Vision Servo and additional external cameras are not

used in this thesis, as the desired trajectory is analytically generated (see chapter 7.1).

Therefore, the Vision Servo does not run any task.

In this study, the major focus is on the Inverse Dynamics Servo: Here the inverse

dynamics model is used for predicting feed-forward commands, and thus, also learning

the model has to happen on this Servo. The Motor Servo deals with low-level motor

control, like a PD controller for negative feedback control as discussed in chapter 2.3. It

also handles the input and output operations to control the robot. This involves reading

sensors and copying the results into shared memory such that all other Servos have access

to them. To perform the IO-operations, the Motor Servo is connected to AJC-Boards that

will further be described in the following paragraph. In general, further tasks can be

added on the existing or additional targets, such that an almost arbitrarily complex control

system can be implemented. The main limitation is given by the VME backplane that has

to organize the communication between the single targets. Examples of this additional

functionality include a separate Inverse Kinematics Servo for trajectory planning or (as

shown in figure 6.2) a Vision Servo for processing input from cameras.

 74

In addition to the targets, special VME boards are necessary to generate the appropriate

electrical control signals, which operate the robot. An Advanced Joint Controller (AJC)

Board is directly connected to the Motor Servo and to every single joint. With seven

degrees of freedom, seven of such AJC boards are needed. Each board performs the

transformation in both directions; from logical commands to electrical signals to control

the robot and the other way, to convert sensor readings into digital values. Open

parameters like the slope and the threshold for the conversion can be adjusted using

special software supplied with VxWorks.

6.2 Software for Robot Control

The basic software for controlling the robot exists in a software package called 'SL'

(Simulation Laboratory) that has been developed at the CLMC laboratory. This software

provides tasks for the basic Servos as described in chapter 6.2, such that the robot can

start running immediately. Additional functionality that is required by a task has to be

programmed on top of the existing modules. For this thesis, the inverse dynamics model

using learning with LWPR had to be programmed to replace the original inverse

dynamics that is based on rigid body assumptions.

 In addition to the software that runs on the VME boards, the SL package also

provides a simulator that can be used to test new software packages. Programmed

software written for the robot can run in both, the simulator and on the robot. Only the IO

interface (handled by the Motor Servo) behaves in a different way: Either commands are

sent to the AJC boards and then sensor readings can be retrieved from these boards.

Alternatively, using the simulator, the whole software runs on the host computer only and

simulates the robot, i.e. displays a figure of the robot on the controlling computer and

returns estimated sensor readings. This offers a valuable support for developing and

debugging software, as the same program can be used for the simulator and the real

robot. The chance of adding errors is minimized, when transferring software from the

simulator to the robot.

 Another tool contained in the SL packages is a program for data collection with a

graphical display. This software can be used to collect motion data (like positions,

 75

velocities, and accelerations for the joints but also for the fingertip) from the running

system or from the simulator. The data collected can be exported into ASCII standard

files and further used with other programs, e.g. MatLab for additional processing.

As described in chapter 6.1, the robot control hardware consists of several targets,

which usually run a single task each. The basic tasks for robot control are provided within

the SL package. The functionality of these will be described below:

The Motor Servo usually runs at high frequency (510Hz in our case), and

performs the low level interaction with the robot. It consists of basic feedback control

loops that read errors in desired positions, velocities, and accelerations (desè , desè& , and

desè&&). A feedback command (fbu) is generated based on the error between desired and

actual value (refer to chapter 2.2). In addition, the Motor Servo simply reads a feed-

forward command provided by another Servo and adds both, the feedback and the feed-

forward command, to retrieve the final control command u that is send to the robot. The

Motor Servo's mainloop consists of the following steps:

• Reading desè , desè& , desè&& , and ffu commands from the shared memory

• Computing appropriate motor-commands for the robot

• Sending the new commands to the AJC-Boards or to the simulator

• Reading the sensor of every joint for position, velocity, and torque information

• Updating the sensor information in shared memory

The aim of the Task Servo is to create appropriate desired positions, velocities, and feed-

forward commands19 to accomplish a user specified behavior. Therefore, the Task Servo

usually runs at the same high frequency as the Motor Servo to offer a new desired state

with every update of the Motor Servo's control loop. The Task Servo can move certain

computations by transferring them to additional modules, such as the inverse dynamics or

the inverse kinematics computation. Usually, the Motor Servo generates a feed-forward

command ffu based on rigid body dynamics assumptions (refer to chapter 2.5). In this

thesis, however, calculating the feed-forward command will be learned by a separate

Servo. The remaining steps of the Task Servo's mainloop are summarized below:

19 The feed-forward computation was handled by a separate processor in my research due to the
computational complexity of the neural network.

 76

• Reading the current state of the robot (è , & , and &&)

• Reading data about visual information from shared memory (e.g. information of

the position of color blobs)

• Computing useful quantities, e.g. the Jacobian J of the forward kinematics, the

endeffector-position, -velocity and -acceleration in Cartesian space and storing

them in shared memory

• Executing a user-specified set of functions to compute the task-specific desired

position, velocity and accelerations

• Storing the desired quantities in the shared memory, such that they can be

retrieved by the Motor Servo

The Inverse Dynamics Servo will only be used for calculating a non-analytical model of

the inverse dynamics. If an analytical model is used, the computations are fast enough to

run in real-time on the Task Servo. In contrast, for learning the inverse dynamics model

and predicting feed-forward commands by means of neural net techniques (such as

LWPR), higher performance is needed. A separate target might therefore be necessary to

run the inverse dynamics. Depending on the computational complexity, separate models

for different joints have to be learned on separate targets to further enhance

computational power within a given time. The mainloop of the Inverse Dynamics Servo

consists of the following steps:

• Reading desired positions, velocities and accelerations

• Computing the feed-forward command using LWPR for predictions

• Storing calculated commands in the shared memory, such that they can be

retrieved by the Motor Servo

• Every tenth iteration:20 Reading sensor information from the Motor Servo and

updating the internal model.

The Inverse Kinematics Servo can be used to learn a complex model of inverse

dynamics with additional constraints, such as human-like motion or extremely energy-

20 Empirical evaluation showed that learning every 10th iteration (i.e. 51Hz) is a good compromise between
computational complexity and accuracy

 77

efficient motion. The functional organization can be seen in analogy to the Inverse

Dynamics Servo: The Inverse Kinematics Servo reads the desired quantities and

calculates the desired positions, velocities and accelerations instead of the Task Servo.

The results will be stored in shared memory, such that the Inverse Dynamics and the

Motor Servo can retrieve them to compute control commands. The mainloop of the

Inverse Kinematics Servo consists of the following steps:

• Reading desired positions, velocities and accelerations in Cartesian coordinated

• Computing the desired quantities in joint space

• Storing these quantities in the shared memory, such that they can be retrieved by

the Motor Servo

• Every tenth iteration: Reading state information from the Motor Servo and

updating the internal model, if a learning approach like LWPR is used.

The research for this thesis only dealt with the implementation of the inverse dynamics

estimation located on the Inverse Dynamics Servo. Thus, the remaining system was used

'as it is', i.e. without modifications or the addition of further components. It turned out

that SL offered an easy to use yet powerful environment. However, as SL still is in an

developmental stage, frequent changes in the code happened that also required adaptation

of the inverse dynamics software. Whenever a program did not work properly, errors had

to be traced back through the whole system, which needed some additional time.

However, the provided simulator was a powerful tool, not only to ease the development

of software. The possibility to generate desired trajectories and to sample motion data for

a first evaluation of LWPR's performance saved much effort.

6.3 The Sarcos Robotic Arm

The robot that has been used for the experiments was constructed by SARCOS, a

company that usually builds tele-operated robots for entertainment purposes. The Sarcos

arm is a copy of another robotic arm, which is part of a humanoid robot also built by

Sarcos, and which is running in the ATR laboratories, Kyoto, Japan. The design of this

robot, and thus of the robotic arm, follows the ideas of humanoid robots, i.e. it is as

 78

compliant and lightweight as possible. The arm is hydraulically actuated and has two

different modes of operation: low and high pressure. The low-pressure mode can be used

to run algorithms without the danger of breaking the robot or hurting anyone. However,

this mode does not offer high accuracy or fast motion. Once switched to high-pressure,

obviously the dynamic properties of the system completely changes, such that the low-

pressure mode is best used for a secure first evaluation of algorithms only.

 The robot arm has seven hydraulically actuated rotary joints and, thus, offers

seven degrees of freedom (DOF). The names and functionalities of each DOF are

described in the following table:

2 DOF in the shoulder
- Shoulder abduction / adduction (SAA)
- Shoulder flexion / extension (SFE)

1 DOF in the upper arm
- Humeral rotation (HR)

1 DOF in the elbow
- Elbow flexion / extension (EB)

1 DOF in the lower arm
- Wrist rotate (WR)

2 DOF in the wrist
- Wrist abduction / adduction (WAA)
- Wrist flexion / extension (WFE)

The hand offers three additional degrees of freedom in the thumb and the indexing finger.

These have, however, not been used for learning as they have hardly any influence on the

system's motion due to their limited weight. Of the hand, only its position without respect

to the fingers was used for evaluation. Please refer to figure 6.3 for a picture and a

functional sketch of the robotic arm.

 79

a)

b)

Figure 6.3 Sketch (a) and Photograph (b) of the Sarcos Robotic Arm

The main goal of my research is learning the inverse dynamics model for the humanoid

robotic arm. As a short reminder, the inverse dynamics model is a typical element of non-

linear control (e.g. Sciavicco & Siciliano, 2000), which relates the vectors of position

(), velocities (&), and accelerations (&&) of a robot to the torque vector that is

necessary to accomplish the acceleration in the given state. Ideal mechanical systems

obey inverse dynamics equations from rigid body dynamics

GèèèCèèB =+⋅+⋅)(),()(&&&& (eq. 6.1, same as eq. 2.9)

These equations are highly non-linear and would extend over 1500 lines of C-code for the

Sarcos robot arm. Still, rigid body dynamics can be calculated with specialized

mathematical packages, and the open parameters (hidden in the parameter matrices B, C,

and G) can be estimated from data (e.g., An, Atkeson & Hollerbach, 1988, Featherstone,

1987). The Sarcos robot is hydraulically actuated, and thus, several unknown strong

linearities are added to the complexity of the equation. They stem from fluid dynamics,

non-linear friction terms of the hydraulic motors, and non-linear saturation of the

actuators. From previous experience, it was clear that rigid body dynamics is an

insufficient model for the Sarcos Robot Arm. Therefore, the learning algorithm LWPR

was used to estimate the inverse dynamics from the robot's motion. The following

 80

chapter will describe the process of learning the inverse dynamics function. It will deal

with the trajectory generation, the motion capturing, the learning process, and visualize

the results of using LWPR to predict inverse dynamics commands.

 81

7. Evaluation of the Arm’s Motion

7.1 Generating Trajectories for Learning

To learn the inverse dynamics model, the algorithm needs data samples from real motion.

These samples consist of sets of four elements each: position, velocity, acceleration and

load. The robot has to be run along a variety of trajectories, such that these data samples

can be acquired by measuring the sensors in each joint. As described above, every joint is

equipped with a sensor for the position, the velocity and the load. The load sensor is used

to measure torques; so only the joint acceleration needs to be estimated using

differentiation techniques. The differentiation is performed on the Motor Servo, running

at a high frequency of 510 Hz. The data samples are retrieved at a much lower frequency

of 50 Hz, leaving enough time and samples to run a low-pass filter on the data. This low-

pass filter ensures smooth data compared to the direct differentiation of the sensor

readings.

 A highly significant question for successful learning is how the imposed

trajectories have to be designed. If the robot performs simple repetitive motion, all data

samples will be generated by this limited motion. The learning algorithm cannot

generalize because it does not have data samples from other areas. To ensure a rich set of

data, several trajectories have been developed ranging from continuous motion in joint

space to discrete motion in task space, also ranging from single joint motion to all joint

motion. As a further significant criterion, the speed of motion can be varied: slow and

fast motion has to be represented in the learning data. In addition, it has to be ensured that

the whole range of motion is covered. Special care needs to be taken that no joint limits

are hit during the process of sampling data. This would lead to false data that the learning

algorithm tries to model.

Data samples with respect to the above-mentioned criteria have been created

using the following tasks:

Reaching Task (in Joint Space)

This task is designed to explore different joint motions without defining the motion of the

fingertip. Therefore, the position of the fingertip is the result of randomized motion in all

 82

joints. This task explores motion of the joints in all possible constellations, consequently

leaving some joints without any motion. The task iterates through a loop, starting with all

joints in their default position. During the loop, a random subset of all joints is chosen

(e.g. 1, 4, 5 and 7 of all seven joints). These joints are moved close to either their left or

right maximal value within a fixed time using a 5th order spline to generate smooth

motions from start to end. After a short delay at the final position, the joints are returned

to their original position using the same spline in opposite direction. After another short

delay, the iteration starts again with a new random set of joints. The maximal elongation

of each joint (in percent of its absolute maximal elongation) and the time for the motion

can be varied as parameters to gain variety in the motion. The elongation typically

reaches in the order of 70-90% of the maximal elongation, whereas the time for motion

varies from 0.6 to 3 seconds for a single motion.

Reaching Task (in Cartesian Space)

The idea of the second reaching task is very similar to the above-mentioned task in joint

space. This time, however, the target for this motion is expressed in form of a randomized

Cartesian fingertip position. This means, that the desired final joint states are calculated

with the inverse kinematics function supplied by SL. This task makes different joints

move different widths and at very different speeds, depending on the random target

position. An addition to this task is to follow geometrical patterns like lines, pyramids, or

boxes. These patterns can be seen as training for expected motion during later operation

of the robot. The learning approach will result in better performance if the input data

contains data close to the trajectory that will later be used during operation.

Sinusoidal Task (in Joint Space)

The goal of the sinusoidal task is to explore continuous motion in all joints at the same

time. During execution, every joint is moved according to a sinusoidal function (with

different phase, frequency and amplitude). Some joints are moved according to the

superposition of two sinusoidal functions, which changes the motion significantly. The

design of the task has to ensure that the patterns of motion do not repeat during

execution. Thus, the coefficients of the sinusoidal functions have to be numbers that will

not become multiples of each other easily. Additionally, an overall frequency multiplier

 83

is permutated during repetitive executions of the task to achieve a broader variety of

motion data.

Figure-Eight Task (in Cartesian Space)

The figure-eight task is designed to serve as a verification of the learned inverse

dynamics. It draws a figure-eight in the x-z-plane of the fingertip, keeping the y position

constant (in Cartesian coordinates). The figure-eight consists of two sinusoidal functions

for x and z, with one having double the frequency but half the amplitude of the other:

)2sin(2
1 π⋅⋅= tx ,)sin(π⋅= tz ,)(constyy def= . The overall time to draw one figure-

eight was is adjustable in a range from 0.7s to 4s. Thus, recording the x and z position

and plotting the trajectory, one can easily evaluate the quality of the motion.

Figure-Eight Task with a Wiggling Component

This is a slightly more sophisticated version for generating training data. It is designed to

explore the area close to the desired test trajectory but not exactly along the desired

trajectory. For this, small sinusoidal perturbations are added to the original desired

fingertip positions of the figure-eight. These perturbations are independent for x, y, and z-

directions:

)3sin(~
21 xtxxxx desdes +⋅⋅+=

)3sin(~
21 ytyyyy desdes +⋅⋅+=

)3sin(~
21 ztzzzz desdes +⋅⋅+=

During multiple succeeding tasks, these perturbations are varied in amplitude (111 ,, zyx),

in frequency (222 ,, zyx), and in phase (333 ,, zyx). The following figure gives an

impression of the area of motion covered by the tasks described above.

 84

-1

0

1

-1

0

1
-1

-0.5

0

0.5

1

x positiony position

z
po

si
tio

n

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

x positiony position

z
po

si
tio

n

-0.2 -0.1 0 0.1 0.2
-0.4

-0.2

0

0.2

0.4

x position

z
po

si
tio

n

-0.4 -0.2 0 0.2 0.4
-0.5

0

0.5

x position

z
po

si
tio

n

Figure 7.1 Range of Motion (Fingertip Position) covered by Sample Tasks

(all values are shown in meters)

The upper left figure shows a two minutes section of motion described by the reaching

task in joint space. One can easily recognize the smooth trajectories resulting from

trajectory planning in joint space. The upper right figure shows the fingertip position in

Cartesian space during the sinusoidal motion. One can also recognize smooth motion, but

this time almost the entire workspace is covered. The lower left figure displays the

motion during the plain figure-eight task (only x and z directions are shown) with varying

speed of motion. Thus, the figure-eight slowly 'grows' due to uncertainty in the control.

The graph in the lower right corner shows the figure-eight task with imposed

perturbations, such that the position of the figure-eight and the trajectory of the figure

change over time. Again, only the x and z directions are shown. All units of the graphs

are meters.

 85

The range of motion has to be carefully checked when sampling data. It needs to be well

balanced between covering the interesting area completely, and not exceeding any joint

limits. If a joint limit is exceeded, the motion in this joint will stop abruptly and thus,

false data is added to the learning set. Obviously, hitting the joint limits might also

seriously damage the robot. If this constraint limits the area that can be covered by

motion, further exploration will have to take place once the robot has learned the basic

area. This means that if the robot later explores previously unseen areas, the learning will

continue. Finally, the algorithm knows the inverse dynamics for the whole appropriate

range of motion. A second concern must be the maximal torque that any joint can

generate. If the torque is exceeded, the desired command cannot be executed as planned.

The learning algorithm on the other hand cannot verify if the desired command was

executed. Thus, it has to assume the correct execution. As a result, it learns an invalid

mapping from command to motion.

7.2 Learning Inverse Dynamics

For learning the inverse dynamics model, different data sets are generated according to

the tasks described in chapter 7.1. While collecting data, the feed-forward commands are

generated by an analytical model with estimated parameters according to An & Atkeson,

et al., 1988 (refer to chapter 2.5). This method returns roughly correct results. Then, a

command is executed to move the robot along a desired trajectory. The training samples

used as input to the learning algorithm consist of the actual applied command and the

resulting state of the robot. Thus, a mapping between a command that was sent and the

resulting state of the robot is learned. It does not matter how accurate the analytical

inverse dynamics model is, as LWPR only learns what happens as reaction to an

(arbitrarily) applied command. Initially, data were collected for off-line training of

LWPR models in order to gain better insights about the learning process of LWPR, and to

allow comparing LWPR to parametric models based on rigid body dynamics. Later

experiments used direct online learning without memorizing any data.

The data collected consists of 21 input variables (joint position, velocity and

acceleration for seven joints) and 7 output variables (the joint torques measured by the

 86

load cells). The frequency for sampling data was set to 50 Hz; this was found to be fast

enough to capture the 'essence' of the motion, but also slow enough not to get too similar

data (and thus waste resources, as very similar data does not represent new information)

All tasks are executed in multiple trials with varied parameters, like the maximal

elongation or the time for a repetitive motion. Once the initialization of the robot is

completed (i.e. a few seconds after the task starts), data is collected for 120 seconds. This

results in 600050120 =⋅ Hzs data points of each single task. Data from the different

tasks is then merged into separate sets: One set contains all data from both reaching tasks

and the sinusoidal task. This set is assumed to represent 'general motion'. The other set

contains all data from the figure-eight tasks, with and without wiggles. This set is later

being used to check if learning on data close to the desired trajectory results in superior

performance compared to learning on general data. As additional tests, the figure-eight

task data again is split into two subsets, one containing data with wiggles and the other

containing only data without wiggles around the original figure-eight trajectory. In a way,

these training sets are somehow 'cheating' with real learning, as a humanoid robot cannot

be trained on exactly what they will do later. This would eventually include all motion

possible. Thus, the appropriate learning task is one without the figure-eight data.

Of each of the data sets generated, a random subset (20% of all data) is extracted,

i.e. removed from the original data and kept as a separate test set. The remaining 80% of

the original data are used as input to train the learning algorithm LWPR. The extracted

test set is used to evaluate the performance of LWPR: For this evaluation, every single

data in the test set is given to LWPR to predict the torque needed to reach this state.

LWPR's prediction is then checked against the real torque that has been used to reach this

state, which is stored with the test data set. This complex procedure ensures that the

algorithmic performance can be evaluated based on data that it has never seen before.

Thus, LWPR needs to generalize - it is not sufficient to memorize all data. The difference

between prediction and previously measured torque of all data is summarized in the

mean-squared-error and is displayed in graphs as function over the time. These graphs

allow easy comparison with other techniques, like the analytical model introduced above.

 It should be mentioned that for the seven required torque predictions (one for each

joint), seven independent models have to be trained. A single LWPR model could also

generate seven predictions, but in this case, the position and the size of the receptive

 87

fields would be the same for all seven predictions. There is no reason to believe that the

local models have the same distance metrics for all joints. Therefore, all seven joints must

be learned by separate models. Seven independent models offer another advantage: they

can be computed in parallel on multiple boards, which will speed up the processing time

for both, learning and predicting.

7.3 Learning Results on Sampled Data

As described in chapter 7.2, each of the seven networks needed for predicting the inverse

dynamics model of the robot is trained independently on the 'general data' set. The

general data set consists of 57.600 training samples, what responds to roughly 20 minutes

of actual training. As an example of the resulting learning curves, the diagram for the

SFE joint is shown in figure 7.2:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.1

0.2

0.3
SFE

Normalized Mean Squared Error
of LWPR Prediction
Parameter Estimation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

500

1000

Number of Receptive Fields

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

2

2.5

3

3.5

4

Number of Training Samples

Average number of Projection Dimensions

Figure 7.2 The SFE learning Curves as an Example for Learning

 88

The upper part of figure 7.2 shows the decrease of the normalized mean squared error

(nMSE) on the separate test set while learning the inverse dynamics of the shoulder

flexion/extension joint (SFE). The nMSE is the mean squared error that is found when

predicting the test set, normalized by the variance of the test set's output data. The

normalization allows easy comparison with other joints or other data sets, which might

operate in a very different output range. For example, an absolute error of 0.5 might be an

excellent or a catastrophic result, depending on the variance of the output range. In figure

7.2, the nMSE settles at 0.0353 after seeing 500.000 training samples, which is a final

error of 3,53 % of the overall output distribution. The 500.000 training samples presented

to the learning algorithm represent roughly 10 iterations on the available training data.

To compare this result to another approach, parameter estimation was carried out

using standard estimation methods (An, Atkeson, et. al, 1988 and Conradt, Tevatia, et al.,

2000) on the same data set. This estimation resulted in an analytical rigid body dynamics

model with estimated inertial and geometric parameters. The analytical model that was

generated incorporates a large amount of prior knowledge about the physics of the robot

system. When comparing both results, the parameter estimation only achieves a nMSE of

0.1 on the same training data (shown as a dotted line in the same diagram). Thus, LWPR

outperforms the analytical approach after very few training samples only.

 The diagram in the center of figure 7.2 shows the number of receptive fields that

are allocated during learning. One can easily recognize that the remaining error decreases

only marginally, once roughly 500 receptive fields have been allocated. The lower

diagram in figure 7.2 shows the average number of projection directions used by all

receptive fields. This number settles at 3.7, meaning that even though the number of input

dimensions was 21, locally less than 4 dimensions are used for predictions. This is a

remarkable result, which also strongly supports the research by Vijayakumar (1997) &

Schaal about motion data lying in very few dimensions locally.

The learning curves of the other six joints are very similar. For convenience

reasons, the final learning results will be summarized in the following table:

 89

JOINT

NAME

PARAMETER

ESTIMATION
LWPR

SAA 0.1952 0.0560

SFE 0.1002 0.0353

HR 0.1539 0.0398

EB 0.2031 0.0492

WR 0.2409 0.0678

WAA 1.1722 0.0342

WFE 0.5535 0.0262

Table 7.1 nMSE Learning Results for the General Data Set

Looking at the table, one will realize that the parameter estimation approach performs

significantly worse on the WAA and WFE joints compared to the other joints. This can

be explained by the fact that these joints are at the end of the kinematic chain and are

especially compliant and lightweight. Therefore, the rigid body dynamics assumptions

match these joints poorly. In strong contrast, LWPR does not perform in any way

different on these joints, as it does not incorporate prior knowledge about the joints when

learning.

An interesting experiment can be designed with the figure-eight tasks to generate

data. In this test, data for training LWPR is generated using the figure-eight with

superposed wiggles, i.e. data close to the desired figure-eight trajectory but not exactly on

the trajectory. The data for evaluation, however, is exactly the desired figure-eight

trajectory. This test will show how well the different approaches can generalize from a

narrow area of data close to the desired data. The training data set used for this test is

constructed of nine different sample sets (with slow, medium and fast wiggles)

containing 6000 data points each. Thus, the complete training set consists of 54.000

training examples. The test set, however, consists of only 1020 data samples, as the

figure-eight for evaluation was drawn within 2 seconds and the Motor Servo was running

at a frequency of 510 Hz. The resulting learning curves show the nMSE, the number of

receptive fields and the average number of projection directions in figure 7.3:

 90

0 0.5 1 1.5 2 2.5

x 10
5

0

0.05

0.1
SFE Normalized Mean Squared Error

of LW P R Prediction
Parameter Estimation

0 0.5 1 1.5 2 2.5

x 10
5

0

100

200

Number of Receptive Fields

0 0.5 1 1.5 2 2.5

x 10
5

2

3

4

5

Number of Training Samples

Average number of Projection Dimensions

Figure 7.3 The SFE learning Curves on the Figure-Eight Data

One can easily realize that LWPR outperforms the parametric model within very little

time. In figure 7.3, only half the total training input compared to the general data set

(250.000 vs. 500.000 data points) is shown. Ultimately, LWPR converges to a nMSE that

is about 12 times lower than the nMSE achieved with the parametric model on this set of

data. This is not surprising, as LWPR can model the presented data samples in the

bounded range much better than an analytical model. The analytical model always has to

represent the entire range of motion. LWPR uses fewer receptive fields than in the first

learning approach on general data; these receptive fields are, however, located in a much

narrower region, such that the overall accuracy of the data prediction becomes better.

Additionally, the average number of projection direction increases by almost one,

indicating that more features of the input data are used for classification. This happens,

because all data is lying much closer together compared to the general data set used

before.

 Again, the learning curves for the other six joints are very similar to the one

presented, such that only the final learning results will be displayed in the table below.

 91

JOINT

NAME

PARAMETER

ESTIMATION
LWPR

SAA 0.1132 0.0054

SFE 0.0581 0.0048

HR 0.1010 0.0017

EB 0.0947 0.0048

WR 0.4584 0.0135

WAA 0.9118 0.0065

WFE 1.7762 0.0070

Table 7.2 nMSE Learning Results for the Figure-Eight Training Set

Training the network for 500.000 iterations took about 2 ½ hours on a 500MHz personal

computer running Linux, indicating that LWPR achieves approximately real-time

updating (given that the data was collected at 50Hz). Additionally, every network can be

trained independently on separate computers, which will increase the performance by a

factor of seven. There is hardly any communication overload in this context.

7.4 Verifying the Results on Real Motion

The normalized mean squared error (nMSE) shown as a result in chapter 7.3 allows a first

evaluation of the learning quality. However, important is the performance of the robot on

desired tasks, not the value of the nMSE. To show these results, the desired states

(positions, velocities and accelerations for all seven joints) of two tasks are generated.

The feed-forward commands to achieve the desired positions are predicted by LWPR. In

a second trial, the analytical model with estimated parameters calculates feed-forward

commands. Then, the tasks are executed on the real robot using desired positions and

predicted feed-forward commands. During execution, the fingertip position is recorded.

The recorded positions serve as a criterion for the evaluation.

 The first test is performed using the figure-eight task in Cartesian space as

described in chapter 7.1. The trajectory of the figure-eight is executed as a repetitive task

using the feed-forward commands predicted by LWPR and a low gain PD controller. In

 92

this test, LWPR was trained on the 'general data set'. After a few repetitions of the figure-

eight to wait for initial disturbances to settle, the fingertip position is recorded for 20

iterations. Figure 7.4 shows the fingertip position in the x-z-plane. For both feed-forward

control strategies, the LWPR predictions and the analytical model with estimated

parameters, 20 loops through the figure-eight are displayed, showing that the control

stays on track.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x Fingertip Position

z
F

in
ge

rt
ip

 P
os

iti
on

Figure Eight in Cartesian Space

Desired Figure Eight
LWPR
Analytical Model

Figure 7.4 Executing the Figure-Eight Task with Feed-forward Control

(all values are shown in meters)

As can easily be seen, LWPR performs by far superior compared to the analytical model.

The trajectory achieved using LWPR's prediction as feed-forward commands is much

closer to the desired trajectory than the one accomplished by the analytical model. Both

methods, LWPR and the analytical model, have used the same input data to estimate the

model. The superior performance of LWPR clearly demonstrates that rigid body

dynamics cannot model the humanoid robot arm well.

 93

During the first evaluation, the total time for a figure-eight was set to two seconds. When

varying the time, one expects different results. Indeed, longer execution time (i.e. slower

drawing of the figure-eight) improves the performance. This is not a property of the

prediction or the learning approach; it happens because slower motion is better controlled

by the PD controller. The influence of the feed-forward control is significantly reduced

when moving slower. Therefore, both approaches improve the quality in roughly the

same way.

A more interesting comparison is using the alternate training data set. This set was

constructed using motion close to the desired figure-eight (please refer to figure 7.3 and

table 7.2). The nMSE based on the figure-eight trajectory was significantly smaller

compared to the nMSE achieved on the general data. This leads to the expectation of

improved performance on the execution of the task. However, also the nMSE of the

analytical model was smaller. So again the desired trajectory is used to predict feed-

forward commands and the resulting fingertip trajectories are shown in figure 7.5:

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x Fingertip Position

z
F

in
ge

rt
ip

 P
os

iti
on

Figure Eight in Cartesian Space

Desired Figure Eight
LWPR
Analytical Model

Figure 7.5 Executing the Figure-Eight Task with Feed-forward Control

based on Figure-Eight Training Data (all values are shown in meters)

 94

Comparing figure 7.5 to figure 7.4, one can easily recognize that the performance has

improved. As expected, both approaches result in trajectories that lie closer to the desired

trajectory. Still, LWPR outperforms the analytical model by far. One important thing to

stress is the fact that learning based on data close to the desired trajectory is not a valid

approach to solving the inverse kinematics problem. One cannot assume that the desired

trajectory is known in advance; so finally, the robot has to perform well on any arbitrary

trajectory.

 A third and last comparison between LWPR's predictions and the analytical model

was carried out using the reaching task in joint space. The task performs smooth motion

in a randomly chosen subset of all joints. After a short delay at the target position, the

arm returns to its default position and starts again choosing a different subset of all joints.

The total time for a single iteration was set to four seconds, giving almost two seconds to

move the arm to the target and again almost two seconds to return. A more detailed

description of the task can be found in chapter 7.1. This task is very different compared to

the previously evaluated figure-eight task, since it consists of discrete motion in joint

space compared to continuous motion in Cartesian space. Again, LWPR trained on the

general data set was used for predicting feed-forward commands. The specialized version

(trained on the figure-eight) cannot be assumed to perform accurately, as the limited input

data does not cover the range of motion used in the reaching task.

For evaluating the performance, the feed-forward commands of all joints are

predicted by LWPR. During a second trial, feed-forward commands are generated by the

analytical model estimated on the same data used for training LWPR. Figure 7.6 shows

the displacement of the fingertip position compared to the desired trajectory. The actual

trajectory cannot be displayed well on paper; therefore, the l2-norm position error

(Cartesian distance from desired to real fingertip position) is shown.

 95

0 4 8 12 16 20 24 28 32 36 40
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time elapsed in s

D
is

pl
ac

em
en

t i
n

m

Fingertip Displacement in Cartesian Distance

LWPR
Analytical Model

Figure 7.6 Fingertip Displacements during the Reaching Task

This figure again demonstrates the superior performance of LWPR compared to the

analytical parameter estimation technique. LWPR hardly misses the desired position by

more than two centimeters, whereas the analytical estimation is often more than four

centimeters off. One can realize that the displacement usually becomes significantly

worse when the joints are moved far away from their rest positions (at the positions

between the grid lines on the time axis). On the other hand, the displacement usually

decreases when the joints are operated close to their rest position (at the positions of the

grid lines in figure 7.6). This can be explained by the fact that both algorithms have been

exposed to little data from areas far away from the default position. Hence, the

approximation ability is significantly reduced in these areas. The global parameter

approximation approach, which is building a single model that is valid for the entire

space, particularly under-represents these areas. Due to the local learning in LWPR, the

little data available is used to generate a model that is valid in this region only. And, as

can be seen, this method leads to far superior results for the data given. Again, the local

learning model used in LWPR again by far superior compared to the analytical approach.

 96

8. Conclusion

8.1 Discussion

This thesis presents a new learning algorithm, Locally Weighted Projection Regression

(LWPR), a non-linear function approximation network that is particularly suited for

problems of online incremental motor learning. The essence of LWPR is to achieve

function approximation with piecewise linear models and to find efficient local

projections to reduce the dimensionality of the input space. High-dimensional learning

problems can thus be dealt with efficiently: updating one projection direction has linear

computational cost in the number of inputs, and since the algorithm accomplishes good

approximation results with only 2-5 projections irrespective of the number of input

dimensions, the overall computational complexity remains linear in the inputs. Moreover,

LWPR selects low dimensional projections and is thus able to exclude irrelevant and

redundant dimensions from the input data.

LWPR leads to excellent function approximation for classical problems in robot

learning. In this thesis, I concentrate on the problem of estimating the inverse dynamics

model of a highly compliant, lightweight humanoid robot. Finding the inverse dynamics

model of such a robot is a nontrivial problem that has to be dealt with in new ways.

Because of the design of humanoid robots, traditional approaches do not offer high

quality. LWPR, in contrast, outperformed the traditional parameter identification method

by a large margin. This result by itself is not surprising since it was known in advance

that the humanoid robot arm does not conform to the traditional rigid body assumption.

What is remarkable, however, is that LWPR achieves good learning results from data that

represented less than one hour of actual robot movement, and that only 2-3 local

projections were needed on average. Thus, the 21-dimensional input space of the learning

task was drastically reduced.

The major advantages of using the local online learning algorithm LWPR for

estimating the inverse dynamics model are:

• the high learning speed

• the limited prior knowledge about the system needed to achieve good results

 97

• the high accuracy achieved with a limited training data set

• the real-time performance of the system

• the possibility of parallel processing for each joint, such that computational

complexity can be transferred to multiple computers for speed-up purposes

• the build-in dimensionality reduction (projection regression) which allows

local learning methods to work

• the offline pre-trainability to further speed-up learning on the real robot

The only known disadvantage is the remaining parameter adjustment, which is necessary

to achieve accurate learning results.

The main purpose for inventing the new algorithm was to estimate the inverse

dynamics model of modern humanoid robots that are compliant and lightweight

compared to traditional robots. However, not only such robots can improve their accuracy

using LWPR. Traditional robots also suffer from uncertainties in their dynamics model,

and the learning approach offers a new way to deal with this problem. Additionally, as

traditional robots age, their mechanical properties change. An online learning approach

will always keep the model accurate, no matter how the mechanical system changes (as

long as the wear remains moderate). One step further, a learning approach will estimate

the appropriate inverse dynamics model for any robot it is used on, with almost no human

interaction. This can drastically simplify the design process of new robots.

 On the other hand, not only the inverse dynamics problem can be solved by

LWPR. Other regression problems with similar constraints can also be dealt with. An

example is shown is the following chapter, using LWPR to estimate inverse dynamics.

8.2 Brief Introduction to Using LWPR for Inverse Kinematics Estimation

One of the core issues of robot control is movement planning, as outlined in chapter 2.1.

Most movement tasks are defined in coordinate systems that are different from the

actuator space of the robot. Hence, a coordinate transformation from task to actuator

space must be performed before motor commands can be computed. On a system with

redundant degrees of freedom, this transformation from external plans to internal

 98

coordinates is often ill posed and is known as the inverse kinematics problem. For

redundant manipulators like the Sarcos robot arm, solutions of the inverse dynamics

equation are usually non-unique.

Traditional pseudo-inverse methods, like Resolved Motion Rate Control, suffer

from the problem of singular postures and need additional optimization criteria to resolve

the redundancy of the system. At singular postures, i.e. when the Jacobian becomes rank

deficient, these methods cannot yield a solution and suffer from numerical explosions.

Given these problems, a learning system might offer an appropriate solution: it can only

reproduce the solutions it was trained on, i.e. problems with singularities of the Jacobian

J cannot arise since it is impossible to encounter 'singular training data'.

Due to the redundancy of the robot arm, learning the inverse problems is usually

not possible if the redundant solutions & for one x& form a non-convex set (Jordan &

Rumelhart, 1992). This problem can be avoided by a specific input representation to the

learning network. Consider two solutions for & from the set of solution vectors that

produce the same end-effector velocity:

1)(èèJx && ⋅=

2)(èèJx && ⋅=

Since the Jacobian relates the x& and è& in linear form, even for a redundant system the

average of the two solutions will result in the desired x& , i.e.:

AVEèèJ
èèèJ

x &
&&

& ⋅=
+⋅

=)(
2

)()(21 (eq. 8.1)

Thus, if one considers only a small local region of the space, the set of solutions of

joint velocity vectors for one particular x& form a convex set. Averaging over this local

convex set - this is what neural network learning and thus LWPR essentially does - will

lead to a valid solution for the inverse kinematics problem (equation 8.1). Thus, a

specially localized learning system like LWPR can learn the inverse mapping function

based on the input/output representation () ()èèx && →, .

 99

This approach will automatically resolve the redundancy problem without resorting to

any other optimization approach; the inverse solution is simply the local average over

solutions previously experienced. The algorithm will also perform well near singular

posture since it cannot generate joint movement that it has never experienced.

 Please refer to Conradt, Tevatia, et al., 2000, for a more detailed description of the

learning process for the inverse kinematics problem, and graphs that demonstrate the

performance of this approach. We also discuss the problem of overcome previously

inexperienced areas by adding a small default joint velocity.

8.2 Future Research

In general, LWPR opens a very promising approach towards new motion abilities of

lightweight compliant robots. Definitely, further experiments are needed to evaluate the

robot's performance by using LWPR. Also, more different types of robots need to be

tested. One such test will be performed this summer in Japan on the real humanoid robot

(shown in figure 8.1) with additional redundant input dimensions. This addresses the

question of scalability into higher dimensions with more redundant inputs.

Current research focuses on creating a complete real-time implementation of the

two robot-learning tasks in a multi-processor environment: The inverse dynamics model

is implemented, and all the benchmark tests indicate that it will be unproblematic to

additionally apply LWPR in real-time to inverse kinematics. To my knowledge, no other

research groups have accomplished similar fast and accurate learning results for such

high-dimensional learning problems in the context of humanoid robotics.

 100

Figure 8.1 Photograph of DB playing Squash

 101

References

An, C., Atkeson, C. & Hollerbach, J. (1988), Model-Based Control of a Robot
Manipulator. Cambridge, MA, MIT-press.

Atkeson, C., Moore, A. & Schaal, S. (1997), Locally weighted learning. Artificial
Intelligence Review, 11, 1-5, pp. 11-73.

Atkeson, C. (1989), Using local models to control movement. Advances in Neural
Processing Information Systems 1, pp. 79-86, San Mateo, CA. Morgan Kaufmann.

Atkeson, C. & Schaal, S. (1995), Memory-based neural networks for robot learning.
Neurocomputing, 9, pp. 243-269.

Baillieul, J. (1985), Kinematic programming alternatives for redundant manipulators. In:
IEEE International Conference on Robotics and Automation.

Belsley, D., Kuh, E. & Welsch, R. (1980), Regression diagnostics: Identifying influential
data and sources of collinearity. New York, Wiley.

Cleveland, W. (1979), Robust locally weighted regression and smoothing scatterplots.
Journal of the American Statistical Association, 74, pp. 829-836.

Cleveland, W. & Loader, C. (1995), Smoothing by local regression: Principles and
methods. Technical Report, AT&T Bell Laboratories, Murray Hill, NY.

Conradt, J., Tevatia, G., Vijayakumar, S. & Schaal, S. (2000), On-line Learning in
Humanoid Robot Systems. Proceedings of the Seventeenth International Conference on
Machine Learning, San Francisco.

Craig, J. (1986), Introduction to robotics. Readings, MA, Addison-Wesley.

Daugman, J. & Downing, C. (1995), Gabor wavelets for statistical pattern recognition.
In: Arbib, M.: The Handbook of Brain Theory and Neural Networks, pp. 414-420,
Cambridge, MA, MIT press.

Deco, G. & Obradovic, D. (1996), An information-theoretic approach to neural
computation. New York, Springer.

Fan, J. & Gijbels, I. (1996), Local polynomial modeling and its application. London,
Chapman & Hall.

Farmer, J. & Sidorowich, D. (1987), Predicting chaotic time series. Physical review
letters, 59 (8), pp. 845-848.

Farmer, J. & Sidorowich, D. (1988), Exploiting chaos to predict the future and reduce
noise. In Lee, Y.: Evolution, Learning, and Cognition, p.27, Singapore, World Scientific.

Field, D. (1994), What is the goal of sensory coding? Neural Computation, 6, pp. 559-
601.

Frank, I. & Friedman, J. (1993), A statistical view of some chemometric regression tools.
Technometrics, 35(2), pp. 109-135.

Friedman, J. & Stutzle, W. (1981), Projection pursuit regression. Journal of the
American Statistics Association, 76, pp. 817-823.

 102

Friedman, J. (1984), A variable span smoother. Technical report No. 5, Department of
Statistics, Stanford University.

Geman, S., Bienenstock, E. & Doursat, R. (1992), Neural Networks and the Bias/
Variance Dilemma, Neural Computation, 4, pp. 1-58.

Georgopoulos, A. (1991), Higher order motor control. Annual Review of Neuroscience,
14, pp. 361-377.

Hastie, T. & Loader, C. (1993), Local regression: Automatic kernel carpentry. Statistical
Science, 8, pp. 120-143.

Hirai, K. (1997), Current and future perspective of Honda humanoid robot. Proceedings
of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
500-508, Grenoble, France, IEEE, New York.

Hirai, K., Hirose, M., Haikawa, Y. & Takenaka, T. (1998), The development of Honda
humanoid robot, IEEE International Conference on Robotics and Automation, pp. 1321-
1326, Leuven, Belgium, IEEE, New York.

Hubel, D. & Wiesel, T. (1959), Receptive fields of single neurons in the cat’s striate
cortex. Journal of Neurophysiology, 148, pp. 574-591.

Jordan, M. & Rumelhart R. (1992), Supervised learning with a distal teacher. Cognitive
Science, pp. 307-354.

Jordan, M. & Jacobs, R. (1994), Hierarchical mixtures of experts and the EM algorithm.
Neural Computation, 3, pp. 79-87.

Kovács, P. (1993), Rechnergestützte symbolische Roboterkinematik. In: Fortschritte der
Robotik, 18, Vieweg Verlag, 1993.

Lee, C., Rohrer, W. & Sparks, D. (1988), Population coding of saccadic eye movement
by neurons in the superior colliculus. Nature, 332, pp. 357-360.

Liegeois, A. (1977), Automatic supervisory control of the configuration and behavior of
multibody mechanisms. IEEE Transactions on Systems, Man, and Cybernetics, 7(12), pp.
868-871.

Ljung, L. & Söderström, T. (1986), Theory and practice of recursive identification.
Cambridge, MIT press.

Merzenich, M., Kaas, J., Nelson, R., Sur, M. & Fellemann, D. (1983) Topographic
reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following
restricted deafferentation. Neuroscience, 8, pp. 33-55.

Moody, J. & Darken, C. (1988), Learning with localized receptive fields. In Touretzky,
D.: Proceedings of the 1988 Connectionists Summer School, pp. 133-143, San Mateo,
CA, Morgan Kaufmann.

Moore, A. (1991), Fast, robust, and adaptive control by learning only forward models. In
Moody, J.: Advances in Neural Information Processing Systems 4, San Mateo, CA,
Morgan Kaufmann.

Mountcastle, V. (1957), Modality and topographic properties of single neurons of cat’s
somatic sensory cortex. Journal of Neurophysiology, 20, pp. 408-434.

 103

Nadaraya, E. (1964), On estimating regression. Theoretical Probabilistics Applied, 9, pp.
141-142.

Olshausen, B. & Field, D. (1996), Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381, pp. 607-609.

Perrone, M. & Cooper, L. (1993), When networks disagree: Ensemble methods for hybrid
neural networks. In Mammone, R.: Neural Networks for Speech and Image processing,
Chapman Hall.

Pfeiffer, F. & Reithmeier, E. (1987), Roboterdynamik. Stuttgart, Teubner Verlag.

Poggio, R. & Girosi, F. (1990), Regularization algorithms for learning that are
equivalent to multilayer networks. Science, 247, 4945, pp. 978-982.

Powell, M. (1987), Radial basis functions for multivariable interpolation: A review. In
Mason, J.: Algorithms for approximation, pp. 143-167, Oxford, Clarendon Press.

Rieseler, H. (1992), Roboterkinematik – Grundlagen, Invertierung und symbolische
Berechnung. In Fortschritte der Robotik, 16, Vieweg Verlag.

Schaal, S. & Atkeson, C. (1994), Assessing the quality of learned local models. In
Cowan, J.: Advances in Neural Information Processing Systems 6, San Mateo, CA,
Morgan Kaufmann.

Schaal, S. & Atkeson, C. (1998), Constructive Incremental Learning From Only Local
Information. Neural Computation, 10, 8, pp. 2047-2084.

Schwinn, W. (1992), Grundlagen der Roboterkinematik, LS-Verlag.

Sciavicco, L. & Siciliano, B. (2000), Modeling and Control of Robot Manipulators. New
York, Springer Verlag.

Scott, D. (1992), Multivariate Density Estimation. New York, Wiley.

Vijayakumar, S. & Schaal, S. (1997), Local dimensionality reduction for locally weighted
learning. IEEE International Symposium on Computational Intelligence in Robotics and
Automation, pp. 220-225, Monterey, CA.

Vijayakumar, S. & Schaal, S. (2000a), Locally Weighted Projection Regression: An O(n)
Algorithm for Incremental Real Time Learning in High Dimensional Space. Proceedings
of the Seventeenth International Conference on Machine Learning, San Francisco.

Vijayakumar, S. & Schaal, S. (2000b), Real Time Learning in Humanoids: A challenge
for Scalability of Online Algorithms. IEEE International Conference on Humanoid
Robotics, Boston.

Wahba, G. & Wold, S. (1975), A completely automatic french curve: Fitting spline
functions by cross-validation. Communications in Statistics, 4(1).

Watson, G. (1964), Smooth regression analysis. In Sankhaya, G.: The Indian Journal of
Statistics A, 26, pp. 359-372.

Whitney, D. (1969), Resolved motion rate control of manipulators and human
prostheses. IEEE Transactions on Man-Machine Systems, 10(2), pp. 47-53.

Wold, H. (1975), Soft modeling by latent variables: the nonlinear iterative partial least
squares approach. Perspectives in Probability and Statistics.

 104

Short German Summary

Das Ziel der vorliegenden Diplomarbeit ist es, ein neues Verfahren zur

Bewegungssteuerung menschenähnlicher Roboter (siehe Schaubild 9.1a) zu entwickeln

und zu bewerten. Solche menschenähnlichen Roboter unterscheiden sich von

traditionellen Robotern dadurch, daß sie aus leichtgewichtigen Materialien gebaut sind

und eine hohe Flexibilität in ihren Gelenken aufweisen. Durch diese Änderungen können

klassische Methoden zur Bewegungssteuerung nicht mehr akkurat arbeiten. Insbesondere

war es bisher nicht möglich, gleichzeitig Genauigkeit der Bewegungen und Flexibilität in

den Gelenken zu erzielen.

 Ein möglicher Ansatz für eine neue Steuerung besteht in der Anwendung von

biologisch inspirierten Lernalgorithmen. Diese versuchen, durch nur lokal gültige lineare

Funktionen die unbekannte Dynamik eines Roboters zu beschreiben. Der hier vorgestellte

und benutzte Algorithmus LWPR ist bestens dafür geeignet, eine solche Steuerung zu

lernen.

 Um den Lernalgorithmus zu trainieren, benutze ich einen Roboterarm, der sich

entlang vielgestaltiger Trajektorien bewegt. Durch die gleichzeitige Messung der

Armbewegung entsteht ein Datensatz, der die Bewegungsdynamik beschreibt. Ein

LWPR-Netzwerk kann aus diesen Daten das Dynamikmodell des Roboters lernen und

anschließend zur Generierung gewünschter Bewegungsbefehle eingesetzt werden. Im

Vergleich zu traditionellen Methoden erhöht dieses neue Verfahren die Genauigkeit der

Bewegung von menschenähnlichen Robotern um ein Vielfaches, ohne deren Flexibilität

einzuschränken. Ein Beispiel für die Auswertung einer Bewegung ist in Schaubild 9.1b

wiedergegeben. Dort ist die Trajektorie einer Figur-8 des Endeffektors aufgezeichnet.

Man kann deutlich sehen, daß die von LWPR generierte Bahn wesentlich näher an der

gewünschten Bahn liegt als die aus traditionellen Methoden resultierende.

a)

b)
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x Fingertip Position

z
F

in
ge

rt
ip

 P
os

iti
on

Figure Eight in Cartesian Space

Desired Figure Eight
LWPR

Analytical Model

Schaubild 9.1 a) Menschenähnlicher Roboter DB, b) Aufgezeichnete Trajektorie der Figur-8

 105

Eidesstattliche Erklärung

Erklärung

Hiermit erkläre ich, daß ich die vorliegende Arbeit selbständig und ohne Benutzung

anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich oder

sinngemäß aus veröffentlichten oder nicht veröffentlichten Schriften entnommen wurden,

sind als solche kenntlich gemacht.

Die Arbeit hat in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde

vorgelegen.

Berlin, den 12. 2. 2001

