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Zürich, Switzerland, 2California Institute of Technology, Division of Biology, Pasadena, USA, and
3Institute of Cognitive Science, Department of Neurobiopsychology, University of Osnabrück, Osnabrück,
Germany

Abstract
In order to perform appropriate actions, animals need to quickly and reliably classify their sensory
input. How can representations suitable for classification be acquired from statistical properties of
the animal’s natural environment? Akin to behavioural studies in rats, we investigate this question
using texture discrimination by the vibrissae system as a model. To account for the rat’s active sensing
behaviour, we record whisker movements in a hardware model. Based on these signals, we determine
the response of primary neurons, modelled as spatio-temporal filters. Using their output, we train
a second layer of neurons to optimise a temporal coherence objective function. The performance in
classifying textures using a single cell strongly correlates with the cell’s temporal coherence; hence
output cells outperform primary cells. Using a simple, unsupervised classifier, the performance on the
output cell population is same as if using a sophisticated supervised classifier on the primary cells. Our
results demonstrate that the optimisation of temporal coherence yields a representation that facilitates
subsequent classification by selectively conveying relevant information.
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Introduction

The rodent vibrissae (whisker) system has been established as a standard model to study
sensory processing (Woolsey & Van der Loos 1970; Gibson & Welker 1983a, 1983b). For rats,
whiskers are an important source of sensory information (Metha & Kleinfeld 2004). Using
solely their whiskers, rats can judge distances (Krupa et al. 2001) and discriminate objects
(Brecht et al. 1997; Harvey et al. 2001) as well as textures (Guic-Roble et al. 1989; Carvell &
Simons 1990). Of these capabilities, texture discrimination has recently received particular
attention (Arabzadeh et al. 2003, 2004; Andermann et al. 2004; Moore 2004). In order to
probe textures, rats actively move their whiskers across them. The whisker movements are
detected by a population of primary sensory neurons, which are sensitive to the location and
velocity of the whisker (Gibson & Welker 1983a, 1983b; Shoykhet et al. 2000; Deschenes et al.
2003). Based on these signals, rats perform quick and reliable discrimination at a level similar
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to that of humans using their fingertips (Carvell & Simons 1990). Consequently, the sensory
signals have to be transformed to allow the whisker system such a robust discrimination.
Here we investigate whether this transformation, similar to representations of other sensory
modalities, can be derived from a general coding principle.

In the context of visual processing, several general coding principles have been extensively
studied (see Kayser et al. 2004 for a review). The principle of temporal coherence is based
on the observation that different features of a natural stimulus vary on different time-scales.
It uses the intuition that “relevant” stimulus features vary on a slower timescale than “ir-
relevant” components of the stimulus. By using this implicit information on the temporal
structure of the input rather than an explicit teaching signal, temporal coherence forms an
unsupervised (or rather “self-supervised”) learning principle. This principle has been imple-
mented in various ways, such as the trace rule (Földiak 1991), slow feature analysis (Wiskott
& Sejnowski 2002) or “stability” (Kayser et al. 2001). Applying those implementations to
natural scenes, model neurons replicate properties of V1 simple cells (Hurri & Hyvärinnen
2003), complex cells (Kayser et al. 2001; Einhäuser et al. 2002; Berkes & Wiskott 2005;
Hashimoto 2003; Körding et al. 2004), colour selective cells (Einhäuser et al. 2003), and
also face or object specific cells that are invariant to various transformations and thus resem-
ble cell properties of higher visual areas (Wallis & Rolls 1997; Rolls & Milward 2000; Stringer
& Rolls 2002). Consequently, the principle of temporal coherence has been demonstrated
to be applicable to various levels of the visual hierarchy.

In the present study, we generalize the principle of temporal coherence beyond the visual
modality. Since it has been previously demonstrated that temporal coherence can be im-
plemented in a physiologically realistic framework using local learning rules (Földiak 1991;
Wallis & Rolls 1997; Körding & König 2001), we here employ an abstraction of this prin-
ciple. Following Kayser et al. (2001), we define a global objective function (“stability”) that
characterises the temporal coherence of cells as well as their mutual interaction. We train
a population of cells on data that is obtained from a physical simulator of active whisker
behaviour and compare the results to recent physiological findings. We demonstrate that,
based on natural input statistics, neurons trained to optimise temporal coherence form a
representation that is well-suited for somatosensory classification.

Methods

Input

Recording set-up. In order to probe objects in their environment, rats actively move their
whiskers across them. We modelled this process using steel whiskers (steel wire, Small-Parts
Inc., Miami Lakes, FL, USA), fixated with one end to a sensor head, which was mounted
perpendicular to the rotation axis (Figure 1a). The steel whisker had a length of 7.30 cm and
a diameter of 0.305 mm. By using a motor (Digital Servo S9251, Futaba, Huntsville, AL,
USA) the whisker was rotated back and forth. The motor was controlled by a microprocessor
(Atmega163 Atmel, San Jose, CA, USA) interfaced via the RS232 port to a PC. The whisk-
ing frequency was set to 1 Hz. To probe textures, we placed them, comparable to natural
conditions, in a plane orthogonal in front of the whisker. We attached a tiny magnet near the
base of the whisker. A magnetic field sensor (KMZ51 Philips-Semiconductors, Eindhoven
Netherlands) recorded the distortions of the magnetic field induced by the movements of
the whisker. The motor position was measured via a potentiometer. The motor position and
the deflection of the whisker were digitalised via a data acquisition card (DAQCard-6036E,
National Instruments, Austin, TX, USA) at a sampling rate of 4000 Hz.
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Figure 1. (a) Set-up for recording artificial whisker data; (b) portion of whisker signal used for further analysis
(“sweep”); (c) schematic of filters representing primary cells; (d) network structure, Ii primary cell’s activity, Sso

subunit activity, Ao output cell activity.

Textures. We recorded whisker movements on eight sandpapers of different roughness, as
defined by their so called P-values, which is a standard measure for roughness of sandpaper
(http://www.fepa-abrasives.org/): we used P-values of 40, 60, 80, 100, 120, 150, 180 and 240.
The average grain diameter of the roughest sandpaper (P-value of 40) was 425 µm, while
the smoothest sandpaper (P-value of 240) consistsed of grains with average grain diameter
of 59 µm.

Processing of the whisker signals. The magnetic sensor was mounted on the sensor head, which
rotated to imitate the active whisking movement (Figure 1a). The movement led to a super-
position of the deflection signal and the earth’s magnetic field. To correct for this effect,
we measured the contribution of the earth’s magnetic field at each motor position and sub-
tracted it from the signal. In one whisking cycle, a whisker moved across the surface, back
and forth. Based on the motor position, the segments when the whisker touched the texture
were selected. We refer to these segments as sweeps. A sweep consisted of 451 data-points,
corresponding to 0.11 s. In total, we recorded 200 sweeps for each texture. Each sweep was
then normalised to range from 0 to 1 in amplitude (Figure 1b). These signals served as input
to simulated primary neurons.

Temporal properties of the input. When rats explore the environment using their whiskers, they
repeatedly move them across objects of interest. Hence, it is most likely that two consecutive
sweeps result from the same texture. In our main simulations, consecutive sweeps are taken
from the same texture class. As a control, we additionally varied the probability that con-
secutive sweeps fall in the same class. The interval tested ranges from chance level (12.5%)
to 100%. (100% can be reached only artificially when learning is switched off between class
changes, of course.)

Input representation. The primary sensory neurons in the whisker system code for velocity and
position of whiskers (Gibson & Welker 1983a, b; Shoykhet et al. 2000). We modelled the
response of a population of primary cells to the whisker movements (Figure 1c). We filtered
the signal with nine different spatial filters (“position”-filters) and nine different temporal
band-pass filters (“velocity”-filters).



226 J. Hipp et al.

- The position filters are Gaussians with standard deviation 0.1 and mean (x0) ranging
from 0.1 to 0.9 in 0.1 steps (in units of the aforementioned normalised position).

- The velocity filters are formed by the difference of two Gaussians shifted by twice
their standard deviation τ . τ ranges from 1.25 ms to 11.25 ms in steps of 1.25 ms.
These filters are band-pass filters with different preferred frequencies (from 24 Hz to
219 Hz) and thus resemble low-pass filtered velocity sensors.

Each primary cell corresponds to the product of a position and a velocity filter, yielding 81
(Ni) different primary cells. Each sweep is filtered and integrated over the time of the sweep,
such that each sweep results in one value per primary cell. These activities serve as input to
the network. Although this is an abstract model of the primary sensory cells, it captures the
main properties of spatial and velocity selectivity (see also the discussion).

Network

Neuronal model. As in previous studies of the visual system, we use a 2-layer network (Fig-
ure 1d). The activity of primary cells Ii (i = [1, . . ,Ni]) is used to train output cells. Each
output cell receives input from several subunits (Sos ). The activity of output cells Ao is given
by

Ao =
√∑

s

S2
os , Sos =

∑
i

Wiso · Ii (1)

where Ss are the subunits’ activities and W is the weight matrix between primary cells and
subunits. Unless otherwise stated we use output cells with Ns = 4 subunits (s = [1, . .,Ns])
and simulate NO = 8 or NO = 81 output cells.

Stability implementation of temporal coherence. In our implementation of temporal coherence,
we follow the “stability” objective function approach (Kayser et al. 2001). The objective
function for a single neuron is given by the mean squared temporal derivative of its activity
normalized by the variance over time:

�Stability = − 1
No

No∑
o=1

ψStability,o = − 1
No

No∑
o=1

〈( d
dt Ao

)2〉
t

var(Ao)
(2)

where 〈.〉t denotes temporal averaging and var the variance over time. The temporal derivative
is implemented as finite difference. This part of the objective function favours neurons, whose
activity varies rarely (dAo /dt is small), and at the same time avoids the trivial solution of
constant activity by penalizing low variance. Hence, it presents one (of several) possibilities to
formalize the concept of temporal coherence by a global objective rather than a local learning
rule. To introduce a lateral interaction, we add a de-correlation term to this function that
prevents neurons from obtaining similar response properties.

�Decorr = − 2
No(No − 1)

∑
o1

∑
o2>o1

cov(Ao1 , Ao2 )
2

var(Ao1 ) · var(Ao2 )
(3)

where cov denotes the covariance.
The two objectives are added linearly with a weighting factor:

� = �Stability + β�Decorr (4)

Unless otherwise stated we weigh both objectives equally, i.e., β = 1.
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We analytically determine the gradient for the objective function. The complete objective
function is then optimised with respect to the weights by using the “RPROP” algorithm
(Riedmiller & Braun 1993).

Data analysis

Optimising the stability objective transforms the representation given by the primary cells in
a representation given by the output cells (“stability transformation”). When analysing such
a transformation, two issues need to be addressed. First, does the transformation extract
the information that is relevant for classification such that the performance of a simple
classifier improves? Second, does the transformation destroy any information, such that
the performance of an ideal classifier worsens? Consequently, we assess the classification
performance of primary and output cells using classifiers of varied complexity. We compare
the performance of the output cells to various other transformations of the primary cell
representation.

To test the generalisation of the transformations, we split the dataset of 200 sweeps per
class into a training set (2/3, 133 sweeps/class) and a test set (1/3, 67 sweeps/class). Using
the training set, we train the output cells and determine the parameter for the supervised
classifiers. Using the test set, we evaluate the classification performance. To increase the
training set, we randomly draw 500 pairs of sweeps for each class. In additional simulations,
we verified that this amount of re-sampling is sufficient and further re-sampling does not
markedly improve performance on the test-set (data not shown).

“Separability index”. In order to quantify how well a cell can separate different texture
classes, we define a separability index (SI) for each cell. We measure the variance of a neu-
ron’s response within each texture class and average over classes. We divide this measure
by the total variance of the neuron’s activity. We define the separability index as 1 mi-
nus this ratio. This measure approaches 0 if classes are indistinguishable and 1 for perfect
separability.

“Fisher transform”. We compare the transformation based on stability to other common
transformations, such as principal component analysis (PCA) and a generalisation of Fisher’s
linear discriminant to multi dimensions (Bishop 1995), which we will refer to as “Fisher
transform”. While PCA is an unsupervised transform, the Fisher transform is supervised in
that it incorporates the class information. Given a data set with m classes (c = 1. . . m) and
nc samples in class c, we compute the class specific means µc and the overall mean µ. In the
following notation we use column vectors. Next, we determine the within class covariance
matrix,

SW = 1
m

m∑
c=1

1
nt

nct∑
s=1

(
xs

c − µc
) · (

xs
c − µc

)T
(5)

and the between class covariance matrix.

SB =
m∑

c=1

(µc − µ) · (µc − µ)T (6)
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By taking the quotient of the between class covariance matrix to the within class covariance
matrix yields the following eigen-problem.

λi · S−1
W · SB = λi · ωi (7)

The eigenvectors ωi build a new set of basis vectors. Arranging the basis vectors ωi as a
transformation matrix W, the solution maximises the Fisher criterion trace (W S−1

W SB WT).
The importance of the new basis vectors scales with the corresponding eigenvalue. The
vector with the largest eigenvalue points in the direction where the ratio of variance between
class centres to the variance within classes is maximal. The maximal number of basis vectors
(“Fisher components”) is the number of classes minus one, in our case, 7.

Classification. To determine the classification performance on different representations of the
whisker input, we here use three different classifiers; plain Euclidian distance (“Euclidian”),
Gaussian density estimation (“Gaussian”) and K-means clustering (“K-means”).

- For the “Euclidian” classifier, we first compute the centres of all classes based on the
labelled data set. Then we attribute each sample to the class with the closest mean
using the Euclidian distance measure.

- For the “Gaussian” classifier (i.e., Gaussian density estimation), we approximate the
class probability distributions by a multi dimensional Gaussian. Given a set of feature
vectors φi

t , e.g. the vector components after the Fisher transform, relating to classes
c (c = 1 . . m) and sweep s (s = 1 . . nc), we compute the class specific means µc and
covariance matrices Sc . Note, that—even after the Fisher transform—the covariance
matrix is not necessarily diagonal.
This yields an estimation of the probability distribution of the feature vectors for each
class.

pc
(
xs

c

) = 1
(2π)(m−1)/2 · det(Sc)1/2

· e− 1
2 (φs

c −µc )S−1
c (φs

c −µc )T
(8)

For classification we attribute each sample to the class that has the highest value of its
probability density function at the sample’s position.

- For “K-means” clustering, we use the Matlab implementation of the algorithm with
the Euclidian distance measure. The results given are the optimal classification results
over 10 different random initial positions of cluster centres.

The Euclidian and Gaussian classifiers are supervised methods; first the distributions are
estimated based on the samples. Then the samples are attributed to a class based on
the estimated distribution. The K-means clustering, in contrast, is unsupervised since no
learning on labelled data takes place. As this study focuses on the unsupervised genera-
tion of representations suited for classification, but not on the classification as such, we,
however, specified the amount of cluster centres to be equal to the number of classes
(eight).

Performance measure. The classification result can be represented as a matrix (H), that
contains for each sweep from texture class t = i the probability to be assigned to a class
c = j .

Hi, j = p(c = j | t = i) (9)
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To quantify the classification performance as a single value we compute the fraction of correct
classified patches (CC).

CC(H) =
∑

i Hi,i∑
i

∑
j Hi, j

∗ 100% (10)

Response profiles. In order to analyse the responses of a single cell in velocity–position space,
we generate test stimuli akin to the filters used for primary cells. The covered range is identical
to the one spanned by the primary cells, while the sampling is about four times more dense
(32 samples for each dimension). The generated test stimuli are applied to the converged
network in the same manner as the training stimuli.

Results

Single cell analysis

We recorded the responses of simulated primary cells when stimulated by signals recorded
with a set-up that mimiced rats probing textures with their whiskers. The responses of these
primary cells exhibit a high variability within the same texture (Figure 2a, b). We quantify
how well distinct texture classes can be separated by a separability index (SI, see Methods).
On the training set, we find a low SI for the primary cells (0.35 ± 0.15, Figure 2a). Using
these cells as input, we train eight output cells to optimise the stability objective. These
output cells show a comparably low within class variability and thus a significantly higher SI
(0.78 ± 0.02, p < 10−12, t-test, Figure 2c). More importantly, this significant difference is
conserved for the test-set, i.e., for sweeps never seen by the network during training. Here

Figure 2. Activity traces of 8 randomly chosen primary cells of (a) training and (b) test data set. All eight output cell
activities of the default simulation with No = 8 for (c) training and (d) test set. Ordinates of each cell’s activity trace
are scaled to ±3 standard deviations around the cell’s mean activity. Values for separability index and individual
stability are given adjacent to each activity trace. Vertical lines indicate change of stimulus class.
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the SI reaches 0.34 ± 0.14 for the primary cells (Figure 2b), but 0.57 ± 0.06 for the output
cells (Figure 2d). This difference between primary and output cells is highly significant (p =
1.3 × 10−5, t-test). Consequently, optimising stability does not only increase the separability
index for the training data, but also for previously unseen test data. Since such generalisation
is a desired property of any learning algorithm, all analysis mentioned hereafter will refer to
the unseen test set only. Since the difference between primary cells and output cells arises
from optimising stability, we test whether the individual stability ψi of a cell is correlated
to its SI. Indeed, we find a highly significant correlation for primary cells and output cells
(r = 0.973 and r = 0.966 respectively, p < 10−4). The observed difference in SI thus results
from optimising stability and suggests that cells optimised for stability may be better suited
for texture classification than primary cells.

For simulations with eight output cells (NO = 8) and 81 output cells (NO = 81), we
quantify the single cell classification performance of primary cells and output cells by a simple
classifier; the Euclidian distance in the space of activities. We find classification performance
of a cell to be correlated to its stability, with a single regression line for primary cells and both
output cell populations (r = 0.87, p < 10−50, Figure 3). This correlation is also significant
for each of the populations with 81 cells alone (primary cells: r = 0.78, p < 10−17; output
cells: r = 0.68, p < 10−11). This result shows that cells with higher stability are better suited
for classification. The classification performance of output cells (34.9 ± 1.0%, NO = 8 and
34.1 ± 4.2%, NO = 81), which are trained to optimise stability, is indeed significantly larger
than classification performance of primary cells (24.7 ± 3.9%; p < 10−10, t-tests for NO =
8 and NO = 81). This result confirms that cells trained to optimise stability are well suited
for simple classification.

Optimising the stability objective provides one specific transformation of the primary cells
into output cells. How do the obtained output cells compare to other transformations of the
primary cells? A transformation commonly applied to pre-process data for classification is
principal component analysis (PCA). PCA decomposes the input into de-correlated dimen-
sions, which are sorted according to the amount of variance explained. We apply PCA to
the primary cells’ responses. The obtained principal components also show the correlation
between single cell classification performance and stability (r = 0.82, p < 10−19, Figure 4,

Figure 3. Single cell classification performance versus individual stability of each cell. Red: primary cells; blue:
output cells (NO = 8); cyan: output cells (NO = 81); black: first 75 PCA components of primary cells; green:
Fisher components of primary cells.
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Figure 4. (a) Total classification performance of cell populations for different combinations of classifiers and trans-
formations. Different colours represent different classifiers. (b) Cumulative classification performance (Euclidian
classifier) for increasing number of dimensions. Dimensions are sorted by decreasing single cell classification per-
formance. Different colours represent different transformations.

black). Stability and classification performance decrease for higher order components with
the first three principal components being the three best classifying and three most stable
cells. Even the first principal component, however, is worse than the average performance
of output cells. This indicates that optimising stability is better suited to achieve good clas-
sification performance with a small number of cells than PCA. As a more sophisticated
transformation, we apply the multi-dimensional generalisation of Fisher’s linear discrimi-
nate (“Fisher transformation”, see methods). Unlike optimising stability or PCA, the Fisher
transformation requires supervised knowledge of the class structure of the input. Not sur-
prisingly, the first Fisher component is more informative (49.4% classification performance,
Euclidian classifier) than individual output cells. However, the next four Fisher compo-
nents yield a similar performance as the output cells (34.3%, 30.5%, 32.8%, 28.8%) and
the remaining two components perform remarkably worse (25.2%, 21.6%). This suggests
that the optimisation of stability, which does not employ any explicit teaching signal, forms
a representation that is comparable in classification performance to the supervised Fisher
transform.

Population analysis

As a next step, we move from an investigation of single cell classification performance to the
population level. We now investigate whether output cells still outperform primary cells and
transformations of primary cells on the population level. We first use the same measure as
above, classification based on Euclidian distance. When comparing the classification perfor-
mance of 81 output cells to the 81 primary cells, we find performance to be dramatically
increased from 62.3% to 86.6% (Figure 4a, red bars). Already the population with eight
output cells, however, nearly reach this high performance (83.0%). This demonstrates that
a small number of output cells is sufficient for good classification. Next, we test the effect
of the aforementioned transformations on population performance. Since principal compo-
nent analysis does not affect Euclidian distances, classification performance is identical for
the principal components of the primary cells. Applying a Fisher transformation, we obtain
increased performance (82.2%), which is still slightly smaller than the performance observed
for output cells. These results demonstrate that optimising stability forms a representation
that is well suited for classification with a simple classifier.
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Since no transformation can generate information, no transformation can increase the per-
formance of an ideal classifier. In order to test whether optimising stability loses relevant infor-
mation, we use a more sophisticated classifier (Gaussian density estimation). This supervised
classifier, which takes the input’s covariance structure into account, reaches 87.7% perfor-
mance on the Fisher transformed primary cell population (Figure 4a, blue bars). This is com-
parable to the performance of 86.6% using the simple Euclidian classifier on the large output
cell population. This argues that optimising stability does not discard relevant information.

Using the sophisticated classifier on the large output cell population leads to a strong
decrease in performance (down to 65.2%). This can be understood as an effect of overfitting.
The small output cell population is not affected since the small number of cells acts as
regularisation. However, using a simple classifier prevents overfitting as shown above. So far,
we have shown that optimising stability allows comparable good performance of supervised
classification algorithms.

To test whether the obtained representation is also suitable for classification without knowl-
edge of the underlying class structure, we next investigate the performance of an unsuper-
vised classifier. Closely related to the supervised Euclidian distance classifier, we perform
unsupervised K-means clustering with the Euclidian distance measure. While performance
for primary cells further drops as compared to the supervised measure (51.5%, Figure 5a,
green bars), the performance of output cells stays nearly unaffected (81.3% for NO = 8 and
86.4 % for NO = 81). Also principal component analysis (51.9%) and Fisher transforma-
tion (79.4%) perform worse than output cell populations. Hence, optimising stability also
facilitates unsupervised classification.

A goal of transformations like PCA or the Fisher transformation is to carry a large amount
of the available information in a small number of ordered dimensions. Hence, we here com-
pare the cumulative performance of increasing numbers of primary cells, output cells, princi-
pal components and Fisher components using the Euclidian classifier (Figure 4b). To obtain
a common sorting principle, we sort the cells by their individual classification performance.
This measure is closely correlated to the measures of individual stability (see above). It also
correlates to the amount of variance explained by a principal component (r = 0.76, p <

10−13) and it decreases for Fisher components of increasing order. Hence, sorting by sin-
gle cell classification performance is in all cases similar to using the “intrinsic” order of the
respective transformation. We find that the Fisher components and the output cells reach
a high performance with just a few cells. The performance of the larger output cell popu-
lations, however, has a slightly smaller slope, reaching the same performance as the small
output cell population with approx. 30 cells. This can be understood as cells in a large
population mutually prevent each other from becoming optimal with respect to the stability
objective, while as a population they still keep all the information. Thus, stable populations
succeed to represent the input in a compact way comparable to that of the supervised Fisher
transform.

In summary, we observe that unsupervised and supervised classifiers work well on the
representation formed by the output cells. Unlike for the primary cells and the other trans-
formations tested, this performance is optimal for the simple supervised Euclidian and even
the unsupervised K-means classifier. This indicates that the representation obtained by op-
timising stability is indeed well-suited for classification by downstream areas.

Parameter dependence

The principle of temporal coherence is based on the assumption that the probability of
two successive trials (e.g., whisker sweeps) being performed on the same class, texture or
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object is higher than chance. Here, we test the dependence of the stability transformation
on this property of natural input. We systematically vary the probability of successive sweeps
being from the same class, i.e., the temporal coherence of the input signal, from chance
(12.5%) to 100%. We find that classification performance (NO = 8) increases monoton-
ically with the temporal coherence of the input (Figure 5a) and saturates at about 80%.
This demonstrates that—while the stability objective indeed uses the temporal coherence
of the input—it is nevertheless robust to changes between classes occurring reasonably
frequent.

To investigate how the choice of input filters influences the results we repeated our sim-
ulations with a smaller primary cell population. Instead of 9 spatial × 9 temporal filters we
here use 16 filters (4 × 4). To obtain similar input space coverage as in the main simulations,
we double the width of the filters’ tuning. For the Euclidian distance classifier, optimis-
ing stability increases the performance from 55.5% (primary cells) to 67.2% (output cells,
NO = 8), which is comparable to the increase observed for 81 primary cells above. A sim-
ilar increase is observed for the K-means clustering algorithm (primary cells: 47.7%; out-
put cells: 64.6%). These results demonstrate that the gain for simple classifiers obtained
by optimising stability is not critically dependent on the number and tuning of primary
cells.

To test the influence of the network complexity on our results, we vary the number of
subunits (NS) and the number of output cells. For our default choice of parameters (NS =
4, NO = 8), the performance is nearly saturated (Figure 5b). This result is qualitatively
independent of the classifier used (data not shown). These findings justify the choice of our
default parameters.

The objective function consists of 2 competing terms; the stability term and the de-
correlation term. In our default simulation, both terms are weighted equally. Here, we inves-
tigate the dependence of the result on this weighting factor (β). We find that the performance
peaks at about β = 1 but is stable for about four orders of magnitude (Figure 5c, top). The
peak coincides with both parts of the objective function taking a high value after conver-
gence (Figure 5c, bottom). In contrast, the stability term dominates for too small β, which
results in stable but too similar cells. This has an effect akin to reducing the number of cells
and consequently lowers the performance. On the other hand, for too high values of β, the
decorrelation term dominates, which results in dissimilar cells of low stability. As we have
shown above, stability is correlated to the performance and thus a high β also decreases
performance. Consequently, our default relative weighting of the objective functions’ terms
is in the optimal regime, but a precise tuning is not critical.

Response profiles

In order to further characterise the cells’ properties, we probe their responses in position–
velocity space. By construction, primary cells have a single peak in this space (Figure 6a).
In contrast, output cells show a comparably complex response pattern: each output cell’s
response has multiple peaks and troughs, which cover the whole stimulus space (Figure 6b).
This demonstrates that cells trained to optimise stability integrate information over a variety
of positions and velocities to achieve their robust performance.

Discussion

To make a decision requires a chain of operations that starts with encoding the stimulus and
extracting relevant features, continues with a comparison to prior knowledge and eventually
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Figure 5. (a) Classification performance for varying temporal coherence (probability of successive sweeps being
from the same class) of the input. (b) Classification performance (Euclidian classifier) for varying network parameters
NO and NS. Default values indicated by arrow. (c) Dependence of classification performance (top) and objective
function values (bottom) on the relative weight β of both parts of the objective functions.

Figure 6. (a) Response profile of a single primary cell. Plots at the margin represent corresponding filters. (b)
Response profiles of all 8 output cells of the default simulation with NO = 8.
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leads to the appropriate motor output (Romo & Salinas 2001). Apparently, the extraction of
relevant features is a crucial link in this chain. Here, we show that the principle of temporal
coherence allows a neuronal population to extract features meaningful for discrimination by
solely exploiting the natural statistics of the input, unsupervised. The sensory input is rep-
resented in a way that differences between discriminanda (textures) are pronounced, which
facilitates subsequent fast and robust classification. Hence, the general coding principle of
temporal coherence can account for a robust basis of decision-making.

So far, the principle of temporal coherence had been applied almost exclusively to vi-
sual processing. A large number of studies have addressed how various implementations of
temporal coherence relate to neuronal properties in primary visual cortex (Földiak 1991;
Stone 1996; Einhäuser et al. 2002; Wiskott & Sejnowski 2002; Hurri & Hyvärinnen 2003;
Hashimoto 2003; Körding et al. 2004; Berkes & Wiskott 2005) and the inferotemporal cortex
(Wallis & Rolls 1997; Rolls & Milward 2000). In addition, the temporal coherence princi-
ple can be employed in unsupervised object recognition systems (Stringer & Rolls 2002;
Einhäuser et al. 2005), and under some conditions even outperforms supervised learning
schemes (Wallis 1996). We here demonstrate that the principle of temporal coherence is not
restricted to the visual domain, but can be generalized to another sensory modality.

The prerequisite for any temporal coherence algorithm is that the information to be ex-
tracted varies on a slower timescale than the irrelevant transformations that should not in-
terfere with the classification task. In the visual domain, Wallis and Baddeley (1997) derived
optimal parameters for the trace rule implementation of temporal coherence to optimally
adapt to the temporal coherence of the input. In the present case, we measured the prob-
ability needed for subsequent sweeps to be from the same class for temporal coherence to
improve classification. We find a monotonic increase of performance with temporal coher-
ence, which saturates at about 80%. This value corresponds to a rat “whisking” on average
eight successive times across the same texture before moving on. At an average “whisking”
frequency of 8 Hz (Carvell & Simons 1990) this corresponds to 1s and is thus compati-
ble with rat behaviour. This result demonstrates that the optimisation of stability is indeed
applicable to realistic learning scenarios in rodents.

To obtain realistic somatosensory input, we used a hardware model to mimic a rat that
actively employs its whiskers across different textures. Although the model whisker was made
of steel and the whisking frequency was lower (1 Hz) than in the rat (5 to 15 Hz, Carvell & Si-
mons 1990), the artificial system captured the basic properties of natural whisker behaviour.
Especially the whisker’s amplitude and velocity were modulated by the texture surface while
sweeping across, which induced a texture specific pattern. Indeed, we found in a different
study that the relevant properties of real whiskers are identical to those of the model (Hipp
et al. unpublished observations). In addition, the crucial result, that the required temporal
coherence in the input is consistent with rat behaviour, is unaffected by the precise implemen-
tation. Hence, we feel confident that our input signals simulated natural whisker behaviour
sufficiently well for the purpose of the present study.

Primary sensory neurons in the rat vibrissae system code velocity and position of the
whisker (Gibson & Welker 1983a, b). To capture the essence of this information without
specific assumptions, we use generic spatio-temporal filters as input to our network. The
cell model used for the output neurons resembles a multi-subunit energy detector akin to
the two-subunit energy-detector (Adelson & Bergen 1985), which was previously applied
to the learning of complex cell properties by using the same stability objective function
(Kayser et al. 2001; Körding et al. 2004). In the context of the visual system, it has been
demonstrated that the choice of the non-linearity is not critical and that it can even be learnt
simultaneously to the weights (Kayser et al. 2003). Here, we demonstrate that the number of
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subunits is not critical either and the results are robust to its modification. In a physiological
context, the subunits might be interpreted as distinct dendritic compartments or as a set of
afferent cells. This property makes the model applicable to a vast number of physiological
processes. The learning rule itself may also be implemented in physiological hardware. The
de-correlation part of the objective can be mediated by strong lateral inhibition. The principle
of temporal coherence itself can also be implemented by a physiologically realistic learning
rule (Körding & König 2001; Einhäuser et al. 2002). In summary, all stages of the present
model are compatible with physiological mechanisms.

Most electrophysiological experiments addressing texture discrimination in rats were per-
formed in anaesthetised animals. Only recently have experiments in awake rats performing
discrimination tasks been conducted (Prigg et al. 2002; Krupa et al. 2004). Krupa et al.
(2004) show that there are striking differences in signal processing in an active discrimina-
tion task as compared to similar passive stimulation of whiskers. These results emphasise the
importance of active whisking and of top-down signals to somatosensory processing. Our
physical simulator of whisker movement accounts for the active whisking component, while
cutting sweeps from the input and using them as basic units of processing may correspond to
using top-down information. Hence our model is compatible with the recent experimental
results in behaving rats.

In contrast to rats, tactile discrimination has been studied in great detail in monkeys
(see Romo & Salinas 2003 for review). In these experiments, monkeys are subject to high
frequency stimulation of their fingertips. These so-called “flutter vibrations” (Talbot et al.
1968) are in some respects similar to the high frequent whisker stimulations occurring when
rats whisk across textures. Salinas et al. (2000) find that the precise timing of rapidly adapting
primary neurons in the somatosensory system of monkeys is conserved in SI but nearly
completely absent in SII. Properties of SII cells are insensitive to the exact timing and provide
a robust stereotyped response. This property is reminiscent of our model’s output cells.
Romo et al. (2002) investigate response properties in monkey SII of animals that compare
two mechanical vibrations applied sequentially to the fingertips. They find that the firing
rate in the first stimulus period reflects the stimulus frequency, whereas the activity in the
second period is a function of the first and the second stimulus. This shows that, in the
monkey somatosensory system, signals from successive contacts, which may correspond to
whisker sweeps, are present. This property allows comparison of successive sweeps, which
is an essential prerequisite for the stability learning rule. Despite the obvious differences in
species and paradigm, these correspondences further support the use of temporal coherence
for learning somatosensory representations.
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