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Foreword 
 

The basis for this thesis was laid in the academic year 1999/2000, which I spent as an 

exchange student at the University of Southern California (USC), Los Angeles, and as a 

guest at the CLMC laboratory. The Computational Learning and Motor Control 

laboratory (CLMC laboratory), headed by Dr. Stefan Schaal, is pursuing research in the 

border areas of neuroscience, computer science, statistics, and robotics (control theory). 

The focus of the laboratory is to study the principles of biological behavior. 

During the previous years, research has realized that even simple biological 

systems achieve by far superior sensory-motor competence compared to any artificial 

system today. On this basis, trying to understand and imitate these biological principles 

for artificial systems seems to be a promising approach. In this thesis, the motor control 

for a human-like robotic arm was learned based on a biologically plausible model. 

 During my time at the USC, I had the opportunity to participate in the research 

activities of the CLMC laboratory. I am very thankful for the discussions, for help, and 

for much interesting information that I experienced there. Especially Dr. Stefan Schaal 

and Dr. Sethu Vijayakumar have been patient and good-humored, and with their 

generosity in respect to equipment and other resources they have tremendously eased my 

start in the new environment. I sincerely hope that the time at the CLMC laboratory has 

generated a link that will last for much longer. The students belonging to the CLMC lab, 

Gaurav Tevatia and Biren Metha, also deserve my gratitude for discussing the first results 

and offering generous help on various topics. 

I am also particularly grateful to the Fulbright Commission for providing funds to 

stay for one year at an American university.  I could never have studied in the U.S. 

without their generous support. 

Prof. Dr. Hommel from the TU Berlin was the person who first brought me into 

contact with the field of robotics. I especially wish to thank him for the encouragement 

and the careful supervision of this thesis. In addition, he kindly offered advice on all 

questions of research, by no means limited to the scope of this thesis. 

Furthermore, I owe thanks to all the people who have read and commented on 

parts of earlier drafts and helped to improve the thesis. 
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1. Introduction 
 
1.1 Introducing the Area of Humanoid Robotics 

 
Humanoid Robotic Systems have gained an increasing significance in the research world 

within the last few years. Just five years ago, there were hardly any human-like robots in 

the world, and those available did not represent human properties at all. They neither 

looked nor behaved like human beings. Today, a variety of research groups around the 

world is starting to work on topics related to humanoid robots, and it is very likely that 

these robots will become important within the upcoming decades even beyond the realm 

of science. 

 Trying to determine what humanoid robots are, a first draft of a definition might 

read as follows: such robots are to be called humanoid robots which - to some extent - are 

able to live and interact with the everyday human world, and represent certain human 

features, like cognitive or acting abilities. The main strength of such humanoid robots lies 

in their ability to operate in surroundings that have been designed for humans in the first 

place. Humanoid robots can be imagined to become useful assistants for every-day life in 

areas as diverse as 

 

• Rescue and clearing of dangerous situations 

• Janitorial services, Housekeeping 

• Security services 

• Care-taking in hospitals, recreational facilities 

• Entertainment 

 

In all these fields, close human interaction is a core issue and can be regarded as the 

minimum common basis. The interaction happens on many different levels, from 

physical touch to gesture recognition and the processing of spoken language. On 

cognitive issues like the two last named, much research has been done in the past few 

years. One has, however, to keep in mind that also the physical appearance, e.g. 

smoothness of motions, is an important issue when designing humanoid robots.  
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1.2 Mechanical Design for Humanoid Robots 

 

Given the close interaction with humans and the potential working spaces listed above, 

some core requirements for the design of humanoid robots can be set out:  

First of all, humanoid robots need the ability to act in environments tailored for 

human needs and to operate devices originally designed for humans, e.g. when turning 

knobs. Therefore, they need the basic equipment, e.g. manipulator arms, and legs, which 

can perform independent tasks. Their movements have to be fast and accurate, and their 

grip fine and powerful. Their links have to be lightweight to reduce the influence of 

inertia. It is also desirable to have compliant joints, because only these will allow the 

robot to react flexibly to external stimuli. This might be the case when the robot is pushed 

aside during the performance of a task. A natural result of building robots according to 

these prerequisites is a high degree of redundancy in the whole system - an issue, which 

has to be handled appropriately. 

Moreover, humanoid robots have to be equipped with sensory and processing 

capabilities to interact with their environment, and they must be mobile within a wide 

range. In general, their mechanical design has to ensure that they can operate in normal 

living environments without extensive modifications of these surroundings. 

With these requirements, the mechanical design of humanoid robots differs 

substantially from that of today's robots, e.g. robots used for manufacturing. Such 

industrial robots are obviously designed according to very different needs: One of their 

main purposes is to repeat tasks with high accuracy. This requires stiff joints, solid links, 

and strong actuators. To allow simple control, they are designed to behave as linear as 

possible. 

The amount of compliance in the joints is a particularly important issue for 

biologically plausible motion and shall now be set out in some more detail. As has been 

said above, compliance in the joints is not only important for the smoothness of motion. 

It is above all the central prerequisite for the robot's ability to react appropriately to 

external stimuli. Such stimuli occur frequently in natural environments and it seems to be 

one of the most remarkable abilities of living organisms to react to such changes and 

adapt their own behavior and actions. Such changes might be local impediments while a 

task is performed, or pushes. Assume shaking hands with the robot: If the robot consists 
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of stiff joints, shaking hands cannot be performed well as one has to follow exactly the 

robot's desired motion. If the joints are compliant, much more variation in the movement 

is possible - a human partner can always force the robot to slightly adjust its own 

position. 

 On the mechanical level, motion in the joints can be achieved by different means. 

The two major approaches are electric motors combined with gearboxes, and hydraulic 

actuation. When using electric motors, gearboxes are a necessary complement, because 

only they provide sufficient torques for the robot's movements. Gearboxes, however, 

increase the stiffness in all joints by a considerable amount, since they do not offer back-

drive ability. Therefore, motors with gearboxes are unsuitable as actuators for humanoid 

robots. 

 Alternatively, robots can be equipped with hydraulics to generate high torques for 

the joints. When using hydraulics together with load sensors in every joint, the joints' 

behaviors can be anywhere between very stiff and very compliant, only depending on the 

controller. This means, the problem of compliance is moved to the level of software. 

 The only problem that remains is that any increase of compliance goes along with 

a decrease of accuracy. It is therefore highly important to find a good tradeoff between 

accuracy of motion and compliance in the joints. The quality of a controlling method can 

be directly correlated with its ability to find such a balance. 

 

 

1.3 Controlling Humanoid Robots 

 

Let us assume that all the mechanical desires described in chapter 1.2 can be fulfilled, 

and that the problems with stiff joints and heavy material used in the links can be solved. 

There still remains a major problem: By what means could such a robot be controlled? 

What kind of algorithms allows the robot to use the whole variety of motion that is 

usually associated with biological motion? For Example, how could it be accomplished 

that a humanoid robot gives way for external motion, such as pressure enforced by 

contact with humans? And given the desired compliance is achieved using lightweight 

material as described in chapter 1.2: How can we cope with the constraints that such 

materials add on the control algorithms? It is obvious that traditional algorithms, e.g. 
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those based on rigid body dynamics assumptions, are not well suited to control such 

mechanics. A fairly novel way to solve the question of controlling the robot is the 

application of learning approaches. The major advantage of a learned control strategy is 

that it adapts the control schema based on how the system behaves. This means that a 

well-suited learning algorithm will always stay accurate. 

 

 

1.4 Examples of Today's Humanoid Robots 

 

In this chapter, I would like to provide a short overview of today's humanoid robots, and 

present some examples. 

Probably the best-known robot was build by Honda during the last 10 years (e.g. 

Hirai, 1987, Hirai, Hirose, et al., 1998). Figure 1.1 shows a picture of the robot, which 

looks very much like a human. 

 

a)   b)   c)  

Figure 1.1 The Honda Robot P3: a) Frontal View b) Side View c) Technical Diagram 

 

The main goal of Honda's development was to create an autonomous robot that can move 

about in a human environment. The robot can walk, climb stairs, and manipulate simple 

objects. Every singe step, however, needs to be carefully programmed in advance. As 

soon as more-complex tasks arise, the robot has to be switched to tele-operation mode 

and becomes controlled by a human supervisor. Corresponding to that, the robot is highly 

stiff in all joints and the sensing capabilities are very limited. The size of stair-steps it has 

to climb, for example, has to match exactly the preprogrammed values. Very little visual 

feedback or other sensor-information is used to correct for unexpected changes in the 
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environment. This robot appears to be a human, but does not at all behave like a 

humanoid robot. 

The robot’s technical parameters are summarized in the following table: 

 

Weight:  130 kg 

Height:  160cm 

Width:   60cm 

Depth:   55,5cm 

Walking speed: 2.0 km / hour, ca. 25 minutes autonomous walking 

Operated on DC servo motors with gears 

Lift Capacity per Hand: 2kg 

Degrees of Freedom: 28 (Legs: 2x6, Arms: 2x7, Hands: 2x1) 

Table 1.1 Technical Parameters of the Honda Humanoid Robot 

 

Another example of a humanoid robot is COG, a robot torso developed at MIT. A picture 

of COG is shown in figure 1.2: 

 

 
Figure 1.2 COG, the Robot Torso developed at MIT 

 

COG is used to study the question how far a humanoid robot can become 'cognitive'; 

therefore, the focus of research is on the robot's interaction with people. The robot 

realizes what people want and acts properly, sometimes also following its own 'desires'. It 

is not designed for complicated motion. Though the robot's physical behavior is very 

much different from humans, experiments have shown that it can help to understand the 
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way people interact with each other. In the near future, the research objective of the 

development team is to achieve a robot's perception that is comparable to that of a six-

months-old baby. 

The third example for a humanoid robot is DB (Dynamic Brain), a robot at the 

ATR human resources research laboratories in Kyoto, Japan. DB is a hydraulically 

actuated anthropomorphic robot with legs, arms (with hand palms but without fingers), a 

jointed torso, and a head. It was designed and built by Sarcos, a company that usually 

builds tele-operated robots for entertainment purposes like movies and amusement parks. 

The robot offers a variety of motions; however, it is mounted on a pelvis, so free standing 

or walking experiments cannot be performed. The research performed at the ATR 

laboratories focuses on upper-body movement (e.g. arm motion).  

DB’s technical parameters are summarized in the following table: 

 

Weight:  80 kg 

Height:  185cm 

Width:   60cm 

Depth:   35cm 

Operated on hydraulic actuators with 650 psi pumps 

 25 linear actuators, 5 rotary actuators 

Degrees of Freedom: 30 (Legs: 2x3, Trunk: 3, Arms: 2x7, Neck: 3, Eyes: 2x2) 

Position and load sensors in every Degree of Freedom (except eyes) 

Video cameras providing stereo fovea and panoramic view 

Table 1.2 Technical Parameters of the DB robot 

 

Comparing DB's parameters with those of the Honda robot, one can easily recognize that 

DB represents human properties much better, especially in terms of the weight and size. 

Moreover, being actuated by hydraulic pressure, the joints can be controlled in a 

compliant way, as discussed in chapter 1.2. Figure 1.3 shows the robot. 
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a)   b)  

Figure 1.3 a) DB balancing a pole, b) DB reading 'Science' 

 

Other laboratories, where humanoid robots are developed and much research is done are 

the University of Tokyo, the Waseda University and at the Vanderbilt University. 

 

a)    b)  

Figure 1.4 a) Hadaly and b) Wabian from Waseda University 
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1.5 The Purpose of the Thesis 

 

The following study focuses on the control problem of compliant joints used in humanoid 

robots. As described in chapter 1.2, humanoid robots should be designed and operated 

with compliant joints. These joints allow biologically plausible motion, i.e. motion that is 

efficient, differentiated, energetically economic, and offers a wide variety of positions. In 

addition, it enables the robot to interact in an environment shared with humans. For 

example, it minimizes the risk of injuring people during interaction. Now the problem is 

that controlling compliant joints is extremely difficult when at the same time motion shall 

be accurate. Traditional linear high-gain control methods are not suitable for compliant 

control. And the model-based nonlinear control with rigid body dynamics models is often 

too inaccurate (see the further discussion in chapter 2.5). 

My thesis offers a new approach to control the motion of humanoid robots. This 

method is based on neural net learning techniques, and leads to superior motion 

performance compared to traditional approaches. My test case is learning the inverse 

dynamics model of a seven degree-of-freedom robot arm. This anthropomorphic robot 

arm was built from lightweight materials to resemble human arm dynamics. It is 

hydraulically actuated and has load sensors in each joint to allow compliance. 

 The learned inverse dynamics model can be used in a computed torque feed-

forward controller. In contrast to traditional feed-forward control, the new controller 

increases the accuracy of the arm motion to a significant degree without reducing its 

compliance. The results show that with the help of this new approach, natural motion of a 

human-like robot can be achieved with high accuracy. 

My research aims to help closing a gap that opens in the robot control framework. 

Today, broad research efforts are spend on algorithms to decide what a robot does in a 

given situation. But if a robot decided what to do, it may not know how to execute the 

desired motion accurately. Motion execution using compliant joints becomes more 

relevant as robots start to interact with people.  

 



 10

2. A brief Recapitulation of basic Robot Control 
 

2.1. Introduction to Robot Control 

 

For moving a manipulator (e.g. a robot arm) from a discrete state to another desired 

discrete state, an appropriate control command (e.g. current for an electric motor) has to 

be generated all the time during the robot’s motion. This is achieved by updating the 

previous command at discrete time steps, equivalent to the reciprocal value of the control 

loop’s frequency: f
1=∆Τ . The control loop usually runs at a high frequency to allow fast 

command update and accurate motion. 

For generating commands to achieve desired robot behavior, one has to 

distinguish three different phases: 1st planning a trajectory in end-effector space, 2nd 

translating the desired trajectory into joint space,1 and 3rd executing the planned 

trajectory. Concerning the first phase, let us assume throughout this thesis that a desired 

trajectory in end-effector space exists. E.g., a desired behavior can be relatively simple to 

plan like a point-to-point reaching. This can easily be planned using a direct line as 

desired line-of-motion and adding constraints, such as bell shaped velocity and 

acceleration profiles. When these constraints are known, it is possible to estimate all 

coefficients of an nth order polynomial that describes the desired fingertip position 

between start and end position. Typically, third or fifth order polynomials are used for 

planning. They allow 4 or 6 constraints in total. These constraints usually are given by 

the start- and end-position, and the start and end-velocity. The accelerations can be added 

if 6 unknowns are used. A path in end-effector space given by a set of via-points can be 

decomposed into several short paths from point np  to point 1+np . 

 The second part of robot control, transferring the desired trajectory from end-

effector space into joint space, is called the inverse kinematics problem. To solve this 

problem, a coordinate transformation from Cartesian space into joint space is needed. If 

we define the intrinsic coordinates of a manipulator as the n-dimensional vector nℜ∈è , 

and the position and orientation of the manipulator's end-effector as the m-dimensional 

                                                 
1 It is also possible to directly plan a trajectory in actuator space, without the need to translate it. However, 
this is hardly done in practice, as the joint space of a reasonable sized robot is huge and not simple to 
understand for humans. 
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vector mℜ∈x , the kinematics function can be written as )(èx f= . What we need here is 

the inverse relationship: )(1 xè −= f . 

There are two general approaches to solving inverse kinematics problems with 

optimization criteria: 1. One can use global methods to find an optimal path of  with 

respect to the entire trajectory, or use 2. local methods, which only compute an optimal 

change in ,è  ,è∆  for a small change in x, x∆ . In this case, one would have to integrate 

è∆  to generate the entire joint space trajectory. An example of a local method is 

Resolved Motion Rate Control (e.g. Whitney, 1969). It uses the Jacobian J of the forward 

kinematics to describe a change of the end-effector’s position by èèJx && )(= . This 

equation can be solved for &  by taking the inverse of J, if it is square, i.e. mn = , and 

non-singular. For redundant manipulators (hence for almost all robots), solutions to the 

inverse equation are usually non-unique (Craig, J. 1986), so that additional optimization 

criteria have to be introduced. Alternatively, other methods can be used to invert J, like 

the pseudo-inverse method (e.g. Liegeois, 1977), or the Extended Jacobian Method 

(Baillieul, J., 1985). There exists a variety of literature on inverse kinematics.2 

The robot used for research at the CLMC-lab consists of seven joints, hence 7 

degrees of freedom (DOFs). Our motion algorithms usually calculate a single desired 

end-effector position in Cartesian space (with no particular constraints on the orientation 

of the fingertip). This explains our need for an inverse dynamics mapping from 

73 ℜ→ℜ  (which must be ill-defined, as it maps from lower into higher space). My 

thesis, however, does not concentrate on the inverse kinematics problem. It will only give 

an idea of how the learning algorithm LWPR can be applied for solving inverse 

kinematics in the conclusion in chapter 8.2. 

The remaining problem, executing the desired trajectory in joint space, will be 

described in more detail in the following section. One of its subcomponents, the Inverse 

Dynamics Problem, with a learning approach to solve this problem, will be discussed 

carefully in the thesis. Therefore, let us assume that a planned desired trajectory in joint 

space is available at any time. 

 

                                                 
2 E.g. Schwinn, W., 1992, Rieseler, H., 1992, Kovács, P., 1993 
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2.2. Controlling the Execution of Desired Trajectories 

 

The following chapter presents a simple controlling method for joint position's during 

motion. Additional components are added step by step to increase the accuracy: 

 

Controller

Open Loop Control Diagram

Robot
u è

~
des

~
è

Controller

Open Loop Control Diagram

Robot
u è

~
des

~
è

 
Figure 2.1 Open Loop Control 

 

)áè(u tf ,,
~

des=   (eq. 2.1) 

 

As can be seen in figure 2.1 and in the according equation, this is a very simple model, 

which controls the robot ‘in a blind way’. The controller generates commands (u) using a 

function )(of  based on a desired state ( des
~
è ),3 constant parameters of the system ( ) and 

the time (t). The robot changes its state to a new state ( è
~ ) based on the control command 

it receives. The controller sends a command to the system without monitoring how the 

system responds. There is no error correction because the controller does not know what 

the system really does. To solve this problem, we can include a feedback mechanism: 

 

Controller

Closed Loop Control Diagram
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Figure 2.2 Closed Loop Control 

 

)t
~

,
~

( des á,,èèu f=   (eq. 2.2) 

 

                                                 

3 Throughout this chapter, è
~

denotes the state of a system, given by its position, velocity, and acceleration: 

),,(
~

èèèè &&&= . 
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Figure 2.2 illustrates that the controller is now enabled to correct errors, because it knows 

about the state of the system and can verify, whether a previously sent command has 

moved the robot into the expected state. If the result was not satisfactory, the controller 

can change the subsequent command u+1 appropriately.  
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Figure 2.3 Negative Feedback Control 

 

)t
~~

( desfb á,,èèu −= f   (eq. 2.3) 

 

A special case of closed loop control is negative feedback control, illustrated in figure 

2.3. The controller does not know the desired state of the robot, but only the difference 

between the desired and the real state ( èè
~~

des − ). This difference can be interpreted as an 

error signal of the robot’s state. Generating appropriate commands (ufb) to minimize the 

input (and thus the error signal) will lead to a control solution. The negative feedback 

approach will become infinitesimal accurately when using proper command generation 

functions )(fb of . The major disadvantage of the negative feedback control is the time 

delay, which causes a significant loss of accuracy in the robot's movements. This control 

strategy is further explained in chapter 2.3. in the context of PID-controllers. To further 

minimize the error, we can add a feed-forward controller: 
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Figure 2.4 Negative Feedback and Feed-forward Control 

 

)t,,
~

()t,,
~~

( desffdesfb áèáèèu ff +−=   (eq. 2.4) 

 

In figure 2.4, a computed-torque feed-forward controller is introduced to reduce the error 

and thus improve the robot's performance. The feed-forward controller uses a dynamics 

model of the robot. It is now able to predict the actuator commands, which correspond to 

a desired motion. Intuitively, the feed-forward controller moves the robot towards the 

desired state in big steps and as accurately as possible. The dynamics model used in 

)(ff of  to compute the feed-forward commands (uff) will never be absolutely accurate: It 

leaves a remaining error to be corrected by the feedback controller. The feed-forward 

controller operates as a set-top-box, which generates commands (uff) independently of the 

negative feedback controller. The final command sent to the robot thus is the addition of 

both commands, feed-forward and negative feedback: fffb uuu += . 

We will have a closer look at both, the negative feedback and the feed-forward 

control functions, in the following two chapters. 

 

 

2.3. The Feedback Control Function 

 

PID-controllers are widely used as control policy in negative feedback controllers. These 

controllers correct errors in position and velocity. They are usually based on a linear 

control function. The name PID-controller is derived from: 
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• Proportional Control ('Position Error') 

• Integral Control ('Steady State Error') 

• Derivative Control ('Damping') 

 

The Control Function fbf  of a PID-Controller is given by 

∫ −⋅+−⋅+−⋅= dtè)(èk)èè(kè)(èku IDP desdesdesfb
&&   (eq. 2.5) 

with 

ufb:  the (n×1) vector of computed neg.-feedback commands 

kP, kD, kI: the (n×1) gain vectors for P-, D-, and I–control 

èè −des : the (n×1) vector of errors in positions 

&& −des : the (n×1) vector of errors in velocities 

 

The term )( des èè −  in equation 2.5 will become non-zero, whenever the robot is in a 

position )(è  that differs from the desired position )( desè . This position error )( des èè −  

multiplied by a fixed gain (kP) yields in an appropriate command to compensate for that 

error, given that the gain is properly adjusted: Too small gains will cause the system to 

only slowly correct for errors; too high gains may lead to overcompensation (and 

ultimately to unstable systems). 

 The second term, )( des èè && −  in equation 2.5, has the same effect on the velocities: 

whenever a velocity differs from the desired velocity, a correction command will be 

calculated by the difference multiplied with a gain kD. This part of the feedback 

controller introduces a damping term. 

 The integral part additionally corrects very small errors once a steady state is 

reached. Those errors might be introduced by external forces, e.g. gravity. To understand 

the term, assume the robot has reached its target, but gravity makes it drop slightly under 

the desired position. The first term )( des èè −  in equation 2.1 will provide compensation, 

but only proportional to the distance-error. If this error is small, or the arm is heavy, the 

generated command may not succeed in moving the arm upwards. Ultimately, there will 

be an equilibrium state below the desired target, when the correction of the PD-controller 

compensates for gravity. The arm will not move upwards to the desired target anymore. 
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 The integral controller will trace and accumulate the error. The integral will only 

stop adding to the accumulation, when )( des èè −  is zero, i.e. when the robot is exactly at 

the target position. This means, it will continue until the accumulation can achieve a 

compensation for the position offset (considering the gain kI). In case the robot 

overshoots, the accumulation will decrease, as )( des èè −  changes signs. Choosing an 

appropriate gain kI, the correction introduced by the integral part of equation 2.5 will 

keep the robot exactly at the desired position. 

 Finding a gain kI is probably the most difficult task in this process. A poor choice 

can easily lead to an unstable system with catastrophic results. Integral controllers 

compensate for steady states only, but this study concentrates on robot arms in motion. 

Therefore, integral controllers have not been used as part of the negative feedback 

control. All feedback controllers were modeled by a proportional and a derivative part 

only. 

Looking for appropriate gains kP and kD to design a PD-controller as shown 

above, one faces a tradeoff between stiff and accurate systems: 

 

• Assume high gains:4 Whenever the desired state differs from the robot's state, the 

command sent for compensation is relatively big. This will ensure fast 

compensation. However, if you need the robot to give in, e.g. due to a push or 

when hitting an object, a high gain controller will exert a high force to 

compensate for this ‘position-error’. 

• Assume low gains: The position error is multiplied by a smaller number. Thus, 

the command send to the robot to correct the error is significantly smaller. Hence, 

the robot is much more flexible when it hits an object or is being pushed aside. On 

the other hand, it also needs longer to correct for ‘real’ position errors. 

 

Especially in the context of Humanoid Robotics, this tradeoff is very difficult. Humanoid 

robots are supposed to work in close human interaction and may not hurt anyone in 

interacting; but at the same time, they need to be capable of fast and accurate motion. The 

                                                 
4 High gains can also result in instable systems, as the robot may increase the absolute distance to the 
desired target with every discrete step. Let us assume that the gains do not exceed the maximal value that 
guarantees safe operation. 
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approach usually taken today is to use low gain feedback controllers and add a feed-

forward path to enhance performance. I will explain this mechanism in more detail in the 

following chapters. 

 

 

2.4. The Feed-forward Control Function 

 

As seen in chapter 2.2, the feed-forward control function uses the dynamics of a system 

to generate feed-forward commands. Then, these commands are used to move the system 

quickly along a desired trajectory: 

 

)t
~

( desffff á,,èu f= .      (eq. 2.7) 

 

The dynamics of the system is hidden in the parameter vector á . 

In general, the dynamics model provides a description of the relationship between 

the joint actuator torques and the motion on the structure. It relates the vectors of 

positions ( ), velocities ( & ), and accelerations ( && ) to the torque vector ( ). This last 

vector is necessary to accomplish the acceleration in order to reach the desired state. 

The direct dynamics problem assumes a given initial state of the system (position, 

and velocity) and an incoming stream of joint torques. It will then predict the acceleration 

in all joints for times 0tt > . Updates of velocities and positions can be calculated using 

integration techniques over the accelerations. The direct dynamics is a useful model for 

simulations, as it allows predictions of the physical system’s motion, when the exerted 

joint torques are known. 

In contrast, the inverse dynamics model predicts the joint torques needed to 

generate a specified motion. Solving the inverse dynamics problem will allow the 

execution of a desired trajectory, once the trajectory is specified in terms of positions, 

velocities, and accelerations in joint space. Usually, this is a result of an inverse 

kinematics process (see chapter 2.1). Simulating the trajectory before executing the 

motion can be used to verify the trajectory's feasibility: e.g., torques may not exceed a 

maximal value, nor may they change abruptly. 



 18

Using the inverse dynamics model for feed-forward command predictions leads to 

improved performance of the controller, compared to a ‘simple’ feedback controller. This 

combined controller will always move the robot close to the correct position using feed-

forward commands. Then, the ‘slowly adjusting' feedback part only has to compensate 

for small position errors. Hence, the overall performance will increase. If we had a 

perfect robot and knew the dynamics model, no feedback control was necessary at all. 

But as our robot is not perfect, we do need to find the inverse dynamics model. Thus, the 

question of how to estimate the dynamics model remains. 

 

 

2.5. Estimating Dynamics using Rigid Body Assumptions 

 

The Rigid Body Dynamics assumptions5 are frequently used to estimate the dynamics of 

a robot system6. The assumptions include, that the system to be modeled consists of 

single stiff bodies. These rigid bodies are assumed to behave like perfect 'single link 

robots', being connected to form a robot with multiple degrees of freedom. In addition, 

the link’s motion is not supposed to have influence on any other of the links and joints. 

Only the link's weight and its position are modeled. The joints connecting two links are 

not allowed to have friction or position inaccuracies. The dynamics of the system is 

therefore described by the shape and weight of the links, not by their joint behavior. 

The general structure of rigid body dynamics, also called the 'Joint space dynamic model', 

can be estimated in two different ways:7 

The Lagrange formulation offers the system's dynamics in a closed form based on 

the Lagrangian of the systems’ total energy. 

The Newton-Euler formulation allows describing the model in a recursive form by 

forcing a torque balance on every link. This is computationally more efficient. However, 

parameter estimation for unknown systems is more difficult compared to a closed form 

model. For this reason, we will have a closer look at the Lagrangian formula of a 

mechanical system. It is defined as: 

                                                 
5 E.g. Sciavicco & Siciliano, 2000 or An, Atkeson & Hollerbach, 1988 
6 E.g. Sciavicco & Siciliano, 2000 or Pfeiffer & Reithmeier, 1987 
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L = T – U,       (eq. 2.8) 

 

where T and U denote the total kinetic energy and, respectively, the total potential energy 

of the system. The Lagrange’s Equation is expressed by 

 

i
ii èè

ξ=
∂
∂

−
∂
∂ LL
&dt

d
, n1,...,i =     (eq. 2.9) 

 

where n denotes the number of joints in the robot and iξ  the generalized force associated 

with the coordinate iè . The forces include all non-conservative forces, such as joint 

actuator torques, the joint friction torques, and the joint torques induced by end-effector 

forces at the contact with the environment. As we have seen earlier, equation 2.5 

establishes the relation between generalized forces (i.e. the joint torques) and joint 

positions, velocities and acceleration. Consequently, it is possible to derive the dynamic 

model, once the kinetic and potential energy of all links are known. For details of the 

computation of these energies, please refer to e.g. Sciavicco & Siciliano, 2000. The 

general formula of the equation of motion derived by the Lagrangian method is  

 

ôèGèèèCèèB =+⋅+⋅ )(),()( &&&&     (eq. 2.10) 

 

with: 

B(n × n):  a positive definite inertia matrix, 

 only depending on the robot’s current position 

C(n × n):  a matrix containing the centripetal and Coriolis forces, 

 depending on the robot’s current position and its current velocities 

G(n × 1):  a vector of gravitational forces, 

 only depending on the robot’s current position 

(n × 1): a vector of the active torques at the joints 1, …, n 

                                                                                                                                                 
7 The thesis will only provide a brief overview on the Lagrange method; for further information, please 
refer e.g. Sciavicco & Siciliano, 2000 or Pfeiffer & Reithmeier, 1987. 
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A physical interpretation of the parameters in equation 2.10 gives an intuitive 

understanding of the formula: 

 

• The coefficients bjj (i.e. the elements on the diagonal of the matrix B) represent 

the moment of inertia at joint axis j in the current manipulator configuration, 

when all other joints are blocked. The coefficients bij with ji ≠  account for the 

effects of acceleration from joint i on joint j. 

• The coefficients in the C matrix represent the influence that one joint has on 

another, as well as the Coriolis effect induced on a joint by the velocities of two 

other joints. 

• The terms gi (components of the vector G) represent the momentum generated at 

the joint i axis of the manipulator in the current configuration, due to gravity. 

 

Some of these parameters in the matrices can be simplified during the design process of 

the robot, e.g. by using massive and stiff materials for the links. Another simplification 

would be the use of gearboxes with high transmission ratios in the joints: in this case, all 

the coefficients in the G and C matrices can be neglected, and the B matrix becomes 

almost diagonal. This means, that every joint has influence on itself only. However, the 

objective of this work is to find a model for a humanoid robot. Recalling the constraints 

on humanoid robots from chapter 1.2 (e.g. compliant, lightweight), there are not many 

possibilities for simplification. Gearboxes, e.g., may not be used, as the robot will 

become too stiff; massive materials will make the robot unbearably heavy. 

 No matter how simple the robot setup is designed, there still remains the problem 

of estimating appropriate coefficients in B, G, and C. Modern CAD systems provide 

parameter estimation based on the design data of real systems. But this estimation is not 

simple, and the results are poor most of the time. Usually, the process includes idealized 

assumptions of the system’s mechanics and uncertainties in the manufacturing process. In 

addition, some properties of the links change during the robot’s lifetime because of 

material wear. So this does not seem to be a useful tool for such complex designs as such 

of humanoid robots.  
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An alternative approach could be to estimate the parameters by using the running system 

and collecting data from it. One advantage of this approach is that the matrices B, G, and 

C offer linearity in the dynamic equations. This can easily be verified during the 

derivation of the energies when using the Lagrange approach, e.g. Sciavicco & Siciliano, 

2000. This is a remarkable property, because it also means that linear methods can be 

used to estimate the parameters, e.g. least squares error measurement. 

Knowing that linear parameter estimation is possible, one can impose a suitable 

motion on the robot and measure the appropriate quantities for estimation: 

 

• the joint positions  

• the joint velocities &  

• the joint accelerations è&&  

• the joint torques ô  

 

Joint positions and velocities can easily be measured with appropriate sensors. For joint 

accelerations, however, no such sensors exist. Hence, numerical differentiation 

techniques have to be used to estimate the acceleration, and these cause non-negligible 

errors. In addition, most robots are equipped only with joint position sensors, which 

means that already velocities have to be differentiated. To obtain information about the 

acceleration, the error-containing velocities have to be differentiated again. The result 

may be that the overall quality of the sampled data is very low. A similar problem arises 

for the joint torques: hardly any robot is equipped with highly accurate torque sensors. In 

case of electrical actuation, a current measurement can be used as a substitute. 

Alternatively, a wrist force measurement also provides torque information. 

 Sampling data that represents the dynamics of motion in a significant area of the 

robot's workspace requires a variety of different trajectories to be imposed on the robot. 

Sampling data from circular motion, for example, can estimate good parameters for 

further circular motion, but it will not capture the essentials of point-to-point motion. The 

ideal procedure would be to sample the entire possible robot’s motion and to us it for the 

parameter calculation. But this does of course exceed a realistic set of data in terms of 

time and size. 
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For the design of trajectories, special care has to be taken: If any of the robot’s physical 

limits are violated (e.g. joint limits, or current limits for actuators), the measurements 

contain invalid data and thus false parameters are calculated. Usually, an iterative process 

returns the best results, by increasing the parameters' accuracy in every iteration. 

 Coming back to the equation 2.10, we can now add some summarizing remarks: it 

is possible to estimate the unknown parameters hidden in the B, G, and C matrices, by 

using the rigid body assumptions and running trajectories to collect sensor information. 

With these parameters, the general form of the equation of motion can be used to 

calculate the required torques ( ) to accomplish a desired motion specified in positions 

( ), velocities ( & ), and accelerations ( && ): 

 

GèèèCèèB =+⋅+⋅ )(),()( &&&&     (same as eq. 2.10) 

 

 

2.6. Recapitulation 

 

In the second chapter, we have introduced the basic problems of robot control: trajectory 

planning, inverse kinematics. In this thesis, I concentrate on the last issue, trajectory 

execution. In order to execute a trajectory specified in desè , desè& , and desè&& , I have 

presented an error-correcting PID-controller in chapter 2.3. The concept of a feed-

forward controller based on the system's dynamics is introduced in chapter 2.4. to 

improve the performance. The Lagrange concept for estimating the dynamics model of 

the system, is briefly described in chapter 2.5, resulting in the general formula given in 

equation 2.10. 

 It is now possible to merge the PD- and the feed-forward controller into one single 

equation, which controls the robot’s behavior (as illustrated in figure 2.4). The proper 

control function in joint space is to be found: 

 

)()()()()( desdesdesdesdesdesdesdes èèkèèkèGèèèCèèBu DP
&&&&&& −+−++⋅+⋅= ,  (eq. 2.11) 

with 

u denoting the generated control command. 
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As can be seen, the first three terms come from the inverse dynamics, the last two from 

the PD-controller. 

This strategy makes the control of the robot much faster and more accurate 

compared to only PID control. There is, however, a big problem: the inverse dynamics 

has to be computed online all the time. This expensive computation might cause 

problems in high frequent servo loops. Furthermore, higher derivatives of sensor readings 

are required to calculate velocities and accelerations accurately. To obtain good values 

for the derivations, the sensor readings have to be filtered. But high frequent servo loops 

are required for filtering. So on one hand, low frequent servo loops are needed because of 

the computational complexity, but on the other hand, high frequent servo loops are 

required by the filter. Given these constraints, the servo loop frequency might become a 

critical parameter. Thirdly, the formulae are based on the assumption that perfect 

knowledge of the dynamics model exists. In reality this is, of course, never the case. All 

these limitations will cause unpredictable errors in real systems’ motion. Still, the control 

function is extensively used it and achieves good results. 

A further aspect to point out is the fact that the control function shown in equation 

2.11 uses a hybrid centralized-decentralized control strategy. The PID controller is 

decentralized, i.e. it works independently on all joints: Thus, the error-correction 

components of the command (u) are calculated independently of the other joint-states. In 

contrast, the feed-forward component of the command considers all other joint-states. 

The later approach needs to be taken, when coupling terms between joints cannot be 

neglected. In our case and for our robot system, an appropriate solution is, to have one 

central feedback controller and n independent PID-controller, one for every joint. A 

decentralized feed forward controller cannot work properly, as the robot runs on low 

gains and has high coupling influences between the joints. 

 

 

2.7. Control of Humanoid Robots 

 

In this chapter, the previous discussion about control strategies will be applied to 

humanoid robots. These robots have to be lightweight, have compliant joints, and use low 
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gain controllers to maintain the joints' compliance.8 The PID-controller discussion in the 

previous chapters can directly be transferred to humanoid robots. The Rigid Body 

Dynamics Framework, however, is not well suited for humanoid robots, as the 

assumptions are not met. The rigid body model assumes stiff links between the joints no 

other non-linearities than those modeled by the Newton-Euler equations. Traditional 

industrial robots are build as much as possible to match the rigid body dynamics 

framework. Humanoid robots, on the other hand, are built to mimic human dexterity. 

Light-weight design and compliant control in a human-like arrangement of the degrees-

of-freedom introduce non-linearities that are not captured by the rigid body dynamics. 

All these reasons reveal, that rigid body dynamics, and hence the above-described 

model for generating feed-forward commands, is not an appropriate choice for humanoid 

robots. 

The underlying assumption of my approach is that learning the feed-forward 

control function can be done and will result in superior performance compared to 

parameter estimation for rigid body dynamics. In this study, I concentrate on finding an 

alternative way to calculate feed-forward commands for performing a desired motion. 

This means, mathematically speaking, that the overall goal must be to exchange the first 

three terms of equation 2.11 by 'something else' that will perform better. Ultimately, the 

control function 

 

)()()()()( desdesdesdesdesdesdesdes èèkèèkèGèèèCèèBu DP
&&&&&& −+−++⋅+⋅= ,   

(same as eq. 2.11) 

 

becomes 

 

=u Something that replaces the Analytical Inverse Dynamics

 )()( desdes èèkèèk DP
&& −+−+  

                                                 
8 Please refer to chapter 1 
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3. Introduction to Robot Learning 

 

3.1 General Remarks on Robot Learning 

 

Robot learning can be seen as a subclass of learning control, which again is a subclass of 

general function learning. The main idea is to acquire a sensory-motor control strategy 

for a particular motion task. Usually, this is done by trial-and-error approaches; hence, 

the robot is allowed to fail during training. During an initialization stage, for example 

errors in the position of the end-effector may be tolerated if the robot enhances its 

performance while learning. 

 Referring to the discussion in chapter 2.1, there are three separate control 

problems that can be learned in terms of motor control: trajectory planning, trajectory 

transformation (e.g. from Cartesian to joint space, the inverse kinematics problem) and 

motion execution. It is advantageous to learn these problems independently, opposed to 

learning one single relation between desired behavior and motor commands. If only one 

mapping was learned, every small change in the prerequisites of the desired task requires 

a new model and complete relearning. As an example, a robot carrying an object will also 

have to relearn trajectory planning (instead of only trajectory execution), if the whole 

mapping was melted in one big function. In the case of separately learned modules, an 

unknown desired trajectory might be composed of pieces that the execution module has 

learned before during other tasks. Thus, only the planning module has to re-learn. These 

simple examples highlight the advantages of learning different stages of control with 

different modules. 

In this thesis, I will concentrate on the execution of previously planned motion. 

Hence, I will focus on topics in learning that are relevant for motor control. A brief 

introduction on learning inverse kinematics is provided in the conclusion, chapter 8.2. 

A closer look at the concept of the PID-controller (equation 2.5) reveals, that there 

are no open parameters or uncertainties to be learned: The only unknown parameters are 

the gains kP, kD, and kI, and these gains can be used as a tradeoff parameter between the 

system’s stiffness and its accuracy in keeping a position. Usually, the range of the gain is 

determined by the desired task, e.g. humanoid robots will operate on very low gains. 
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In contrast to the PID-controller, the feed-forward controller (equation 2.7), that has so 

far been approximated using rigid body dynamics (equation 2.10), needs to be improved. 

The following diagram (figure 3.1) provides an intuitive view of the way a learning 

system will interact with the control system presented so far: 
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Figure 3.1 Learning the Feed-forward Control Policy 

 

The diagram shows a learning system that adjusts the feed-forward controller based on 

what it observes the system doing. The learning system will retrieve data samples in 

pairs, consisting of a command and the robot's state after executing this command. These 

pairs are given by data vectors ( èu
~

, ). The learning system will try to draw general 

conclusions from the data it has experienced. 

Unfortunately, a core question remains: what is it that should be adjusted by the 

learning system? As described in 2.7, the rigid body dynamics assumptions will not hold 

for humanoid robots. Therefore, estimating the parameters hidden in the B, G, and C 

matrices (equation 2.10) will not provide an adequate solution. Very generally speaking, 

the learning system is searching a function that will map the state vector of a system ( ~ ) 

to a control vector (u) - and this is exactly what is done by the feed-forward controller: 

 

)t
~

( desffff á,,èu f= ,      (eq. 3.1, same as eq. 2.7) 

 

Using a general learning approach (e.g. on the basis of neural net techniques), not only 

the parameters (á ) of given function will be learned, but also the function )(ff of  itself. In 
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the beginning of the procedure, the knowledge about the function to be approximated is 

very limited. In the case of humanoid robots, hardly anything is known about the inverse 

dynamics model. So, learning can be seen as approximating unknown functions by 

averaging over given samples of input/output relations. The only assumption I use about 

the function to be learned is that it holds the standard form: 

 

)( += xfy ,       (eq. 3.2) 

 

where nℜ∈x  is an n-dimensional input vector, the noise term9  has mean zero, 0}å{ =E , 

and the output is one-dimensional.10 This assumption implies that the relation between 

input and output can be expressed by a function at all. The local telephone book, for 

example, contains a huge amount of data; nevertheless, any learning approach will fail, as 

there is no way to generalize from names to numbers. The only chance to learn it is to 

store every piece of information and retrieve it when needed. 

 

 

3.2 The Bias / Variance Tradeoff 

 

Data samples that are used to learn are most likely contaminated with noise, so no single 

data measured from the system can be assumed to be absolutely correct. Still, the 

function has to be estimated only based on the data presented. Further knowledge about 

the function is not available, e.g. the order of a polynomial or the fact that the function is 

a polynomial at all. This introduces a well-known problem in learning, the 'bias-variance 

tradeoff':11 How much shall an algorithm generalize, i.e. smooth between data samples, or 

assume the data seen is exact. A visualization of this problem is given in figure 3.2: 

 

                                                 
9 Modeling e.g. sensor noise 
10 Multi-dimensional output can be learned by learning multiple one-dimensional outputs independently of 
each other. 
11 Geman, Bienenstock, & Doursat, 1992 
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Figure 3.2 Bias / Variance Tradeoff for Sampled Data 

 

The diamonds represent noisy data samples from sensor readings. The solid line shows a 

spline interpolation, and it is easy to see that it definitely over-fits the data. It is not 

difficult to imagine that new sensor readings will only accidentally fall on the line. And it 

becomes clear that a spline interpolation will not result in a perfect prediction of 

unknown data. The dotted line, however, representing a third order polynomial may over-

smooth the data. 

The problem may be solved by using distinct sets of data for training and 

validation. If the performance of the regression is evaluated from previously unknown 

data, i.e. the test-set, then the regression has to generalize in order to match the 'new' data 

properly. Otherwise, if the algorithm learned every single training information only, it 

will fail to predict the test set, as it has never seen the test data before. Thus, the 

algorithm has to capture the essentials of the function to achieve good predictions for the 

test set. Evaluating the approximation's performance on unseen data is a widely used 

method in unsupervised learning.12 

 In order to evaluate the regression’s performance, a cost function must be 

introduced. This function, usually a squared error criterion, has to be minimized to 

achieve best performance: 

 

                                                 
12 The term 'unsupervised learning' refers to a learning system without a teacher providing feedback on how 
to increase performance. 
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where ( iides, yy − ) is a measure of the displacement between the prediction at a given 

query point i ( iy ), compared to the real function value of point i ( ides,y ). N denotes the 

total number of test data samples available. Squaring the error will additionally penalize 

big errors. The underlying idea is that it is worse to have one big error compared to 

having few smaller errors. The cost function represents a measure of the learning 

system’s overall approximation quality. Minimizing the cost function implies that there 

are parameters in the learning model that can be adjusted during learning. This 

adjustment can happen in a variety of ways, with many possible functions in the learning 

system. Only two examples are given by polynomials with adjustable coefficients, or by 

neural nets with adjustable connection strength between single neurons. 

 

 

3.3 Global versus Local Learning Strategies 

 

A major differentiation in learning models is the distinction between local and global 

approaches. Global approaches use activation functions that are not limited to a finite 

domain in the input space x. Such can be polynomials, or, in the case of neural nets, a 

sigmoidal activation function. Let us take a more detailed look at the second, which is 

given by 

 

xe
y α−+

=
1

1
       (eq. 3.4) 

 

with α  being a parameter to adjust the slope of the activation function. Once a threshold 

is passed ( 0thres ≈x  in equation 3.4), the activation function will return values 

significantly different from zero. Also, polynomials are valid for all the input range of x. 

In contrast, local learning uses activation functions that are non-zero in a restricted 

domain only, like Gaussian activations given by 
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2xey σ−=        (eq. 3.5) 

 

where σ  denotes the variance of the Gaussian. Figure 3.3 shows the graphs of these two 

functions that are mainly used as activation functions in neural nets. 

 

a)

      

b)

 
Figure 3.3 Sigmoidal (a) and Gaussian (b) Activation Function 

 

The parameter estimation for rigid body dynamics from chapter 2.5 can be seen as a 

global function approximation. The equation of motion (equation 2.10) is valid for the 

whole input range and thus, all parameters in B, C, and G have to be valid for the whole 

range. 

From a theoretical point of view, both approaches (local and global learning) are 

capable of approximating arbitrarily complex functions. However, the learning speed, the 

time for convergence and their applicability towards high dimensional input data differs a 

lot. This is especially important for the type of input data we expect from robotics. 

 A closer look at global function approximation will help to understand the 

difference: Imagine that data from a limited range is used to train the learning algorithm, 

like a robot performing a certain task. The approximation will become highly accurate in 

this area. If however, during further training only data from another input range is 

learned, the approximation will focus on the new range only and re-adjust the parameters 

appropriately for this range. This means it will 'forget' what it has been trained before: 

The approximation will become significantly worse in the old training range compared to 

how it has performed before. This effect of forgetting what has been learned before is 

termed 'Negative Interference' and will be discussed in chapter 4.2.2. The only solution to 

this problem is to store all data and re-learn everything once new input ranges come into 
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play. But storing all data from real robots’ motion is unfeasible due to the huge amount of 

information.  

 Another important aspect of global learning is the adjustment of meta-parameters. 

These parameters have to be set before learning begins and they remain unchanged while 

learning. Examples for these meta-parameters are the order of a polynomial or the 

number of neurons in a neural net. If these meta-parameters turn out to be inappropriately 

adjusted, they can only be changed when re-starting the whole learning process. A meta-

parameter modification has significant influence on the overall performance and will 

make it necessary to re-learn all parameters.  

 In contrast to global learning, local approaches use activation functions that are 

non-zero in a limited range of the input dimension only, as shown in figure 3.3b. An 

intuitive approach to understand local learning starts with the assumption that a complex 

function is represented by small, simple local patches, e.g. constants or low order 

polynomials. The size of a local patch is determined by its activation function. Not only 

the activation function, but also parameters like the position and the approximation 

function of a patch have to be adjusted. Additionally, the overall number of patches used 

to achieve accurate function representation throughout the input domain has to be 

estimated. A significant difference of local learning compared to global learning 

techniques lies in their ability to learn data from different input domains sequentially, and 

without suffering from negative interference. Intuitively, data from new domains will 

activate only those local patches that 'live' close to the new domain, and, thus, they will 

update only these patches. The patches from previously learned domains remain 

unchanged. 

 

 

3.4 The Curse of Dimensionality 

 

Another problem which local learning approaches face copes with the fact that the 

number of patches needed for good approximation explodes in high dimensional spaces. 

This problem is called the 'Curse of Dimensionality' and can be illustrated by a simple 

example: 
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Assume that every input dimension shall be divided in only 10 local regions. This means 

there are 10 total patches for one input dimension, 10010 2 =  patches for two dimensions, 

1000103 =  patches for three dimensions; up to n10  patches for n input dimensions. For 

only 12 input dimensions, we get 1210  which roughly compares to the number of neurons 

in the human brain - and, as all local patches have to be checked for activity, an output 

prediction can definitely not be computed in reasonable time. As a solution, one might 

increase the size of the patches, i.e. use fewer patches along every input dimension. But 

increasing the size does not seem to be a very satisfying solution, as this will also 

decrease the accuracy of the prediction.  

 Facing the problem from the other side will lead to better results: Collecting data 

samples at 100Hz will roughly need 300 years of continuous, non-repetitive data to 

obtain 1210  data points. No robot will collect motion trajectories for 300 years to explore 

its workspace! This observation leads to the assumption that real motion data is locally 

distributed in very few dimensions, even if it is globally high dimensional.13 Thus, the 

implementation of local dimensionality reduction techniques can help to learn efficiently 

in high dimensional spaces. 

 

 

3.5 Online-Learning 

 

Another problem to keep in mind is how the stream of incoming data is processed. While 

the robot is in motion, a huge stream of data arrives, summing up to several KB every 

second. This data has to be used for learning; either it is stored and processed later in total 

(called 'batch learning') or it is processed online and discarded afterwards (i.e. it is 

learned immediately when new data arrives). The second possibility of data processing is 

by far superior. In the first, data will sum up to huge sets. They will have to be stored, 

and learning on such huge sets of data needs much time. Online learning in the contrary 

makes it possible to continue learning once the robot is performing its desired task, and to 

continuously improve the learned function as the robot moves. This, of course, implies 

                                                 
13 Explaining the learning algorithm in chapter 4 will raise this question again and provides further 
examples. 
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real-rime learning, meaning that the data has to be used for learning as soon as new data 

arrives. If the data is not processed within a fixed time, a continuously increasing pile of 

incoming data rises. This pile cannot be processed in total, until the robot finishes its 

motion. To process data in real time, one has to force constraints on the computational 

complexity of the learning approach. In our case, local linear models (i.e. with only few 

adjustable parameters) will lead to a computational complexity that is online solvable for 

all seven joints with sensor readings at a frequency of 50Hz. 

 An additional advantage of using online learning is that it offers the possibility to 

increasing the quality of the learned function continually. This is especially valuable once 

the robot is performing its desired task and therefore moving close to the desired 

trajectory. Repetitive motion close to the desired trajectory will generate data in the 

neighborhood of the desired motion, and the learning approach can focus on 

improvements in this region. 

Continuous learning will cure another problem that arises due to material wear 

and change of dynamics properties. As the robot ages, its mechanics changes slightly, and 

thus the previously learned function (or the estimated parameters in B, C, and G in the 

case of rigid body dynamics) are no longer accurate. With continuous learning, the new 

sensor readings will reflect these changes and the learning algorithm can incorporate the 

changes appropriately. The learned regression will always stay accurately no matter how 

much change in dynamics properties is accumulated over time.14 

 Using the robot's motion to learn its inverse dynamics also bears risks. E.g., one 

has to be careful in designing trajectories to explore the workspace: A good starting 

exploration will lead to fast learning and good performance in further explorations. In 

contrast, a bad exploration decreases the ability to learn and leads to poor further 

exploration. It has therefore to be ensured that the robot covers a representative range of 

distinct motions from the very beginning. 

 

 

 

 

                                                 
14 Assuming that the change happens continuously. 
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3.6 Learning Inverse Dynamics 

 

After the above discussion on robot learning and the discussion on the inverse dynamics 

model of humanoid robots in the previous chapter, one can easily realize that learning is a 

suitable approach for the approximating of the feed-forward function. 

 Sensory-motor transformation in high dimensional spaces for the inverse 

dynamics problem is one of the basic prerequisites to ensure the success of autonomous 

robots. Engineering models, on the other hand, are often not capable of modeling the 

mechanisms used to build humanoid robots accurately, and it turns out that using rigid 

body dynamics is a poor approach when working with humanoid robots. An alternative 

way can be seen in function learning without any prior assumptions on the function to be 

learned. A learning algorithm that reads sensor information and automatically acquires 

useful local models to predict feed-forward commands can easily replace the rigid-body-

dynamics equation of the feed-forward model. This learned approach leads to superior 

performance and further improvement while the robot is operating. The ultimate goal 

must be to compare the robots' performance with human motion, as well as to compare 

the algorithm's learning behavior in terms of speed and complexity to those of humans. 

 

 

3.7 Results 

 

In this chapter, I have introduced the basic concepts and problems of robot learning. The 

first issue was the bias/variance tradeoff. It deals with the question how much the 

interpolation between the noise-contaminated data shall be smoothened to represent the 

real function accurately. A solution was found in using separate data sets for training and 

testing. We saw that consequently the parameters of the learning algorithm have to be 

adjusted in such a way that a cost function on the test data is minimized. 

 In the second section, I have introduced global learning strategies. Local strategies 

seem to be more successful for learning a robot control problem, as they can deal with 

shifting input distributions and can change meta-parameters more easily than global 

strategies. The third section discussed the 'Curse of Dimensionality' - the problem of 

needing a huge number of patches for local function representation with high dimensional 
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input data. When working on motion data from real robots, this problem can be solved by 

projecting the input data on a few local projection dimensions. Finally, the topic of online 

learning was discussed. Online learning addresses the computational speed needed to 

incorporate incoming data and offers further increasing accuracy while keeping the robot 

in motion. 

Local learning techniques can deal with all these issues, using local 

dimensionality reduction techniques and local simple models for function fitting. 

Additional questions address the number and position of local models, which are needed 

to approximate the function accurately. The parameter adjustment of the local models 

also has to be thought of. 

In the following chapter, the learning algorithm Locally Weighted Projection 

Regression (LWPR) will be introduced. This algorithm is designed to deal with the 

above-mentioned problems - name the problems arise with online-learning of motion data 

for the inverse dynamics problem. The algorithm will demonstrate that learning the 

inverse dynamics model can lead to far superior performance compared to the analytical 

approach using rigid body dynamics assumptions. 
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4. The Learning Algorithm LWPR 

 

This chapter explains the algorithm Locally Weighted Projection Regression (LWPR) 

that will be used for learning the inverse dynamics controller. It follows the outline and 

recapitulates the basic ideas of the publications Schaal & Atkeson, 1998, Vijayakumar & 

Schaal, 2000a, Conradt, Tevatia, et al., 2000, Vijayakumar & Schaal, 2000b. Please refer 

to these publications for references and topics that could not be covered in more detail in 

this thesis. 

 

 

4.1 Advantages of Learning Approaches 

 

One of the most significant properties of biological systems is their capability to adapt to 

constraints induced by their environment. They can change their behavior into a 

somehow advantageous way and perform better and better in their natural surroundings. 

This 'learning' from the interaction with the environment happens in real time and based 

on incrementally incoming data from a variety of sources. Of course, biological sensors 

like tactile-, odor-, and acoustic-sensors are not free of errors, so the biological 'input' for 

learning is contaminated by noise. 

It seems, thus, that biological learning has to face the same problems as the 

artificial learning approach introduced in chapter 3. In the case of motor control, animals 

learn how to generate motion from noisy data distributions in unknown high dimensional 

spaces. Biology has solved the problem very well, whereas engineering solutions still 

perform comparatively poor unless the respective system maintains very special 

properties, e.g. the rigid body dynamics assumptions as shown in chapter 2.5. 

Unfortunately, there is nothing like a black box labeled 'learning' that can be connected 

between input and output and that will do the learning job for every possible function to 

be learned. However, such a black box is a desirable goal, so that one can use it for 

regressing the dynamics of the robot without any prior knowledge. Up to today, artificial 

learning approaches have to incorporate prior knowledge of the data distributions and the 

amount of data that has to be learned. 
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Spatially localized learning is a possible way to deal with these shortcomings. Local 

information processing has been known for a long time from neuro-physiological 

experiments (e.g. Mountcastle, 1957, Hubel & Wiesel, 1959), and since then, a huge 

amount of research has been done to show advantages of local information processing in 

neurobiology (e.g. Lee, Rohrer, & Sparks, 1988, Georgopoulos, 1991, Field, 1994, 

Olshausen & Field, 1996, Daughman & Downing, 1995). Roughly a decade ago learning 

with spatially localized functions has started to become a popular paradigm in machine 

learning and neurobiological modeling, e.g. with radial basis networks (e.g. Moody & 

Darken, 1988, Poggio & Girosi, 1990). The theoretical issues in local learning can be 

solidly grounded in approximation theory (Powell, 1987). A learning system suitable for 

inverse dynamics control that is based on local models should fulfill at least the following 

properties: 

 

• it should be able to learn from noisy continually arriving data without the need of 

storing and without the danger of forgetting previously seen data 

• it should have the ability to estimate the appropriate number of resources, i.e. 

local models, and change these models depending on the input data 

• it must be capable of dealing with a large number of possibly redundant and / or 

irrelevant inputs 

 

This chapter will present a new algorithm called Locally Weighted Projection Regression 

(LWPR) developed by Stefan Schaal, Chris Atkeson and Sethu Vijayakumar that is well 

suited to fulfill the above requirements. LWPR is the latest child in a series of algorithms 

that incrementally improved the function approximation quality in terms of accuracy and 

computational performance by modifying the methods used for predictions. The 

statistical assumption underlying the approach is that the unknown function to be 

modeled holds the form åxy += )(f , with x being an n-dimensional input vector, y an 

m-dimensional output vector. The term  denotes an additive random noise with the 

assumption that  is independently distributed, 0),( =jiE εε for ji ≠  and mean zero. 

The basic idea of the LWPR-algorithm is to locally approximate the unknown 

function by linear models. Predictions for a given query point will then be made from 

local neighborhoods around the query point only. The area of validity of each local 
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approximation is called a 'Receptive Field'. Each receptive field is trained independently 

of all other receptive fields, i.e. it adjusts its parameters (the size and shape of the region 

of validity and the coefficients of the linear function) without knowing the other fields' 

parameters. New receptive fields are allocated as needed, whereas those fields that are 

not needed anymore become pruned. 

 

 

4.2 Desired Algorithmic Properties 

 

4.2.1 Infinite Incremental Update 

 

The basic concept of incremental update is that data produced by the robot's motion will 

not be stored and ultimately processed - it will rather be processed immediately once it is 

generated. This is useful, as the amount of data will grow all the time during the robot's 

motion. Not only storing but also processing the huge amount of data leads to a 

computational complexity that is not feasible. Additionally, incremental learning will 

enable the system to continue learning once the first learning stage has past. There is no 

time when training stops and the robot continues with only using the learned function to 

generate motion. Instead, motion will be predicted by the learned function and while 

executing the motion, the learning system can continue to improve its performance. The 

system will learn throughout its life. 

 The continuous learning approach does also address another problem in motion 

generation: It enables the robot to cope with input domains that have not previously been 

learned. For example, when performing two very different tasks like driving a car and 

riding a bike, very different strategies for motion control are required. If learning has 

stopped before the new task has started, the robot will perform poorly and will not have a 

chance to improve. A continuous learning system in contrast will allow the robot to 

increase the performance everywhere in his workspace. This scenario resembles the 

learning of sensory motor transformation in biology and, again, biological systems are 

performing very well at it. 

 Two major problems arise, when using a continually learning system: Firstly, the 

robot might forget what has been learned before when it learns data in new input 
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domains. Secondly, the problem of allocating the appropriate number of local receptive 

fields in order to represent the data accurately has to be addressed. Both issues, which all 

incremental learning systems have to face, will be discussed further in the following two 

chapters. 

 

 

4.2.2 Limited Negative Interference 

 

Interference is a natural side effect of the ability to generalize. Every learning approach 

needs to generalize from the data it has seen; otherwise, it would simply behave like a 

huge look-up table and not 'learn' the underlying model that generated the data. So, 

predictions for unseen data will always be made by generalizing from similar previously 

encountered data. Generalization is achieved by adjusting those parameters of a learning 

system that have non-local effects. If these effects reduce the overall correctness rather 

than improve it, the interference is called 'negative' or even 'catastrophic interference'. 

The question of interference is especially important for incremental learning, as 

incremental learning systems cannot balance positive interference (i.e. generalization of 

the presented data) with negative interference. Because old data is not present anymore, 

every parameter update happens with respect to the current data only. For learning 

inverse dynamics model, this might lead to the problem that a robot learning to play 

tennis (with fast swinging arm motion) forgets that it previously learned how to chop 

vegetables in a kitchen. 

However, localized receptive fields have a potential robustness towards 

interference: if learning is spatially localized, the interference will be spatially localized 

as well. This means, that during learning only such local fields will be active, that 

contributed to the prediction at the given input. Thus, only these local fields will be 

updated, and only their parameters will be changed. It is easy to imagine, that for the two 

tasks described above (playing tennis and cooking), only distinct receptive fields will be 

active due to the very different input data. In this case, training data has negligible effect 

on the parameters of distant receptive fields, and cannot change learned predictions from 

distant local models. 
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An artificial example to illustrate the interference problem in a one dimensional input 

space is shown in figure 4.1: 
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Figure 4.1. An example for interference using neural nets and local receptive fields 

(taken from Schaal & Atkeson, 1998) 
 

The data generating function used for learning is given by 

 

( ) ( ) )16.0,0(16exp22sin 2 Nxxy +−⋅+=    (eq. 4.1) 

 

in the range of [ ]0.2,0.2−∈x . This synthetic data set suggested by Fan and Gijbels 

(1995) was used to train a three-layer sigmoidal feed-forward neural net with six hidden 

units. The training took place in two regions: First 130 noisy points of data were drawn 

from [ ]5.0,0.2−∈x , shown as •  in figure 4.1a. The excellent function fit is shown by the 

'predicted y' trace. Then, training the network was continued using 70 noisy inputs from 

the range [ ]0.2,5.0∈x , illustrated by + in figure 4.1a. The network learned to predict the 

new data accurately, but in doing so, it significantly changed the prediction in the 

previously learned range [ ]5.0,0.2−∈x . The resulting prediction for the whole input 

range is illustrated by the dotted line in figure 4.1. This change of the prediction happens 

due to the global activation of the hidden neurons that change their properties to adapt for 

the new data. 
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In strong contrast to the neural network, the local learning approach with receptive fields 

used for consecutively learning the same function hardly shows any change after training 

on the new data (figure 4.1b). Interference cannot be seen in predicting the function. This 

robustness towards negative interference is accomplished by the local nature of the 

learning approach: Only those receptive fields are updated that accomplish function 

approximation in the region of the input data. Therefore, input data from a different 

region cannot modify previously learned data. 

 

 

4.2.3 Automatic Resource Allocation 
 

Traditional learning approaches have to estimate meta-parameters before the learning 

process starts to achieve a good compromise between over-smoothing and over-fitting the 

data (please refer to chapter 3.2). Usually, this is done on the first representative set of 

data during a model selection phase. Alternatively, a human supervisor can estimate the 

meta-parameters while designing the learning system. These parameters must remain 

unchanged once they are selected; otherwise learning has to start all over again. The 

question is: How many free parameters should be adjusted, and can appropriate values for 

these be found to achieve good learning results? 

Unfortunately, this question cannot be answered in general, so it remains unclear 

how to find good meta-parameters for general function approximation. For spatially 

localized function approximation, however, the question arises in a slightly different way: 

How wide is the region of validity for a certain local model? The total number of local 

models is directly correlated to the width of all single models, as the whole input range 

has to be covered by one model at least. This also implies, that the number of local 

models can change (only increase), when new regions of input data are explored. This 

means that the global problem has been transformed to a local one: each receptive field 

has to find good parameters to regress the function.  

But how wide can the region of validity be expanded so that the assigned linear 

model still fits the data? Figure 4.2 illustrates a local model with a maximal tolerated 

error bound by µ . The region of validity (shown as a Gaussian function) will be adjusted 

such that the bound µ  will hold within the valid region. If the model learns new data that 
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does not fit in the linear model with respect to µ  anymore, it will shrink the region of 

validity of this receptive field. The original function is more like a linear function in a 

smaller region, which will allow to hold the bound µ . Eventually, a new receptive field 

will be introduced to model the data between two receptive fields that have shrunken.  
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Figure 4.2 Region of Validity of a Local Linear Model 
(adapted from Schaal & Atkeson, 1998) 

 

Having a set of error-bound locally valid receptive fields will allow the system to model 

complex functions within a wide input range. All the input range has to be covered by at 

least one local active model to get a prediction for this input. If more local models are 

active, the overall prediction will be the weighted average over all active models' 

predictions (as will be explained in chapter 4.4.). Calculating a weighted average of the 

active fields will ensure that the overall prediction is also bound by µ . Indeed, having 

more active models predicting for a certain input will tend to improve the overall 

accuracy (Perrone & Cooper, 1993). 

Despite of this simplification, it is hard to find the optimal local bias-variance 

tradeoff (Friedmann, 1984, Fan & Gijbels, 1996). Local models allow new ways to find 

solutions that are satisfying and computationally affordable. The leave-one-out cross-

validation approach (see chapter 4.5.3) in conjunction with regularization techniques can 

be used to realize local bias-variance tradeoffs and to control the expected bias µ  in each 

linear model. 
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4.2.4 Dimensionality Reduction of the Input Data 

 

Another problem is the sparsity of data in high dimensional spaces. Due to this sparsity, 

learning requires a huge amount of prior knowledge about the learning task, usually 

provided by a human supervisor. Unfortunately, this knowledge does not exist for the 

inverse dynamics model of a humanoid robot, because humanoid robots suffer from high 

non-linearities induced by their mechanical limitations. Non-parametric learning 

algorithms have advantages in learning such tasks (e.g. Geman, Bienenstock & Dursat, 

1992), but they fail in high dimensional spaces. The concept of neighborhood is without 

use in these high dimensional spaces, as all data points have roughly the same distance to 

each other (Scott, 1992). So the power of describing similar properties of neighboring 

areas used by local learning approaches is gone. Given this problem, it seems that non-

parametric learning algorithms have little merit for sensory-motor control. 

However, when examining real motion data of human and robot studies, 

Vijayakumar and Schaal (1997) found that this data is locally very low dimensional. 

Original data that was sparse in a 21 dimensional space reduces to locally dense data in 3-

6 dimensions only. This observation triggered the idea of using a preprocessing step to 

project the input data into a low dimensional space before using a linear regression to 

model the function. The dimensionality of the local low dimensional space for every 

receptive field must have the ability to grow dynamically as new data samples are used 

for training. If the dimensionality was fixed, new significant properties might not be 

represented in the local model. 

There exists a variety of algorithms that perform a dimensionality reduction, 

among them principle component analysis, independent component analysis, factor 

analysis and partial least squares (PLS). A specially adapted variant of the last named 

PLS is used by the LWPR algorithm. Further details will be provided in chapter 4.3, 

which deals with the preprocessing of input data. 
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4.2.5 Summary of the Desirable Properties 

 

Spatially localized receptive fields seem to be a promising route towards robust 

incremental learning. However, implementing local learning techniques for function 

approximation also requires some care for additional desired properties. In the case of 

inverse dynamics for humanoid robots the main properties are: 

 

• Capability of Incremental Learning 

As data will be generated by the robot's motion all the time, it would be a waste 

of information to stop learning at all. But as no system can store and process an 

infinite amount of data, learning algorithm has to learn from incoming data and 

discard the data immediately after learning. 

• Avoiding Negative Interference 

The robot's motion might explore new areas within its range of motion. While 

learning in the new range, previous knowledge must be kept unaltered such that 

the robot can return to its old operating area and continue moving accurately.  

• Automatic Resource Allocation 

Meta-parameters like the size and number of receptive fields have to be adjusted 

automatically without a human supervisor. Only this property ensures superior 

performance for previously unknown function estimation. 

• Dimensionality Reduction of the Input Data 

The important concept of neighborhood is lost in high dimensional input spaces; 

thus, the main strength of local learning approaches is gone. As high dimensional 

motion data is locally very low dimensional, a dimensionality reduction has to be 

performed as a preprocessing step on the input data. 

 

The following chapters will demonstrate how all these properties are integrated in the 

learning algorithm LWPR that is especially suited for learning motion data. 
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4.3 Input Data Preprocessing 

  

The only input-data-preprocessing that is necessary is the dimensionality reduction 

discussed above. In the previous years, research found good global projections for fitting 

non-linear one-dimensional functions, e.g. projection pursuit (Friedmann & Stutzle, 

1981). LWPR however, is needs good local projections, that can be used to accomplish 

local function approximation in the neighborhood of a given query point. This will allow 

fitting simple functions with high accuracy on the given data in a local region. The 

regression problem is much simpler, when using linear instead of complex one-

dimensional functions. 

However, principle component regression does not provide help in finding 

efficient local projections, nor does it detect irrelevant input dimensions that might be 

falsely interpret as important directions. LWPR needs an algorithm that discovers 

efficient projection directions for locally weighted linear regressions. The basic idea is to 

project the input data X onto r orthogonal directions u1, u2, …, ur along which they carry 

out univariate linear regressions, hence the name projection regression. If the linear 

model of the data were known, it would be easy to determine the optimal projection 

direction. It would then be given by the vector of regression coefficients beta, which is 

the gradient of the data. Only a single projection along this direction would result in the 

optimal regression. Unfortunately, the projection direction u has to be estimated from the 

data and usually remains sub-optimal. 

The projection-technique used in LWPR, Partial Least Squares, is extensively 

used in chemometrics (Wold, 1975, Frank & Friedman, 1993). This projection technique 

recursively computes orthogonal projections of the data and performs single variable 

regressions along these projections on the residuals of the previous iteration step. The 

important difference between PLS and most other projection algorithms is that PLS 

chooses projection directions according to the correlation of the input data with the 

output data, not on the basis of the input alone. Table 4.1 illustrates PLS in a pseudo-code 

implementation. For simplicity, a batch process is described instead of an incremental 

version. It is assumed that all the input data exists in the columns of the matrix X and the 

output data in vector y. The derived incremental version will be shown in chapter 4.6, 

embedded in the pseudo-code implementation of the complete LWPR algorithm. 
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 Partial Least Squares (PLS) Pseudo-Code 

1. INITIALIZE: XX =res , yy =res  

2. FOR i = 1 TO r DO                 (r denotes the number of projections) 

  (a) res
T
resi yXu =  

  (b) 
i

T
i

res
T
i

i ss

ys
â =                   where iresi uXs =  

  (c)  iiresres âsyy −=  

  (d)  T
iiresres psXX −=          where 

i
T
i

i
T
res

i ss
sX

p =  

Table 4.1. Pseudo-Code of PLS projection 

 

The first line in table 4.1 initializes the Matrix Xres (input) and the vector yres (output) 

with the data given for approximation. The iteration itself starts with step 2a, which 

calculates the direction of maximal correlation u between the residual input and output 

data. Step (b) performs the univariate regression along the direction u, and returns the 

regression coefficients . The regression itself will be explained in chapter 4.5.2. 

Additionally, PLS regresses the data of the previous step against the projected data of this 

step (s). PLS therefore subtracts the used information from the input and output data to 

ensure the orthogonality of consecutive projections u (steps (c) and (d)). The regression 

in (d) modifies the input data resX such that each resulting data vector has coefficients of 

minimal magnitude and, hence, pushes the distribution of resX  to become more spherical. 

This simple, yet efficient algorithm will return the desired number of projection 

directions (r) in ui. 

As an open question remains, how the number of local projections r can be 

estimated. LWPR uses a simple trial-and-error approach: The initial number is set to r=2. 

Starting from this, LWPR recursively keeps track of the mean-squared-error (MSE) as a 

function of the number of projections included in a local model (i.e. step j in the LWPR 

pseudo-code in table 4.2). The algorithm will stop adding new projections locally, if the 

MSE at the next projection does not decrease by more than a certain percentage, i.e. 
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φ>+

i

1i

MSE

MSE
, where ]1,0[∈φ . 

 

This criterion leads to a good upper bound for the number of needed projections. 

Adjusting the parameter φ  has no major influence on the algorithm's performance, as 

additional dimensions will not decrease the regression results.  

Using these simple mechanisms, the number and directions of the projections will 

be learned by the algorithm without human supervision and with only φ  as a rather 

insensitive meta-parameter that needs to be adjusted. From now on, the input vector x for 

the linear regression will be assumed to be the projection of the original input x. The 

position of the local model in input space however will be with respect to the original 

input x. This distinction is necessary to locate appropriate receptive fields and activate 

only these. 

 

 

4.4 Predicting Output Data using LWPR 

 

The LWPR algorithm constructs a system of K local linear models that will give 

individual predictions kŷ  for a query point x. The weighted sum of all these single 

predictions is the algorithm's overall prediction: 

 

∑

∑

=

=

⋅
= K

1k
k

K

1k
kk ˆ

ˆ
w

w y
y        (eq. 4.2) 

 
 
In equation 4.2, kŷ  denotes the individual prediction of the receptive field k, whereas kw  

is the weight (the importance) of this prediction. The weights kw  correspond to the 

activation strength of the receptive field, characterized by the shape of its kernel function. 

The kernel function is a measure for the distance from a query point x to the center of the 

receptive field. This follows the assumption that the distance is reciprocally correlated to 

the quality of the approximation. A variety of kernel functions have been suggested 
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(Atkeson, More, et al., 1997), LWPR uses a Gaussian kernel given by equation 4.3 for 

analytical simplicity. 

 







 −−−= )()(

2
1

exp kk
T

kk cxDcxw     (eq. 4.3) 

 

with  k
T
kk MMD =      (eq. 4.4) 

 

Equation 4.3 characterizes the receptive field by its location in space ( kc ) and a positive 

definite distance metric kD . For convenience reasons, the distance metric kD  shall be 

constructed from an upper triangle matrix kM , so that kD  will stay positive definite. 

Each receptive field models the relationship between input and output data by a 

simple parametric function. For these functions, locally low order polynomials have 

found widespread use in non-parametric statistics (e.g. Nadarayan, 1964, Watson 1964, 

Wahba & Wold, 1975, Cleveland 1979, Cleveland & Loader, 1995). LWPR uses linear 

functions according to equation 4.5, which seem to offer a good tradeoff between 

computational complexity and accuracy (e.g. Hastie & Loader, 1993): 

 

k
T

k0,k
T

kk
~bˆ âxb)c(xy =+−=     (eq. 4.5) 

 

with  ( )TT
k 1,~ )c(xx −=      (eq. 4.6) 

    T
k0,

T
kk â ),(ââ =     (eq. 4.7) 

 

Here, kâ  denotes the regression parameters of the local linear model k and x~  is a 

compact representation of the center-subtracted, augmented input vector to simplify the 

notation. The additional '1' is used to represent a bias term 0â . Figure 4.3 gives a nice 

illustration of the functional blocks that the LWPR algorithm is composed of. 
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Figure 4.3 Architectural Overview of the LWPR Algorithm 

(taken from Vijayakumar & Schaal, 2000b) 
 

Three receptive fields shown in figure 4.3 each consist of a projection unit (u), a linear 

regression unit ( ), and a Gaussian weighting unit (D). The input x is routed 

independently to all receptive fields. The projections of the input x (achieved by 

multiplication with PLS
ki,u ) are routed to the linear regression units. In this figure, only two 

projection directions are shown for each receptive field. The linear units generate a 

prediction that is weighted by the weight kw  from the Gaussian weighting unit. The sum 

of all weighted predictions ( kŷ ) is the total system's output ( ŷ ). 

 Assuming, that the parameters kc  (center of receptive field k), kM  (shape of the 

receptive field k), and kâ  (regression parameter of the linear model) are known, the 

model predicts an output y for every given input x. These parameters are independent for 

every model, so every model predicts independently of each other. The important 

question how these parameters can be calculated will be discussed in the following 

sections. 
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4.5 Learning Parameters 
 

4.5.1 General Remarks 
 
This chapter concentrates on learning the parameters needed for predicting an output at a 

given query point. As shown in the previous chapter, these parameters are: the center of a 

receptive field ( kc ), the shape of the distance metric ( kM ), and the regression 

coefficients ( kâ ). For clarity, the subscript k will be dropped in the following description, 

as all receptive fields are updated in the same way. 

 I my explanation, I will first concentrate on updating the linear model in each 

receptive field (chapter 4.5.2), and then discuss updating the distance metric of a 

receptive field (chapter 4.5.3). The focus of the remaining two chapters, 4.5.4 and 4.5.5, 

will be the question of updating the number of receptive fields, i.e. adding and pruning 

these fields. Adding receptive fields also discusses finding a proper center in input space 

for each field, because once a receptive field is generated, its center is not moved 

anymore. 

 

 

4.5.2 Learning the Local Linear Model 

 

Learning the linear regression coefficients  is by definition a linear problem and thus 

straightforward. The process is easier to understand if we first leave out the incremental 

learning and try to estimate  in a batch update. In a second step, the algorithm will then 

be modified to suit an incremental version. To start the batch process, we have to 

summarize all input vectors in a matrix X and all outputs in a vector y. 

 

 ( )T
M321

~,...,~,~,~ xxxxX =      (eq. 4.8)  

 

 T
M321 )y,...,y,y,(y=y      (eq. 4.9) 

 

Remember that x~  denotes the center subtracted projection of the input data x (equation 

4.6). The weights are arranged in a diagonal weight Matrix W: 
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Next, the parameter  can be estimated with a standard weighted regression technique 

that is widely used in non-parametric statistics (e.g. Cleveland, 1979, Cleveland & 

Loader, 1995), in time series prediction (e.g. Farmer & Sidorowich, 1987, 1988), and in 

regression learning problems (Atkeson, 1989, Moore, 1991, Schaal & Atkeson, 1994, 

Atkeson, Schaal et al. 1995). 

 

WYPXWYXWX)(Xâ TTT == −1     (eq. 4.11) 

 

 with 1−= WX)(XP T      (eq. 4.12) 

 

These simple formulae will allow a calculation of the linear regression coefficients under 

the assumption that all data is available in X and y, and that the weights W are known. 

The weights kw  are given in equation 4.3, but the representation of the data in X and y 

has to be changed for an incremental learning approach, before using LWPR to predict 

new outputs. 

To modify the regression in equation 4.11 towards in incremental update, one can 

make an astonishing observation: the result for equation 4.11. is exactly the same as if  

is calculated from one swoop through the whole training set by only using one data point 

at a time and without looking back at the other training data. Using recursive least 

squares as update rules (Ljung & Söderström, 1986), one obtains the following formulae 

for the incremental version: 
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The initialization of P, which corresponds to the inverted covariance matrix, will be 

discussed in chapter 4.5.4. Equation 4.14 contains an additional parameter: the forgetting 

factor ë , [ ]0,1ë ∈ . This factor describes the reliability of old data, and is one of the most 

significant differences between batch and incremental updates. Imagine, that a robot's 

mechanical properties change during its life, such that old data does not represent the new 

mechanical properties anymore. Then, new data should be trusted more than old data. In 

the case of LWPR, this forgetting factor is especially important, since the distance metric 

M changes during the learning process. The update of M will be discussed in the 

following chapter. The result is that old data was learned with inappropriate weights and 

that this data will be misinterpreted for later queries. So  helps to gradually cancel the 

contribution from early data points when M was not yet learned properly (e.g. Ljung & 

Söderström, 1986). 

 Equations 4.13 - 4.15 offer an incremental update rule for the local linear models, 

which satisfies the introduced constraint that the update should happen incrementally 

without the need to store old data. Additional properties of these formulae are that they 

 

• are guaranteed to converge to the global minimum of a weighted squared error 

criterion (Atkeson, Moore, et al., 1997) 

• avoid the matrix inversion (equation 4.12). 

 

This update rule is implemented in LWPR, as will be seen in chapter 4.6, where the final 

algorithm is described. 
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4.5.3 Learning the Size and Shape of Receptive Fields 

 

Updating the distance metric D needs to be done by updating the decomposed upper 

triangular distance metric M, where MMD T=  (equation 4.4) in order to ensure the 

positive definiteness of D. The first idea might be that this can be done by using a 

gradient descend technique with weighted mean-squared-error criterion, which is also the 

basis of the locally weighted regression in equation 4.11: 
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with ∑
=

=
p

i
iwW

1

     (eq. 4.17) 

 

This is, however, a very poor approach. It can easily be imagined that every input point is 

modeled by exactly one receptive field, which has its center exactly at this point. Then 

the distance metric can be very small and the model will predict this point with no error. 

But it will only predict this single point, and there will be no generalization to capture the 

essentials of the data generating function. This version has no error for known points, but 

it will encounter strong over-fitting and, thus, not be able to predict unseen data 

accurately. For this reason, a global competition among receptive fields has been 

introduced (e.g. Moody & Darken, 1988, Jordan & Jacobs, 1994). The global competitive 

process will not allow narrow distance matrices, since all receptive fields start competing 

against each other for data points, at least if there are more points than receptive fields. 

But the introduction of global competition among the receptive fields removes the ‘local 

learning’ character from the system. 

An alternative way to address this issue is to use leave-one-out cross validation: 

The testing of data i is performed in a system that has been trained on all the data without 

the single data i. This will lead to a new cost function: 
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with ii −,ŷ  meaning that the prediction for point i is calculated from a net trained without 

point i as input data. The major disadvantage of this approach is its computational 

expense, as a new system has to be trained for every point of data. This will result in a p-

fold that has to be run through for p points in the training set. Another partially 

unresolved problem is the question of how the p different systems should be merged into 

one after learning. 

For linear regression problems, however, the Sherman-Morrison-Woodbury 

theorem, also known as the 'matrix inversion theorem', (e.g. Belsey, Kuh, et al., 1980) 

allows a simplification of the expression in terms of computational complexity: 
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Instead of using the computationally expensive leave-one-out cross validation, the cost 

criterion can be computed weighting the sum by the mean squared error calculated using 

the inverted covariance matrix 1−= WX)(XP T  (equation 4.12.). This means that a 

criterion has been found, which can be used to adjust the distance metric M in a 

computationally affordable way. 

 But there is still one more problem: With an incrementally increasing number of 

training data samples, more and more receptive fields will be generated. So the size of 

each receptive field will shrink to small values, which again reduces the ability to 

generalize. To avoid this behavior, an additional penalty term is introduced in equation 

4.19, yielding in equation 4.20: 
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 55

where the scalar γ  determines the strength of the penalty. The additional term penalizes 

the second derivative of the distance metric, and therefore an abrupt decay of the 

receptive field's region of validity. 

 Equation 4.20. is an appropriate function to use as cost criterion for changing the 

distance metric with a gradient descend method in a batch update. To modify the update 

towards an incremental version, a learning rate  is introduced: 

 

M
MM

∂
∂

⋅−=+ J
αn1n       (eq. 4.21) 

 

The derivative of the cost function J  with respect to the distance metric M can be found 

in Schaal & Atkeson, 1998. The algorithm LWPR uses an approximation of this result, 

which can be found in chapter 4.6 included in the finial algorithm. 

 

 

4.5.4 Adding Receptive Fields 

 

As LWPR is designed to perform incremental online learning, it will be necessary to add 

receptive fields for such new data, which is living in previously unknown input domains. 

The way LWPR decides whether a new receptive field has to be created is to monitor the 

activation of all existing receptive fields for new data. If the new data point x does not 

activate any receptive field by more than a threshold ( geni ww <  for all i), then a new 

receptive field with the following properties is created: 

 

• The center of the new receptive field is at the position of the data sample in input 

space ( xc = ). 

• The distance metric M is set to a manual default value defM . This default value 

has to be chosen with attention: It should rather span the field too wide (resulting 

in small numbers for M) than to narrow. Because a receptive field that spans a 

wide domain in input space will be activated by many subsequent points of new 

input data, it will quickly shrink to a roughly appropriate size. In the other case, a 
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receptive field having a narrow valid region will need more time to find data that 

allows it to increase its region of validity. 

• All remaining parameters are initialized to zero. 

 

Only the matrix P needs special treatment, since P is used as a ‘memory’ in estimating 

the linear model. However, a new point does not have any memory. A reasonable 

initialization is to create a diagonal matrix where the elements on the diagonal are set to 

2
1

iriip = , with r having small quantities ( 001.0i ≈r  for all i) (Ljung & Söderström, 

1986). This initialization can be interpreted in two different ways. Firstly from a 

probabilistic point of view: then, these r are priors that the coefficients of â  are zero. 

Secondly, from an algorithmic perspective: then they are fake data points of the form 

]0),0,...,0,,0,...,0,0([ 2 == rir r yx  (Atkeson, Moore, et al., 1997). Under normal 

circumstances, the size of the coefficients of r is too small to introduce noticeable bias. 

 

 

4.5.5 Pruning Receptive Fields 

 

Two different criteria cause pruning of receptive fields: Overlap with other fields and an 

excessively large mean-squared-error compared to other fields. 

In the first case, the overlap of two receptive fields can be detected when new 

training samples are added. If a data point activates two fields simultaneously with more 

than a constant prunew , the field with the larger determinant of the distance metric D (i.e. 

the one with the smaller receptive field) is pruned. For computational convenience, 

det(D) can be approximated by ∑ j

2
jjD  (Deco & Obradovic, 1996). However, pruning 

due to overlap is only done to gain better performance in terms of computational 

complexity. For the accuracy of the prediction, it does not make a difference, if two fields 

are overlapping (see chapter 4.2.3). 

The other cause for pruning is given if the bias-adjusted weighted mean-squared-

error 

 



 57

∑
=

−=
n

1ji,

2
ijn

n

D
W
E

MSE γw      (eq. 4.22) 

 

of a linear model happens to become excessively large in comparison to other units. 

Testing the size is necessary, because also 0M =  will result in a minimum for the 

optimization criterion, given in equation 4.20. Setting M to the zero matrix is equivalent 

to performing global instead of local regression, using an infinite receptive field. This 

global regression has a large MSEw  and, thus, the receptive field will be pruned and a 

local approach will be pursued. 

 In general, pruning rarely happens. If it happens, it is usually due to an 

inappropriate initialization, so it only occurs at the beginning of learning when pruning 

does not cause big harm. 

 

 

4.6 The Final LWPR Algorithm 

 

We will now move on to provide a more complete description of the algorithm LWPR, 

and will merge all the different functional blocks into a single algorithm in pseudo-code.  

Table 4.2 shows an incremental update of the linear regression parameters (from 

chapter 4.5.2) and the shape of the distance metric (from chapter 4.5.3) using projection 

techniques on the input data. The variables SS, SR, and SZ are memory terms that allow 

the univariate regression in step f) to happen in a recursive least squares fashion. All 

recursive variables in table 4.2, i.e. those with the superscript n, will be initialized to zero 

before the algorithm starts. Step g) regresses the projection ip  from the current projected 

data s and the current input data z. This step guarantees, that the next projection of the 

input data for the consecutive regression will result in a 1i+u  that is orthogonal to iu . 

Step j) is recursively keeping track of the mean-squared-error in consecutive projections. 

It is used to decide when to add a new projection direction, as described in chapter 4.5.4. 
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Given :  A training point ( x, y )

Update the means of inputs and output:

x 0
n+ 1 =

λW n x0
n + w x

W n+1

β0
n+1 = λW

n β0
n +1 + w y

W n+1

where W
n+1 = λW

n + w

 

Update the local model:

Initialize:  z = x, res = y − β0
n+1

For i = 1: r,

a)      u i
n+1 = λ u i

n + w z res

b)      s = z T u i
n+1

c)      SS i
n+1 = λ SS i

n + w s 2

d)      SRi
n+1 = λ SRi

n + w s res

e)      SZ i
n+1 = λ SZ i

n + w z s

f)      β i
n+1 = SRi

n+1
SS i

n+1

g)      pi
n+1 = SZ i

n+1
SS i

n+1

h)      z ← z − sp i
n+1

i)      res ← res − sβ i
n+1

j)      MSE i
n +1 = λ MSE i

n + w res 2

 

Table 4.2. Update Rule for every Receptive Field 

 

Finally, the following table shows a pseudo-code implementation of LWPR's main loop 

that has to be processed for new data. All the elements used are introduced and discussed 

in the previous chapters. 
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Locally Weighted Projection Regression (LWPR) Pseudo-Code 

INITIALIZE THE SYSTEM WITH NO RECEPTIVE FIELD (RF) 

FOR EVERY NEW TRAINING SAMPLE (X, Y): 

 FOR I=1 TO #RF 

  CALCULATE THE ACTIVATION FROM EQUATION 4.3 

  UPDATE THE RF ACCORDING TO TABLE 4.2 

 IF NO LINEAR MODEL WAS ACTIVATED BY MORE THAN genw  

  CREATE A NEW RF ACCORDING TO CHAPTER 4.5.4 

 

Table 4.3. Pseudo-Code of the LWPR algorithm 

 

 

4.7 Properties of LWPR 

 

The learning algorithm LWPR is capable of approximating unknown functions between 

incoming streams of input and output data in high dimensional spaces. 

Its core is formed by local linear models, which span a small number of univariate 

regressions in selected directions in input space. The spatial localization of the linear 

models offers robustness against negative interference. The parameters of these models, 

i.e. the regression coefficients â  and the region of validity given by the distance metric 

D, are learned automatically. The learning algorithm only uses data from the local 

neighborhood of the model, not interacting with other models. Competition between local 

models is thus not necessary, and the local information processing approach remains 

valid. The major strength of LWPR is that it uses incremental learning techniques, such 

that data is discarded after learning and does not need to be stored. This allows 

continuous learning even if the system is running for a very long time, eventually 

infinitely. The algorithm can deal with a large number of possibly redundant and / or 

irrelevant input dimensions, while its projection-technique PLS automatically determines 

the appropriate number and direction for needed projections. LWPR's computational 

complexity is linear in the number of inputs and linear in the number of projected input 
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dimensions ( )r(n⋅O ). This makes LWPR very attractive from a computational point of 

view. 

To my knowledge, LWPR is the first incremental neural-network learning 

algorithm that combines all these properties. It is thus very well suited for the high-

dimensional real-time learning problems posed by humanoid robots. 
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5. Evaluation of LWPR's Performance on Artificial Data 
 

5.1 Introduction 

 

I would now like to start a first evaluation of LWPR's performance. Therefore, a set of 

data artificially generated from a known function is learned. The algorithm only knows 

the data, it does not know about the function itself. As has been explained in chapter 3.1, 

the success of the learning can be measured by the fact how well the function is 

approximated. 

For the evaluation, I have used two functions, which are described in more detail 

in chapters 5.2 and 5.3. They are composed of Gaussians and sinusoidals, such that no 

abrupt changes, like steps or spikes, occur. The underlying assumption is that the inverse 

dynamics that is going to be modeled will also be a smooth function without abrupt 

changes. Both functions used for evaluation are designed to demonstrate special 

properties of LWPR, like predictions in almost linear regions or rapidly changing non-

linear data. 

The values of these functions at randomized positions within a limited interval are 

used to generate a noise-contaminated set of training data. After learning, a regularly 

spaced vector of query points is generated and the trained system is asked to predict the 

function at these points. These predictions are used to reconstruct the function and to 

estimate the quality of the regression against the original function. The generated training 

set does not contain any of the query points for function reconstruction: The network 

might simply have memorized all these points, and thus the estimation of the total error 

would be influenced. The following two chapters will discuss one of the two training 

functions each. 

 

 

5.2 One Dimensional Function Fitting 

 

The first function used for evaluation consists of three separate areas in the total range of 

1010 +<<− x : A linear region from –10 to –2 with a narrow Gaussian bump superposed 
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at 6−=x  followed by the left half of a steep Gaussian centered at 0=x . For 0>x , the 

function is given by a si-function:  
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 (eq. 5.1) 

 

 

Equation 5.1 is used to generate two distinct sets: a set of training and a set of testing 

samples. Additionally, all data in the training data set contain additional noise generated 

by )01.0,0(N .15 The training set consists of 500 noisy points drawn uniformly from 

random positions in the range 1010 +<<− x . The test data set consists of 200 testing 

points without noise equally spaced in the same interval. The predictions of these training 

points are used to reconstruct the function after learning. No data point belonging to the 

test set is contained in the training set. LWPR is initialized using the following values: 

The default distance metric ID ⋅= 8def ,16 the threshold for generating a new receptive 

field 1.0=genw , the threshold for pruning two overlapping fields 9.0=prunew , and, 

finally, the penalty for narrow distance matrices is set to 0001.0=γ  (equation 4.20).17 

  Figure 5.1a shows the original function without noise and the network prediction 

after learning. Figure 5.1c shows the error of the learned function, i.e. the original 

function subtracted by the network prediction: lwproriginal yyy −= . This allows recognizing 

the difference easily. 

                                                 
15 N(0, 0.01) denotes a Gaussian noise distribution with mean zero and a variance of 0.01 
16 I being the identity matrix; the size of I appropriate to the context 
17 For a discussion, see Schaal & Atkeson, 1998. 
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Figure 5.1 Results of Learning a One Dimensional Function 

 

Looking at the error plot in figure 5.1b, one can easily see that the prediction is almost 

perfect in the linear range of the original function ( 8−<x  and 26 −<<− x ). The error at 

2−=x  might seem odd; but looking at the function y in equation 5.1, one can see that the 

function changes at 2−=x  which causes small perturbations that the algorithm cannot 

resolve completely. Instead, LWPR uses the linear function regression as the best chance 

and assumes that the real data is noise-contaminated. Of course, the error-plot uses the 

real function and shows these linear predictions as errors in the regression. 

 The following figure 5.2a shows the learning curve: the decrease of the 

normalized mean squared error (nMSE18) over time on a double logarithmic scale. The 

nMSE slowly decreases from the initial value until a sharp drop occurs. This is a 

significant property of learning approaches, which usually happens after roughly one 

swoop through the training set. Finally, the nMSE settles at an excellent value of roughly 

5103 −⋅=nMSE  

                                                 
18 nMSE denotes the mean squared error (MSE) on the test set normalized by the variance of the outputs of 
the test set. The nMSE can be used for simple comparisons of different regression problems. 
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Figure 5.2 Learning Curves for the One Dimensional Regression 

 

Figure 5.2b shows that the number of receptive fields allocated by LWPR continually 

grows during training. Ultimately, it settles with #rf=37. One can see that the nMSE 

decreases by a significant step whenever a new receptive field is added. This happens, 

because a new receptive field will only be introduced at such positions that have not been 

modeled well by the existent receptive fields. The new field will model the data with high 

accuracy exactly at that position, such that the nMSE decreases. 

 An interesting experiment can be performed forcing the algorithm to use a smaller 

number of receptive fields. This can be achieved by increasing the penalty for narrow 

distance matrices, e.g. by keeping all parameters the same and only increasing γ  by a 

factor of 100, such that 01.0new =γ . Figure 5.3 illustrates the results: Parts a and c show 

that the function regression becomes significantly worse (note the changed y-axis scale in 

figure 5.3c!), when using only a total of 23 receptive fields compared to 37 as before. 

This is not surprising, as a smaller number of linear models will always perform worse in 

modeling a non-linear function. However, this experiment can be used to display the 

position and shape of the receptive fields. In figure 5.3b, one can see that a small number 

of fields spawn a wide range in those areas where the function is almost linear. This 

means, that good approximation can be achieved in a wide region with very little effort. 

On the other hand, LWPR places many receptive fields with a small region of validity 
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where the non-linearity is significant, e.g. at 0=x  or 7−=x . Hence, the function needs 

a big number of linear approximations to be reasonably represented. With this 

experiment, one can understand that the learning algorithm adjusts the position and shape 

(i.e. the width) of the receptive fields to resemble the data distribution appropriately. 

Hence, the computational complexity (that is correlated to the number of receptive fields) 

is adapted to the input data distribution. 
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Figure 5.3 Learning by using a Constrained Number of Receptive Fields 

 

 

5.3 Two-Dimensional Function Fitting with Shifting Input Distributions 

 

A more complex function that is still relatively easy to display is given by equation 5.2. It 

is a two-dimensional function (along the directions 1x  and 2x ), which consists of three 

Gaussian bumps in the rear and a slowly rising but quickly falling Gaussian slope in the 

foreground: 

 

 

 

a) 

 

 

 

b) 

 

 

 

c) 
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The Gaussian bumps in the rear (equations 5.2-5.4) have decreasing width and increasing 

height from the left to the right. This implies very different slopes, which need to be 

modeled with linear patches of different sizes. The foreground consists of a slowly rising 

Gaussian slope with a small Gaussian bump superposed (equation 5.5). Once a threshold 

is passed ( 2
1

1 =x ), the function rapidly returns to zero (equation 5.6). A 3-D plot of the 

function can be seen in fig 5.2a. 

 In contrast to the 1-D-function in chapter 5.2, this time the training data is drawn 

from two separate regions of the input space. The first training set consists of data from 

the region 02 ≤x , whereas the second training set covers the other half of the input space 

( 02 >x ). Each of these training sets consists of 5000 noisy data samples drawn 

uniformly over half the unit square. During learning, only one training set is used at a 

time: At first, the algorithm is trained on the set from the back with the three Gaussian 

bumps. After learning finished (based on an evaluation using a temporary test data set 

from the same region), the input data is switched and only the second training set from 

the front is used to continue learning. This time, test data drawn from all over the unit 

square is used. The algorithm is, however, not re-trained on data from the back anymore, 

i.e. it has to remember what was learned before. 

 The final test data set consists of 4489 testing points without noise, meaning that 

the output values of the test data are the exact function values. These points correspond to 

the vertices of a 67x67 grid equally spaced over the unit square that will also be used to 

display the function. The initial parameters for LWPR are ID ⋅= 16def , 1.0=genw , 

9.0=prunew , and 0001.0=γ  - so only the initial size of the distance metric is changed. 
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For learning this two dimensional function, the smaller distance metric still is wide 

enough, because with a second dimension, more training points fall into every receptive 

field's active area. 

 To evaluate the performance of LWPR, the network prediction and the error plot 

are shown in figures 5.2b and 5.2c: 

 

 
Figure 5.4 Function Approximation for the 2D Example 

 

One can easily see that almost linear regions (like the Gaussian with the small slope in 

the left corner) result in very accurate predictions. In contrast, regions that cannot be 

regressed easily by linear functions cause a visible error (like the abrupt fall of the 

Gaussian in the right corner or the high Gaussian in the rear). It is a remarkable result that 

although training was split in two different regions, no interference is visible: There is no 

sharp edge or a significant misclassification in the back. So local learning seems to be 

robust against shifting input distributions and does not forget previously learned domains 

while training on new domains. 

The maximal error in approximating the function is 0.0606, which is equal to 4% 

based on the total amplitude of the function. The average error in approximating over all 

a) 

 

 

 

b) 

 

 

 

c) 
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testing points is a much better 0.003, which equals to an excellent 0.2% based on the total 

amplitude. So using a moderate number of linear models (roughly 400), the algorithm 

achieves a good approximation of a complex function (cf. equation 5.2-7). 

 

 

5.4 Limiting the Computational Complexity 

 

There is always a tradeoff between the number of receptive fields allocated by LWPR 

and the quality of the prediction (as shown in chapter 5.2). The number of receptive fields 

is proportional to the computational speed during training. Additionally, the number of 

receptive fields is proportional to the time needed for generating a prediction. If the later 

two were not related, an infinite number of locally valid linear models could be used to 

model arbitrarily complex non-linear functions. So if twice the number of receptive fields 

were used for the regression, the result would be much better; but also the algorithm 

would need twice as much time to calculate predictions for given query points. 

 Luckily, there is a way to deal with this unsatisfying issue when working in motor 

control. Under the assumptions that the robot behaves well, the query points will not 

move arbitrarily within the input space, and thus, that consecutive query points will be 

lying 'close' together. Therefore, we may assume that for little time steps the desired state 

of the robot only changes slightly. Due to this reasoning, all active receptive fields must 

be somewhere close to those fields that were active in the previous time step. Using an 

intelligent structure, the closest neighbors of previously active receptive fields can be 

found easily. Asking only these fields for predictions on the current query point will limit 

the computational time needed for a new prediction. As the number of closest receptive 

fields (n) can be specified by the user, the computational time needed for a prediction will 

never exceed a user specified time, no matter how many receptive fields have been 

learned by LWPR. For very fast motion or a small number n, however, one has to be 

careful not to reduce the quality of the prediction as more receptive fields might be 

actively contributing to the current prediction than assumed. 
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5.5 Discussion 

 

The examples of learning artificial data show that truly local learning is a feasible 

approach that can compete with other state-of-the-art learning algorithms. In this context, 

it has to be remembered that local learning means learning without competition, without 

gating nets, and without global regression on top of local receptive fields. Additionally, 

the algorithm learns in a truly incremental fashion: It can learn from continuously 

incoming data without knowing the distribution of the input data. Such a carefully 

designed local learning is robust against negative interference even without having prior 

assumptions on the input data distribution. 

The development of this algorithm followed the assumption that the complexity of 

the input data is unknown, i.e. that the original data generating function can be of a very 

complex type. If there was more knowledge about the data generation model, this 

knowledge should be incorporated in the algorithm design. E.g., regressing a sinusoidal 

function with a sinusoid is the best approach under the circumstances; no other learning 

algorithm will outperform this 'regression'. However, in the case of a linear dynamics 

model for a humanoid robot, prior knowledge about the generation of the data is not 

available. Therefore, as little assumptions as possible have been made about the data. The 

only prior assumption that is introduced for the learning is hidden in the penalty term γ  

for small distance metrics. This term introduces an assumption on the smoothness of the 

function that is going to be regressed. 

 There are several open research issues connected to the learning approach, e.g. 

estimating the size of the learning rate α . Another open question is how a good 

initialization of the distance metric defD  might be found. The initial distance metric, 

which describes the size of newly created receptive fields, should be appropriate for the 

data being modeled. Too large receptive fields face the danger to grow until they span the 

entire input domain, too small metrics tend to over-fit the data and reduce the 

generalization ability. All these parameters can easily be monitored using just a small 

number of receptive fields during an initial training phase. As all fields learn 

independently of the others, the experience gained by training only a few can be used to 

adjust parameters for all fields. 
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Further, one might wonder how far such a local learning system has any parallels with 

neurobiological information processing. The human brain uses locally weighted receptive 

fields for information processing. However, one major assumption about learning in the 

brain based on receptive fields is that these fields are broadly tuned and widely 

overlapping (e.g. Merzenich, Kaas, et al., 1983). Thus, the accuracy of the prediction is 

achieved by calculating the average of many fields with a reasonable error each. If you 

compare this with LWPR, you first note that LWPR rather achieves accuracy by every 

single or only a few overlapping fields. Whether the learning principles of LWPR are 

biologically relevant or not remains speculative. In either way, LWPR demonstrates that 

there is an alternative and powerful method to accomplish incremental constructive 

learning based on local receptive fields.  

 Using LWPR for learning problems in the context of robot motion control might 

be a promising way to gain better performance compared to traditional approaches. The 

motion data generated with respect to the inverse dynamics problem involves many of the 

issues that LWPR can easily deal with. This is especially true for coping with incremental 

data and changing input distributions as was shown in this thesis. Further examples of 

evaluating LWPR's performance can be found in Schaal & Atkeson, 1998. The authors' 

tests include dealing with redundant or irrelevant input signals and highly noisy data. 

 Next, I would like to present the application of LWPR on a real robot. The inverse 

dynamics model used for computed torque feed-forward commands will be learned on 

generated motion. But first, it might be useful to give a short description of the more 

technical details of the robot setup. 
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6. The Humanoid Robot 
 

For testing the algorithm on real data, it is important to have a system that represents 

‘human’ properties, i.e. redundancy, flexibility, and the ability of fast motion. As for the 

test itself, it does not matter whether a robotic arm, a leg, or the whole robot is used for 

estimating the inverse dynamics, as the concept remains the same. I worked with a 

robotic arm. This offers a number of advantages: it allows evaluating the performance on 

a system that has a high number of degrees of freedom and therefore redundancy in the 

motion. Additionally, there is a significant influence from the motion of one joint to 

another. A single leg would, in comparison, get on with a smaller number of degrees of 

freedom and much smaller influence of one joint's motion to another. 

 The arm of a humanoid robot does not comply with the rigid body dynamics 

assumptions, such that the rigid body framework cannot be used to generate feed-forward 

commands. These are needed, as the PD controller shall run on low gains (see chapter 

2.7). Therefore, the learning algorithm LWPR that was described in chapters 4 and 5 will 

be used to learn the inverse dynamics control. But first, the robot system used will be 

introduced. 

 

 

6.1 Hardware for Robot Control 
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Figure 6.1 Sketch of the Robot Hardware Environment 
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The vxWorks programming environment from Windriver Systems offers a UNIX-like 

real time operating system on the target computers (the VME-Boards) and a development 

environment on a host computer. Figure 6.1 shows the connections in the system. The 

host computer can address multiple targets and offers target communication from the host 

to a target or between targets. This also includes shared memory and message passing. 

Real time linking is allowed, such that objects can dynamically be added or removed 

from any of the target computers without reloading the whole program. Additionally, the 

real-time operating system running on the targets offers frequently used features, such as 

low-level I/O, memory management, process communication, task scheduling, interrupt 

handling, and many more. 

The fact that the VME-Boards are connected to a host computer allows simple 

integration into an existing TCP/IP computer network and at the same time to keep real 

time functionalities. The host interface Tornado allows user interactions with the running 

system. Still, it keeps as much workload as possible on the host computer, freeing the 

targets to work in real time on their duty, the control of the robot. The host computer is 

additionally used for developing programs that can run as tasks on the targets. Programs 

written in C can easily be cross-compiled on a Unix system and downloaded (i.e. linked) 

to any of the targets for execution. 

The targets are Motorola MVME2700 boards each having a single Power PC 

processor running at 360 MHz. All the targets are mounted in a single VME rack, with 

only the bus master having a connection to the host computer. The bus master also 

manages the shared memory and the initialization of all other boards in the systen. The 

communication between the different targets is performed via the VME backplane. All 

VME boards run tasks with certain functionality, called Servos, as shown in figure 6.2: 
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Figure 6.2 General Functionality of the different VME Boards 

 

The Task Servo handles the user interface and plans the desired trajectory in joint space, 

resulting in desè , desè& , and desè&& . The Vision Servo and additional external cameras are not 

used in this thesis, as the desired trajectory is analytically generated (see chapter 7.1). 

Therefore, the Vision Servo does not run any task. 

In this study, the major focus is on the Inverse Dynamics Servo: Here the inverse 

dynamics model is used for predicting feed-forward commands, and thus, also learning 

the model has to happen on this Servo. The Motor Servo deals with low-level motor 

control, like a PD controller for negative feedback control as discussed in chapter 2.3. It 

also handles the input and output operations to control the robot. This involves reading 

sensors and copying the results into shared memory such that all other Servos have access 

to them. To perform the IO-operations, the Motor Servo is connected to AJC-Boards that 

will further be described in the following paragraph. In general, further tasks can be 

added on the existing or additional targets, such that an almost arbitrarily complex control 

system can be implemented. The main limitation is given by the VME backplane that has 

to organize the communication between the single targets. Examples of this additional 

functionality include a separate Inverse Kinematics Servo for trajectory planning or (as 

shown in figure 6.2) a Vision Servo for processing input from cameras. 
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In addition to the targets, special VME boards are necessary to generate the appropriate 

electrical control signals, which operate the robot. An Advanced Joint Controller (AJC) 

Board is directly connected to the Motor Servo and to every single joint. With seven 

degrees of freedom, seven of such AJC boards are needed. Each board performs the 

transformation in both directions; from logical commands to electrical signals to control 

the robot and the other way, to convert sensor readings into digital values. Open 

parameters like the slope and the threshold for the conversion can be adjusted using 

special software supplied with VxWorks. 

 

 

6.2 Software for Robot Control 

 

The basic software for controlling the robot exists in a software package called 'SL' 

(Simulation Laboratory) that has been developed at the CLMC laboratory. This software 

provides tasks for the basic Servos as described in chapter 6.2, such that the robot can 

start running immediately. Additional functionality that is required by a task has to be 

programmed on top of the existing modules. For this thesis, the inverse dynamics model 

using learning with LWPR had to be programmed to replace the original inverse 

dynamics that is based on rigid body assumptions. 

 In addition to the software that runs on the VME boards, the SL package also 

provides a simulator that can be used to test new software packages. Programmed 

software written for the robot can run in both, the simulator and on the robot. Only the IO 

interface (handled by the Motor Servo) behaves in a different way: Either commands are 

sent to the AJC boards and then sensor readings can be retrieved from these boards. 

Alternatively, using the simulator, the whole software runs on the host computer only and 

simulates the robot, i.e. displays a figure of the robot on the controlling computer and 

returns estimated sensor readings. This offers a valuable support for developing and 

debugging software, as the same program can be used for the simulator and the real 

robot. The chance of adding errors is minimized, when transferring software from the 

simulator to the robot. 

 Another tool contained in the SL packages is a program for data collection with a 

graphical display. This software can be used to collect motion data (like positions, 
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velocities, and accelerations for the joints but also for the fingertip) from the running 

system or from the simulator. The data collected can be exported into ASCII standard 

files and further used with other programs, e.g. MatLab for additional processing. 

As described in chapter 6.1, the robot control hardware consists of several targets, 

which usually run a single task each. The basic tasks for robot control are provided within 

the SL package. The functionality of these will be described below: 

The Motor Servo usually runs at high frequency (510Hz in our case), and 

performs the low level interaction with the robot. It consists of basic feedback control 

loops that read errors in desired positions, velocities, and accelerations ( desè , desè& , and 

desè&& ). A feedback command ( fbu ) is generated based on the error between desired and 

actual value (refer to chapter 2.2). In addition, the Motor Servo simply reads a feed-

forward command provided by another Servo and adds both, the feedback and the feed-

forward command, to retrieve the final control command u that is send to the robot. The 

Motor Servo's mainloop consists of the following steps: 

• Reading desè , desè& , desè&& , and ffu  commands from the shared memory 

• Computing appropriate motor-commands for the robot 

• Sending the new commands to the AJC-Boards or to the simulator 

• Reading the sensor of every joint for position, velocity, and torque information 

• Updating the sensor information in shared memory 

 

The aim of the Task Servo is to create appropriate desired positions, velocities, and feed-

forward commands19 to accomplish a user specified behavior. Therefore, the Task Servo 

usually runs at the same high frequency as the Motor Servo to offer a new desired state 

with every update of the Motor Servo's control loop. The Task Servo can move certain 

computations by transferring them to additional modules, such as the inverse dynamics or 

the inverse kinematics computation. Usually, the Motor Servo generates a feed-forward 

command ffu  based on rigid body dynamics assumptions (refer to chapter 2.5). In this 

thesis, however, calculating the feed-forward command will be learned by a separate 

Servo. The remaining steps of the Task Servo's mainloop are summarized below: 

                                                 
19 The feed-forward computation was handled by a separate processor in my research due to the 
computational complexity of the neural network. 
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• Reading the current state of the robot (è , & , and && ) 

• Reading data about visual information from shared memory (e.g. information of 

the position of color blobs) 

• Computing useful quantities, e.g. the Jacobian J of the forward kinematics, the 

endeffector-position, -velocity and -acceleration in Cartesian space and storing 

them in shared memory 

• Executing a user-specified set of functions to compute the task-specific desired 

position, velocity and accelerations 

• Storing the desired quantities in the shared memory, such that they can be 

retrieved by the Motor Servo 

 

The Inverse Dynamics Servo will only be used for calculating a non-analytical model of 

the inverse dynamics. If an analytical model is used, the computations are fast enough to 

run in real-time on the Task Servo. In contrast, for learning the inverse dynamics model 

and predicting feed-forward commands by means of neural net techniques (such as 

LWPR), higher performance is needed. A separate target might therefore be necessary to 

run the inverse dynamics. Depending on the computational complexity, separate models 

for different joints have to be learned on separate targets to further enhance 

computational power within a given time. The mainloop of the Inverse Dynamics Servo 

consists of the following steps: 

• Reading desired positions, velocities and accelerations 

• Computing the feed-forward command using LWPR for predictions 

• Storing calculated commands in the shared memory, such that they can be 

retrieved by the Motor Servo 

• Every tenth iteration:20 Reading sensor information from the Motor Servo and 

updating the internal model. 

 

The Inverse Kinematics Servo can be used to learn a complex model of inverse 

dynamics with additional constraints, such as human-like motion or extremely energy- 

                                                 
20 Empirical evaluation showed that learning every 10th iteration (i.e. 51Hz) is a good compromise between 
computational complexity and accuracy 
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efficient motion. The functional organization can be seen in analogy to the Inverse 

Dynamics Servo: The Inverse Kinematics Servo reads the desired quantities and 

calculates the desired positions, velocities and accelerations instead of the Task Servo. 

The results will be stored in shared memory, such that the Inverse Dynamics and the 

Motor Servo can retrieve them to compute control commands. The mainloop of the 

Inverse Kinematics Servo consists of the following steps: 

• Reading desired positions, velocities and accelerations in Cartesian coordinated 

• Computing the desired quantities in joint space 

• Storing these quantities in the shared memory, such that they can be retrieved by 

the Motor Servo 

• Every tenth iteration: Reading state information from the Motor Servo and 

updating the internal model, if a learning approach like LWPR is used. 

 

The research for this thesis only dealt with the implementation of the inverse dynamics 

estimation located on the Inverse Dynamics Servo. Thus, the remaining system was used 

'as it is', i.e. without modifications or the addition of further components. It turned out 

that SL offered an easy to use yet powerful environment. However, as SL still is in an 

developmental stage, frequent changes in the code happened that also required adaptation 

of the inverse dynamics software. Whenever a program did not work properly, errors had 

to be traced back through the whole system, which needed some additional time. 

However, the provided simulator was a powerful tool, not only to ease the development 

of software. The possibility to generate desired trajectories and to sample motion data for 

a first evaluation of LWPR's performance saved much effort. 

 

 

6.3 The Sarcos Robotic Arm 

 

The robot that has been used for the experiments was constructed by SARCOS, a 

company that usually builds tele-operated robots for entertainment purposes. The Sarcos 

arm is a copy of another robotic arm, which is part of a humanoid robot also built by 

Sarcos, and which is running in the ATR laboratories, Kyoto, Japan. The design of this 

robot, and thus of the robotic arm, follows the ideas of humanoid robots, i.e. it is as 
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compliant and lightweight as possible. The arm is hydraulically actuated and has two 

different modes of operation: low and high pressure. The low-pressure mode can be used 

to run algorithms without the danger of breaking the robot or hurting anyone. However, 

this mode does not offer high accuracy or fast motion. Once switched to high-pressure, 

obviously the dynamic properties of the system completely changes, such that the low-

pressure mode is best used for a secure first evaluation of algorithms only.  

 The robot arm has seven hydraulically actuated rotary joints and, thus, offers 

seven degrees of freedom (DOF). The names and functionalities of each DOF are 

described in the following table: 

 

2 DOF in the shoulder  
-  Shoulder abduction / adduction (SAA) 
-  Shoulder flexion / extension  (SFE) 

1 DOF in the upper arm 
-  Humeral rotation   (HR) 

1 DOF in the elbow 
-  Elbow flexion / extension  (EB) 

1 DOF in the lower arm 
-  Wrist rotate    (WR) 

2 DOF in the wrist 
-  Wrist abduction / adduction  (WAA) 
-  Wrist flexion / extension  (WFE) 

 

The hand offers three additional degrees of freedom in the thumb and the indexing finger. 

These have, however, not been used for learning as they have hardly any influence on the 

system's motion due to their limited weight. Of the hand, only its position without respect 

to the fingers was used for evaluation. Please refer to figure 6.3 for a picture and a 

functional sketch of the robotic arm. 
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a)
    

b)
  

Figure 6.3 Sketch (a) and Photograph (b) of the Sarcos Robotic Arm 

 

The main goal of my research is learning the inverse dynamics model for the humanoid 

robotic arm. As a short reminder, the inverse dynamics model is a typical element of non-

linear control (e.g. Sciavicco & Siciliano, 2000), which relates the vectors of position 

( ), velocities ( & ), and accelerations ( && ) of a robot to the torque vector  that is 

necessary to accomplish the acceleration in the given state. Ideal mechanical systems 

obey inverse dynamics equations from rigid body dynamics 

 

GèèèCèèB =+⋅+⋅ )(),()( &&&&     (eq. 6.1, same as eq. 2.9) 

 

These equations are highly non-linear and would extend over 1500 lines of C-code for the 

Sarcos robot arm. Still, rigid body dynamics can be calculated with specialized 

mathematical packages, and the open parameters (hidden in the parameter matrices B, C, 

and G) can be estimated from data (e.g., An, Atkeson & Hollerbach, 1988, Featherstone, 

1987). The Sarcos robot is hydraulically actuated, and thus, several unknown strong 

linearities are added to the complexity of the equation. They stem from fluid dynamics, 

non-linear friction terms of the hydraulic motors, and non-linear saturation of the 

actuators. From previous experience, it was clear that rigid body dynamics is an 

insufficient model for the Sarcos Robot Arm. Therefore, the learning algorithm LWPR 

was used to estimate the inverse dynamics from the robot's motion. The following 
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chapter will describe the process of learning the inverse dynamics function. It will deal 

with the trajectory generation, the motion capturing, the learning process, and visualize 

the results of using LWPR to predict inverse dynamics commands. 



 81

7. Evaluation of the Arm’s Motion 
 

7.1 Generating Trajectories for Learning 

 

To learn the inverse dynamics model, the algorithm needs data samples from real motion. 

These samples consist of sets of four elements each: position, velocity, acceleration and 

load. The robot has to be run along a variety of trajectories, such that these data samples 

can be acquired by measuring the sensors in each joint. As described above, every joint is 

equipped with a sensor for the position, the velocity and the load. The load sensor is used 

to measure torques; so only the joint acceleration needs to be estimated using 

differentiation techniques. The differentiation is performed on the Motor Servo, running 

at a high frequency of 510 Hz. The data samples are retrieved at a much lower frequency 

of 50 Hz, leaving enough time and samples to run a low-pass filter on the data. This low-

pass filter ensures smooth data compared to the direct differentiation of the sensor 

readings.  

 A highly significant question for successful learning is how the imposed 

trajectories have to be designed. If the robot performs simple repetitive motion, all data 

samples will be generated by this limited motion. The learning algorithm cannot 

generalize because it does not have data samples from other areas. To ensure a rich set of 

data, several trajectories have been developed ranging from continuous motion in joint 

space to discrete motion in task space, also ranging from single joint motion to all joint 

motion. As a further significant criterion, the speed of motion can be varied: slow and 

fast motion has to be represented in the learning data. In addition, it has to be ensured that 

the whole range of motion is covered. Special care needs to be taken that no joint limits 

are hit during the process of sampling data. This would lead to false data that the learning 

algorithm tries to model. 

Data samples with respect to the above-mentioned criteria have been created 

using the following tasks: 

 

Reaching Task (in Joint Space) 

This task is designed to explore different joint motions without defining the motion of the 

fingertip. Therefore, the position of the fingertip is the result of randomized motion in all 
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joints. This task explores motion of the joints in all possible constellations, consequently 

leaving some joints without any motion. The task iterates through a loop, starting with all 

joints in their default position. During the loop, a random subset of all joints is chosen 

(e.g. 1, 4, 5 and 7 of all seven joints). These joints are moved close to either their left or 

right maximal value within a fixed time using a 5th order spline to generate smooth 

motions from start to end. After a short delay at the final position, the joints are returned 

to their original position using the same spline in opposite direction. After another short 

delay, the iteration starts again with a new random set of joints. The maximal elongation 

of each joint (in percent of its absolute maximal elongation) and the time for the motion 

can be varied as parameters to gain variety in the motion. The elongation typically 

reaches in the order of 70-90% of the maximal elongation, whereas the time for motion 

varies from 0.6 to 3 seconds for a single motion. 

 

Reaching Task (in Cartesian Space) 

The idea of the second reaching task is very similar to the above-mentioned task in joint 

space. This time, however, the target for this motion is expressed in form of a randomized 

Cartesian fingertip position. This means, that the desired final joint states are calculated 

with the inverse kinematics function supplied by SL. This task makes different joints 

move different widths and at very different speeds, depending on the random target 

position. An addition to this task is to follow geometrical patterns like lines, pyramids, or 

boxes. These patterns can be seen as training for expected motion during later operation 

of the robot. The learning approach will result in better performance if the input data 

contains data close to the trajectory that will later be used during operation. 

 

Sinusoidal Task (in Joint Space) 

The goal of the sinusoidal task is to explore continuous motion in all joints at the same 

time. During execution, every joint is moved according to a sinusoidal function (with 

different phase, frequency and amplitude). Some joints are moved according to the 

superposition of two sinusoidal functions, which changes the motion significantly. The 

design of the task has to ensure that the patterns of motion do not repeat during 

execution. Thus, the coefficients of the sinusoidal functions have to be numbers that will 

not become multiples of each other easily. Additionally, an overall frequency multiplier 
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is permutated during repetitive executions of the task to achieve a broader variety of 

motion data. 

 

Figure-Eight Task (in Cartesian Space) 

The figure-eight task is designed to serve as a verification of the learned inverse 

dynamics. It draws a figure-eight in the x-z-plane of the fingertip, keeping the y position 

constant (in Cartesian coordinates). The figure-eight consists of two sinusoidal functions 

for x and z, with one having double the frequency but half the amplitude of the other: 

)2sin(2
1 π⋅⋅= tx , )sin( π⋅= tz , )(constyy def= . The overall time to draw one figure-

eight was is adjustable in a range from 0.7s to 4s. Thus, recording the x and z position 

and plotting the trajectory, one can easily evaluate the quality of the motion. 

 

Figure-Eight Task with a Wiggling Component 

This is a slightly more sophisticated version for generating training data. It is designed to 

explore the area close to the desired test trajectory but not exactly along the desired 

trajectory. For this, small sinusoidal perturbations are added to the original desired 

fingertip positions of the figure-eight. These perturbations are independent for x, y, and z- 

directions: 

 

)3sin(~
21 xtxxxx desdes +⋅⋅+=  

)3sin(~
21 ytyyyy desdes +⋅⋅+=  

)3sin(~
21 ztzzzz desdes +⋅⋅+=  

 

During multiple succeeding tasks, these perturbations are varied in amplitude ( 111 ,, zyx ), 

in frequency ( 222 ,, zyx ), and in phase ( 333 ,, zyx ). The following figure gives an 

impression of the area of motion covered by the tasks described above. 
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Figure 7.1 Range of Motion (Fingertip Position) covered by Sample Tasks 

(all values are shown in meters) 

 

The upper left figure shows a two minutes section of motion described by the reaching 

task in joint space. One can easily recognize the smooth trajectories resulting from 

trajectory planning in joint space. The upper right figure shows the fingertip position in 

Cartesian space during the sinusoidal motion. One can also recognize smooth motion, but 

this time almost the entire workspace is covered. The lower left figure displays the 

motion during the plain figure-eight task (only x and z directions are shown) with varying 

speed of motion. Thus, the figure-eight slowly 'grows' due to uncertainty in the control. 

The graph in the lower right corner shows the figure-eight task with imposed 

perturbations, such that the position of the figure-eight and the trajectory of the figure 

change over time. Again, only the x and z directions are shown. All units of the graphs 

are meters. 
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The range of motion has to be carefully checked when sampling data. It needs to be well 

balanced between covering the interesting area completely, and not exceeding any joint 

limits. If a joint limit is exceeded, the motion in this joint will stop abruptly and thus, 

false data is added to the learning set. Obviously, hitting the joint limits might also 

seriously damage the robot. If this constraint limits the area that can be covered by 

motion, further exploration will have to take place once the robot has learned the basic 

area. This means that if the robot later explores previously unseen areas, the learning will 

continue. Finally, the algorithm knows the inverse dynamics for the whole appropriate 

range of motion. A second concern must be the maximal torque that any joint can 

generate. If the torque is exceeded, the desired command cannot be executed as planned. 

The learning algorithm on the other hand cannot verify if the desired command was 

executed. Thus, it has to assume the correct execution. As a result, it learns an invalid 

mapping from command to motion. 

 

 

7.2 Learning Inverse Dynamics 

 

For learning the inverse dynamics model, different data sets are generated according to 

the tasks described in chapter 7.1. While collecting data, the feed-forward commands are 

generated by an analytical model with estimated parameters according to An & Atkeson, 

et al., 1988 (refer to chapter 2.5). This method returns roughly correct results. Then, a 

command is executed to move the robot along a desired trajectory. The training samples 

used as input to the learning algorithm consist of the actual applied command and the 

resulting state of the robot. Thus, a mapping between a command that was sent and the 

resulting state of the robot is learned. It does not matter how accurate the analytical 

inverse dynamics model is, as LWPR only learns what happens as reaction to an 

(arbitrarily) applied command. Initially, data were collected for off-line training of 

LWPR models in order to gain better insights about the learning process of LWPR, and to 

allow comparing LWPR to parametric models based on rigid body dynamics. Later 

experiments used direct online learning without memorizing any data. 

The data collected consists of 21 input variables (joint position, velocity and 

acceleration for seven joints) and 7 output variables (the joint torques measured by the 
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load cells). The frequency for sampling data was set to 50 Hz; this was found to be fast 

enough to capture the 'essence' of the motion, but also slow enough not to get too similar 

data (and thus waste resources, as very similar data does not represent new information) 

All tasks are executed in multiple trials with varied parameters, like the maximal 

elongation or the time for a repetitive motion. Once the initialization of the robot is 

completed (i.e. a few seconds after the task starts), data is collected for 120 seconds. This 

results in 600050120 =⋅ Hzs  data points of each single task. Data from the different 

tasks is then merged into separate sets: One set contains all data from both reaching tasks 

and the sinusoidal task. This set is assumed to represent 'general motion'. The other set 

contains all data from the figure-eight tasks, with and without wiggles. This set is later 

being used to check if learning on data close to the desired trajectory results in superior 

performance compared to learning on general data. As additional tests, the figure-eight 

task data again is split into two subsets, one containing data with wiggles and the other 

containing only data without wiggles around the original figure-eight trajectory. In a way, 

these training sets are somehow 'cheating' with real learning, as a humanoid robot cannot 

be trained on exactly what they will do later. This would eventually include all motion 

possible. Thus, the appropriate learning task is one without the figure-eight data. 

Of each of the data sets generated, a random subset (20% of all data) is extracted, 

i.e. removed from the original data and kept as a separate test set. The remaining 80% of 

the original data are used as input to train the learning algorithm LWPR. The extracted 

test set is used to evaluate the performance of LWPR: For this evaluation, every single 

data in the test set is given to LWPR to predict the torque needed to reach this state. 

LWPR's prediction is then checked against the real torque that has been used to reach this 

state, which is stored with the test data set. This complex procedure ensures that the 

algorithmic performance can be evaluated based on data that it has never seen before. 

Thus, LWPR needs to generalize - it is not sufficient to memorize all data. The difference 

between prediction and previously measured torque of all data is summarized in the 

mean-squared-error and is displayed in graphs as function over the time. These graphs 

allow easy comparison with other techniques, like the analytical model introduced above. 

 It should be mentioned that for the seven required torque predictions (one for each 

joint), seven independent models have to be trained. A single LWPR model could also 

generate seven predictions, but in this case, the position and the size of the receptive 



 87

fields would be the same for all seven predictions. There is no reason to believe that the 

local models have the same distance metrics for all joints. Therefore, all seven joints must 

be learned by separate models. Seven independent models offer another advantage: they 

can be computed in parallel on multiple boards, which will speed up the processing time 

for both, learning and predicting. 

 

 

7.3 Learning Results on Sampled Data 

 

As described in chapter 7.2, each of the seven networks needed for predicting the inverse 

dynamics model of the robot is trained independently on the 'general data' set. The 

general data set consists of 57.600 training samples, what responds to roughly 20 minutes 

of actual training. As an example of the resulting learning curves, the diagram for the 

SFE joint is shown in figure 7.2: 
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Figure 7.2 The SFE learning Curves as an Example for Learning 
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The upper part of figure 7.2 shows the decrease of the normalized mean squared error 

(nMSE) on the separate test set while learning the inverse dynamics of the shoulder 

flexion/extension joint (SFE). The nMSE is the mean squared error that is found when 

predicting the test set, normalized by the variance of the test set's output data. The 

normalization allows easy comparison with other joints or other data sets, which might 

operate in a very different output range. For example, an absolute error of 0.5 might be an 

excellent or a catastrophic result, depending on the variance of the output range. In figure 

7.2, the nMSE settles at 0.0353 after seeing 500.000 training samples, which is a final 

error of 3,53 % of the overall output distribution. The 500.000 training samples presented 

to the learning algorithm represent roughly 10 iterations on the available training data. 

To compare this result to another approach, parameter estimation was carried out 

using standard estimation methods (An, Atkeson, et. al, 1988 and Conradt, Tevatia, et al., 

2000) on the same data set. This estimation resulted in an analytical rigid body dynamics 

model with estimated inertial and geometric parameters. The analytical model that was 

generated incorporates a large amount of prior knowledge about the physics of the robot 

system. When comparing both results, the parameter estimation only achieves a nMSE of 

0.1 on the same training data (shown as a dotted line in the same diagram). Thus, LWPR 

outperforms the analytical approach after very few training samples only. 

 The diagram in the center of figure 7.2 shows the number of receptive fields that 

are allocated during learning. One can easily recognize that the remaining error decreases 

only marginally, once roughly 500 receptive fields have been allocated. The lower 

diagram in figure 7.2 shows the average number of projection directions used by all 

receptive fields. This number settles at 3.7, meaning that even though the number of input 

dimensions was 21, locally less than 4 dimensions are used for predictions. This is a 

remarkable result, which also strongly supports the research by Vijayakumar (1997) & 

Schaal about motion data lying in very few dimensions locally. 

The learning curves of the other six joints are very similar. For convenience 

reasons, the final learning results will be summarized in the following table: 
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JOINT 

NAME 

PARAMETER 

ESTIMATION 
LWPR 

SAA 0.1952 0.0560 

SFE 0.1002 0.0353 

HR 0.1539 0.0398 

EB 0.2031 0.0492 

WR 0.2409 0.0678 

WAA 1.1722 0.0342 

WFE 0.5535 0.0262 

Table 7.1 nMSE Learning Results for the General Data Set 

 

Looking at the table, one will realize that the parameter estimation approach performs 

significantly worse on the WAA and WFE joints compared to the other joints. This can 

be explained by the fact that these joints are at the end of the kinematic chain and are 

especially compliant and lightweight. Therefore, the rigid body dynamics assumptions 

match these joints poorly. In strong contrast, LWPR does not perform in any way 

different on these joints, as it does not incorporate prior knowledge about the joints when 

learning. 

An interesting experiment can be designed with the figure-eight tasks to generate 

data. In this test, data for training LWPR is generated using the figure-eight with 

superposed wiggles, i.e. data close to the desired figure-eight trajectory but not exactly on 

the trajectory. The data for evaluation, however, is exactly the desired figure-eight 

trajectory. This test will show how well the different approaches can generalize from a 

narrow area of data close to the desired data. The training data set used for this test is 

constructed of nine different sample sets (with slow, medium and fast wiggles) 

containing 6000 data points each. Thus, the complete training set consists of 54.000 

training examples. The test set, however, consists of only 1020 data samples, as the 

figure-eight for evaluation was drawn within 2 seconds and the Motor Servo was running 

at a frequency of 510 Hz. The resulting learning curves show the nMSE, the number of 

receptive fields and the average number of projection directions in figure 7.3:  
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Figure 7.3 The SFE learning Curves on the Figure-Eight Data 

 

One can easily realize that LWPR outperforms the parametric model within very little 

time. In figure 7.3, only half the total training input compared to the general data set 

(250.000 vs. 500.000 data points) is shown. Ultimately, LWPR converges to a nMSE that 

is about 12 times lower than the nMSE achieved with the parametric model on this set of 

data. This is not surprising, as LWPR can model the presented data samples in the 

bounded range much better than an analytical model. The analytical model always has to 

represent the entire range of motion. LWPR uses fewer receptive fields than in the first 

learning approach on general data; these receptive fields are, however, located in a much 

narrower region, such that the overall accuracy of the data prediction becomes better. 

Additionally, the average number of projection direction increases by almost one, 

indicating that more features of the input data are used for classification. This happens, 

because all data is lying much closer together compared to the general data set used 

before. 

 Again, the learning curves for the other six joints are very similar to the one 

presented, such that only the final learning results will be displayed in the table below. 
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JOINT 

NAME 

PARAMETER 

ESTIMATION 
LWPR 

SAA 0.1132 0.0054 

SFE 0.0581 0.0048 

HR 0.1010 0.0017 

EB 0.0947 0.0048 

WR 0.4584 0.0135 

WAA 0.9118 0.0065 

WFE 1.7762 0.0070 

Table 7.2 nMSE Learning Results for the Figure-Eight Training Set 

 

Training the network for 500.000 iterations took about 2 ½ hours on a 500MHz personal 

computer running Linux, indicating that LWPR achieves approximately real-time 

updating (given that the data was collected at 50Hz). Additionally, every network can be 

trained independently on separate computers, which will increase the performance by a 

factor of seven. There is hardly any communication overload in this context. 

 

 

7.4 Verifying the Results on Real Motion 

 

The normalized mean squared error (nMSE) shown as a result in chapter 7.3 allows a first 

evaluation of the learning quality. However, important is the performance of the robot on 

desired tasks, not the value of the nMSE. To show these results, the desired states 

(positions, velocities and accelerations for all seven joints) of two tasks are generated. 

The feed-forward commands to achieve the desired positions are predicted by LWPR. In 

a second trial, the analytical model with estimated parameters calculates feed-forward 

commands. Then, the tasks are executed on the real robot using desired positions and 

predicted feed-forward commands. During execution, the fingertip position is recorded. 

The recorded positions serve as a criterion for the evaluation.  

 The first test is performed using the figure-eight task in Cartesian space as 

described in chapter 7.1. The trajectory of the figure-eight is executed as a repetitive task 

using the feed-forward commands predicted by LWPR and a low gain PD controller. In 
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this test, LWPR was trained on the 'general data set'. After a few repetitions of the figure-

eight to wait for initial disturbances to settle, the fingertip position is recorded for 20 

iterations. Figure 7.4 shows the fingertip position in the x-z-plane. For both feed-forward 

control strategies, the LWPR predictions and the analytical model with estimated 

parameters, 20 loops through the figure-eight are displayed, showing that the control 

stays on track. 
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Figure 7.4 Executing the Figure-Eight Task with Feed-forward Control 

(all values are shown in meters) 

 

As can easily be seen, LWPR performs by far superior compared to the analytical model. 

The trajectory achieved using LWPR's prediction as feed-forward commands is much 

closer to the desired trajectory than the one accomplished by the analytical model. Both 

methods, LWPR and the analytical model, have used the same input data to estimate the 

model. The superior performance of LWPR clearly demonstrates that rigid body 

dynamics cannot model the humanoid robot arm well. 
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During the first evaluation, the total time for a figure-eight was set to two seconds. When 

varying the time, one expects different results. Indeed, longer execution time (i.e. slower 

drawing of the figure-eight) improves the performance. This is not a property of the 

prediction or the learning approach; it happens because slower motion is better controlled 

by the PD controller. The influence of the feed-forward control is significantly reduced 

when moving slower. Therefore, both approaches improve the quality in roughly the 

same way. 

A more interesting comparison is using the alternate training data set. This set was 

constructed using motion close to the desired figure-eight (please refer to figure 7.3 and 

table 7.2). The nMSE based on the figure-eight trajectory was significantly smaller 

compared to the nMSE achieved on the general data. This leads to the expectation of 

improved performance on the execution of the task. However, also the nMSE of the 

analytical model was smaller. So again the desired trajectory is used to predict feed-

forward commands and the resulting fingertip trajectories are shown in figure 7.5: 
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Figure 7.5 Executing the Figure-Eight Task with Feed-forward Control 

based on Figure-Eight Training Data (all values are shown in meters) 
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Comparing figure 7.5 to figure 7.4, one can easily recognize that the performance has 

improved. As expected, both approaches result in trajectories that lie closer to the desired 

trajectory. Still, LWPR outperforms the analytical model by far. One important thing to 

stress is the fact that learning based on data close to the desired trajectory is not a valid 

approach to solving the inverse kinematics problem. One cannot assume that the desired 

trajectory is known in advance; so finally, the robot has to perform well on any arbitrary 

trajectory. 

 A third and last comparison between LWPR's predictions and the analytical model 

was carried out using the reaching task in joint space. The task performs smooth motion 

in a randomly chosen subset of all joints. After a short delay at the target position, the 

arm returns to its default position and starts again choosing a different subset of all joints. 

The total time for a single iteration was set to four seconds, giving almost two seconds to 

move the arm to the target and again almost two seconds to return. A more detailed 

description of the task can be found in chapter 7.1. This task is very different compared to 

the previously evaluated figure-eight task, since it consists of discrete motion in joint 

space compared to continuous motion in Cartesian space. Again, LWPR trained on the 

general data set was used for predicting feed-forward commands. The specialized version 

(trained on the figure-eight) cannot be assumed to perform accurately, as the limited input 

data does not cover the range of motion used in the reaching task. 

For evaluating the performance, the feed-forward commands of all joints are 

predicted by LWPR. During a second trial, feed-forward commands are generated by the 

analytical model estimated on the same data used for training LWPR. Figure 7.6 shows 

the displacement of the fingertip position compared to the desired trajectory. The actual 

trajectory cannot be displayed well on paper; therefore, the l2-norm position error 

(Cartesian distance from desired to real fingertip position) is shown. 
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Figure 7.6 Fingertip Displacements during the Reaching Task 

 

This figure again demonstrates the superior performance of LWPR compared to the 

analytical parameter estimation technique. LWPR hardly misses the desired position by 

more than two centimeters, whereas the analytical estimation is often more than four 

centimeters off. One can realize that the displacement usually becomes significantly 

worse when the joints are moved far away from their rest positions (at the positions 

between the grid lines on the time axis). On the other hand, the displacement usually 

decreases when the joints are operated close to their rest position (at the positions of the 

grid lines in figure 7.6). This can be explained by the fact that both algorithms have been 

exposed to little data from areas far away from the default position. Hence, the 

approximation ability is significantly reduced in these areas. The global parameter 

approximation approach, which is building a single model that is valid for the entire 

space, particularly under-represents these areas. Due to the local learning in LWPR, the 

little data available is used to generate a model that is valid in this region only. And, as 

can be seen, this method leads to far superior results for the data given. Again, the local 

learning model used in LWPR again by far superior compared to the analytical approach.  
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8. Conclusion 
 

8.1 Discussion 

 

This thesis presents a new learning algorithm, Locally Weighted Projection Regression 

(LWPR), a non-linear function approximation network that is particularly suited for 

problems of online incremental motor learning. The essence of LWPR is to achieve 

function approximation with piecewise linear models and to find efficient local 

projections to reduce the dimensionality of the input space. High-dimensional learning 

problems can thus be dealt with efficiently: updating one projection direction has linear 

computational cost in the number of inputs, and since the algorithm accomplishes good 

approximation results with only 2-5 projections irrespective of the number of input 

dimensions, the overall computational complexity remains linear in the inputs. Moreover, 

LWPR selects low dimensional projections and is thus able to exclude irrelevant and 

redundant dimensions from the input data. 

LWPR leads to excellent function approximation for classical problems in robot 

learning. In this thesis, I concentrate on the problem of estimating the inverse dynamics 

model of a highly compliant, lightweight humanoid robot. Finding the inverse dynamics 

model of such a robot is a nontrivial problem that has to be dealt with in new ways. 

Because of the design of humanoid robots, traditional approaches do not offer high 

quality. LWPR, in contrast, outperformed the traditional parameter identification method 

by a large margin. This result by itself is not surprising since it was known in advance 

that the humanoid robot arm does not conform to the traditional rigid body assumption. 

What is remarkable, however, is that LWPR achieves good learning results from data that 

represented less than one hour of actual robot movement, and that only 2-3 local 

projections were needed on average. Thus, the 21-dimensional input space of the learning 

task was drastically reduced. 

The major advantages of using the local online learning algorithm LWPR for 

estimating the inverse dynamics model are: 

 

• the high learning speed 

• the limited prior knowledge about the system needed to achieve good results 
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• the high accuracy achieved with a limited training data set 

• the real-time performance of the system 

• the possibility of parallel processing for each joint, such that computational 

complexity can be transferred to multiple computers for speed-up purposes 

• the build-in dimensionality reduction (projection regression) which allows 

local learning methods to work 

• the offline pre-trainability to further speed-up learning on the real robot  

 

The only known disadvantage is the remaining parameter adjustment, which is necessary 

to achieve accurate learning results. 

The main purpose for inventing the new algorithm was to estimate the inverse 

dynamics model of modern humanoid robots that are compliant and lightweight 

compared to traditional robots. However, not only such robots can improve their accuracy 

using LWPR. Traditional robots also suffer from uncertainties in their dynamics model, 

and the learning approach offers a new way to deal with this problem. Additionally, as 

traditional robots age, their mechanical properties change. An online learning approach 

will always keep the model accurate, no matter how the mechanical system changes (as 

long as the wear remains moderate). One step further, a learning approach will estimate 

the appropriate inverse dynamics model for any robot it is used on, with almost no human 

interaction. This can drastically simplify the design process of new robots. 

 On the other hand, not only the inverse dynamics problem can be solved by 

LWPR. Other regression problems with similar constraints can also be dealt with. An 

example is shown is the following chapter, using LWPR to estimate inverse dynamics. 

 

 

8.2 Brief Introduction to Using LWPR for Inverse Kinematics Estimation 

 

One of the core issues of robot control is movement planning, as outlined in chapter 2.1. 

Most movement tasks are defined in coordinate systems that are different from the 

actuator space of the robot. Hence, a coordinate transformation from task to actuator 

space must be performed before motor commands can be computed. On a system with 

redundant degrees of freedom, this transformation from external plans to internal 
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coordinates is often ill posed and is known as the inverse kinematics problem. For 

redundant manipulators like the Sarcos robot arm, solutions of the inverse dynamics 

equation are usually non-unique.  

Traditional pseudo-inverse methods, like Resolved Motion Rate Control, suffer 

from the problem of singular postures and need additional optimization criteria to resolve 

the redundancy of the system. At singular postures, i.e. when the Jacobian becomes rank 

deficient, these methods cannot yield a solution and suffer from numerical explosions. 

Given these problems, a learning system might offer an appropriate solution: it can only 

reproduce the solutions it was trained on, i.e. problems with singularities of the Jacobian 

J cannot arise since it is impossible to encounter 'singular training data'. 

Due to the redundancy of the robot arm, learning the inverse problems is usually 

not possible if the redundant solutions &  for one x&  form a non-convex set (Jordan & 

Rumelhart, 1992). This problem can be avoided by a specific input representation to the 

learning network. Consider two solutions for &  from the set of solution vectors that 

produce the same end-effector velocity: 

 

1)( èèJx && ⋅=  

2)( èèJx && ⋅=  

 

Since the Jacobian relates the x&  and è&  in linear form, even for a redundant system the 

average of the two solutions will result in the desired x& , i.e.: 
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èèèJ
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&&
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+⋅
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)()( 21     (eq. 8.1) 

 

Thus, if one considers only a small local region of the  space, the set of solutions of 

joint velocity vectors for one particular x&  form a convex set. Averaging over this local 

convex set - this is what neural network learning and thus LWPR essentially does - will 

lead to a valid solution for the inverse kinematics problem (equation 8.1). Thus, a 

specially localized learning system like LWPR can learn the inverse mapping function 

based on the input/output representation ( ) ( )èèx && →, . 
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This approach will automatically resolve the redundancy problem without resorting to 

any other optimization approach; the inverse solution is simply the local average over 

solutions previously experienced. The algorithm will also perform well near singular 

posture since it cannot generate joint movement that it has never experienced. 

 Please refer to Conradt, Tevatia, et al., 2000, for a more detailed description of the 

learning process for the inverse kinematics problem, and graphs that demonstrate the 

performance of this approach. We also discuss the problem of overcome previously 

inexperienced areas by adding a small default joint velocity.  

 

 

8.2 Future Research 

 

In general, LWPR opens a very promising approach towards new motion abilities of 

lightweight compliant robots. Definitely, further experiments are needed to evaluate the 

robot's performance by using LWPR. Also, more different types of robots need to be 

tested. One such test will be performed this summer in Japan on the real humanoid robot 

(shown in figure 8.1) with additional redundant input dimensions. This addresses the 

question of scalability into higher dimensions with more redundant inputs. 

Current research focuses on creating a complete real-time implementation of the 

two robot-learning tasks in a multi-processor environment: The inverse dynamics model 

is implemented, and all the benchmark tests indicate that it will be unproblematic to 

additionally apply LWPR in real-time to inverse kinematics. To my knowledge, no other 

research groups have accomplished similar fast and accurate learning results for such 

high-dimensional learning problems in the context of humanoid robotics. 



 100

 
Figure 8.1 Photograph of DB playing Squash 
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Short German Summary 

 

Das Ziel der vorliegenden Diplomarbeit ist es, ein neues Verfahren zur 

Bewegungssteuerung menschenähnlicher Roboter (siehe Schaubild 9.1a) zu entwickeln 

und zu bewerten. Solche menschenähnlichen Roboter unterscheiden sich von 

traditionellen Robotern dadurch, daß sie aus leichtgewichtigen Materialien gebaut sind 

und eine hohe Flexibilität in ihren Gelenken aufweisen. Durch diese Änderungen können 

klassische Methoden zur Bewegungssteuerung nicht mehr akkurat arbeiten. Insbesondere 

war es bisher nicht möglich, gleichzeitig Genauigkeit der Bewegungen und Flexibilität in 

den Gelenken zu erzielen. 

 Ein möglicher Ansatz für eine neue Steuerung besteht in der Anwendung von 

biologisch inspirierten Lernalgorithmen. Diese versuchen, durch nur lokal gültige lineare 

Funktionen die unbekannte Dynamik eines Roboters zu beschreiben. Der hier vorgestellte 

und benutzte Algorithmus LWPR ist bestens dafür geeignet, eine solche Steuerung zu 

lernen. 

 Um den Lernalgorithmus zu trainieren, benutze ich einen Roboterarm, der sich  

entlang vielgestaltiger Trajektorien bewegt. Durch die gleichzeitige Messung der 

Armbewegung entsteht ein Datensatz, der die Bewegungsdynamik beschreibt. Ein 

LWPR-Netzwerk kann aus diesen Daten das Dynamikmodell des Roboters lernen und 

anschließend zur Generierung gewünschter Bewegungsbefehle eingesetzt werden. Im 

Vergleich zu traditionellen Methoden erhöht dieses neue Verfahren die Genauigkeit der 

Bewegung von menschenähnlichen Robotern um ein Vielfaches, ohne deren Flexibilität 

einzuschränken. Ein Beispiel für die Auswertung einer Bewegung ist in Schaubild 9.1b 

wiedergegeben. Dort ist die Trajektorie einer Figur-8 des Endeffektors aufgezeichnet. 

Man kann deutlich sehen, daß die von LWPR generierte Bahn wesentlich näher an der 

gewünschten Bahn liegt als die aus traditionellen Methoden resultierende. 
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Schaubild 9.1 a) Menschenähnlicher Roboter DB, b) Aufgezeichnete Trajektorie der Figur-8 
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