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Abstract

The goal of our research is to investigate the inter-
play between oculomotor control, visual processing,
and limb control in humans and primates by explor-
ing the computational issues of these processes with
a biologically inspired arti�cial oculomotor system
on an anthropomorphic robot. In this paper, we in-
vestigate the computational mechanisms for visual
attention in such a system. Stimuli in the environ-
ment excite a dynamical neural network that imple-
ments a saliency map, i.e., a winner-take-all compe-
tition between stimuli while simultenously smooth-
ing out noise and suppressing irrelevant inputs. In
real-time, this system computes new targets for the
shift of gaze, executed by the head-eye system of
the robot. The redundant degrees-of- freedom of
the head-eye system are resolved through a learned
inverse kinematics with optimization criterion. We
also address important issues how to ensure that
the coordinate system of the saliency map remains
correct after movement of the robot. The presented
attention system is built on principled modules and
generally applicable for any sensory modality.

1 Introduction

Visual attention involves directing a \spotlight" of
attention [12] to interesting areas, extracted from
a multitude of sensory inputs. Most commonly, at-
tention will require to move the body, head, eyes,
or a combination of these in order to acquire the
target of interest with high-resolution foveal vi-
sion, referred to as `overt' attention, as opposed
to covert attention which does not involve move-
ment. In order to provide high-resolution vision si-
multaneously with large-�eld peripheral vision, our
humanoid robot employs two cameras per eye, a
foveal camera and wide-angle camera { this strat-
egy mimics the log-polar retinal resolution of nu-

merous biological species. Similar to biology, overt
visual attention is a prerequisite in such a system
in order to move the cameras such that a target
can be inspected in the foveal �eld of view.
There has been extensive work in modeling

attention and understanding the neurobiological
mechanisms of generating the visual \spotlight"
of attention [15], both from a top-down[16] and a
bottom-up perspective [9, 10] - albeit mainly for
static images. From the perspective of overt shift
of focii, there has been some work on saccadic eye
motion generation using spatial �lters [17], sac-
cadic motor planning by integrating visual informa-
tion [13], social robotics [4], and humanoid robotics
[6]. In contrast to this previous work, our research
focus lies on creating a biologically inspired ap-
proach to visual attention and oculomotor control
by employing theoretically sound computational el-
ements that were derived from models of cortical
neural networks, and that can serve for compar-
isons with biological behavior. We also emphasize
real-time performance and the integration of the
attention system on a full-body humanoid robot
that is not stationary in world coordinates. As will
be shown below, these features require additional
computational consideration such as the remapping
of a saliency map for attention after body move-
ment. In the following sections, we will �rst give
an overview of the attentional system's modules,
then explain the computational principles of each
module, before we provide some experimental eval-
uations on our humanoid robot.

2 An Overt Visual Attention

Control System

The computations involved in an overt visual atten-
tional mechanism can be modularized into broadly
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Figure 1: A schematic block diagram of the various modules involved in the system for implementing
overt visual attention

three distinct subparts: the sensory processing
module, the motor planning module and a module
in charge of interaction issues. Fig. 1 represents
a schematic block diagram based on these distinc-
tions.
The sensory processing module receives as input

raw bottom-up sensory signals from all availabe
modalities, e.g., vision, audition, and haptics, and
also top-town volitional inputs. After appropriate
computations, this module outputs the new desired
focus of attention in camera coordinates as a target
for the next saccade.

The motor planning module takes the saccade
target in camera coordinates and converts it into
a sequence of motor commands necessary to drive
the oculomotor system and the head to gaze at this
location.

Finally, the interaction issues module is needed
to take care of higher level issues of overt attention.
For instance, after a saccade, it is necessary to re-
map attentational saliency maps according to the
amount of eye movement, self-motion needs to be
canceled as a potential attentional target, or per-
turbations of the body need to be factored into the
re-mapping of saliency maps.

In the following sections, we will provide the de-
tails in each module. As sensory input, only visual

ow is currently employed since it can be com-

puted reliably in real-time from dedicated hard-
ware. Other sensory modalities could be handled
in the same way as described for visual 
ow.

2.1 Sensor Pre-processing and Inte-

gration

The key element of our Sensory Pre-Processing
block (Fig. 1) is a competitive dynamical neural
network, derived in Amari and Arbib's [1] neural
�elds approach for modeling cortical information
processing. The goal of this network is to take as
input spatially localized stimuli, have them com-
pete to become the next saccade target, and �nally
output the winning target. For this purpose, the
sensory input pre-processing stage takes the raw
visual 
ow VF (x; t) as inputs to the stimulus dy-
namics, a �rst order dynamical system. Using x to
denote the position of a stimulus in camera coordi-
nates, the stimulus dynamics is:

_S(x) = ��S(x) + V isInp(x; t) (1)

where

V isInp(x; t) =

Z
R

G(x; t) � exp(�x2=2�2)dx (2)

G(x; t) = VF (x; t) + 
 � b _VF (x; t)c+ (3)



(a) (b)

Figure 2: A snap shot of the stimulus and activation dynamics just (a) before and (b) after the saccade

Eq.(3) enhances the raw visual 
ow vector when
it is increasing to emphasize new stimuli in the
scene, while Eq.(2) implements a Gaussian spa-
tial smoother of the stimuli to reduce the e�ects
of noise. The top of Fig. 2a shows an example of
a typical stimulus pattern in the two dimensional
neural network due to a moving object at the top-
left of the camera image. In general, we could have
multimodal sensory inputs, e.g. from color detec-
tors, edge detectors, audio input, etc., feeding into
Eq.(3) as a sensory signal. As suggested by Niebur,
Itti and Koch [9, 10], it would be useful to weight
these inputs according to their importance in the
scene, usually based on some top-down feedback or
task-speci�c biasing (e.g., if we know that color is
more important than motion).
This stimulus dynamics feeds into a saliency map

[12], essentially a winner-take-all (WTA) network
which decides on a winning stimulus from many
simultaneous stimuli in the camera �eld. The win-
ning stimulus will become the next saccade target
or focus of overt attention. The WTA network is re-
alized based on the theory of neural �elds, a spatial
neural network inspired by the dynamics of short
range excitatory and long range inhibitory interac-
tions in the neo-cortex [1, 2]. The activation dy-
namics u(x; t) of the saliency map is expressed as:

� _u(x) = �u(x) + S(x) + h

+
X
x0

w(x;x0)�(u(x0)) (4)

Here, h is the base line activation level within the

�eld, S(x; t) is the external stimulus input (Eq.1),
w(x;x0) describes the coupling strength between
all the units of the network, and �(u) controls the
local threshold of activation. Depending on the
choice of parameter h and the form of � and w,
the activation dynamics of Eq.(4) can have vari-
ous stable equilibrium points [1]. We are interested
in a solution which has uniform activation at base
line level in the absence of external stimuli, and
which forms a unimodal activation pattern at the
most signi�cant stimulus in the presence of stimuli
that are possibly dispersed throughout the spatial
network. This is achieved by choosing a transfer
function:

�(u) = 1=(e(�cu) + 1) (5)

with constant c >> 1 and an interaction kernel
with short range excitation and long-range inhibi-
tion term H0:

w(x;x0) = ke�(x�x
0)2=�2

w �H0 (6)

The values of the constants H0, k, �
2
w, and c have

to be decided based the magnitude of the stimulus
dynamics S(x; t), as outlined in [1].
In addition to the stimulus driven dynamics, we

also supress the activation of the most recently at-
tended location by adding a large negative activa-
tion in Eq.(3) at the location of the last saccade
target. This strategy implements an inhibition of
return [10] and ensures that the robot does not keep
attending to the same location in the continuous
presence of an interesting stimuli. The plots at the



bottom of Fig. 2(a)(b) illustrate the behavior of
the activation dynamics just before and after an
attention shift, including the e�ect of the negative
activation after the saccade.

2.2 Planning and Generation of Mo-

tor Commands

Given a new saccade target, extracted from the
saliency map, the direction of gaze needs to be
shifted to the center of this target. Since �fth or-
der splines are a good approximatin of biological
movement trajectories [11, 3], we use this model to
compute a desired trajectory from the current po-
sition x0 to the target xf , all expressed in camera
coordinates:

disp = xf � x0 (7)

� = t=T (8)

x(t) = x0 + disp � (15�4 � 6�5 � 10�3) (9)

_x(t) = disp � (60�3 � 30�4 � 30�2) (10)

The movement duration T was chosen such that
the maximal movement velocity was the same for
each saccade, i.e., T = disp � 0:2[s] in our imple-
mentation.
The camera-space trajectory is converted to joint

space by inverse kinematics computations based on
Resolved Motion Rate Control (RMRC). We as-
sume that only head and eye motion is needed to
shift the gaze to the visual target, an assumption
that is justi�ed given that the target was already
visible in the peripherial �eld of view. For the time
being, the inverse kinematics computation is per-
formed for the right eye only, while the left eye
performs exactly the same motion as the right eye.
Thus, we need to map from a 2D camera space
of the right eye to a 5D joint space, comprised of
pan and tilt of the camera, and 3 DOFs of the
robot's neck. To obtain a unique inverse, we em-
ploy Liegeois [14] pseudo-inverse with optimization:

_�� = J
# _x+ (I� JJ

#)knull (11)

where J# = J
T (JJT )�1

knull is the gradient of an optimization criterion
w.r.t. to the joint angles ��. The second term of
the Eq.(11) is the part that controls the movement
in the null space of the head-eye system. Any con-
tribution to _�� from this term will not change the
direction of gaze but will only change how much we
use the head or eye DOFs to realize that gaze. As
optimization criterion we chose:

L =
1

2

X
i

wi(�i � �def;i)
2 (12)

resulting in

knull;i =
@L

@�i
= wi(�i � �def;i) (13)

(14)

This criteron keeps the redundant DOFs as close
as possible to a default posture ��def . Adding the
weights wi allows giving more or less importance
to enforcing the optimization criterion for certain
DOF{this feature is useful to create natural looking
head-eye coordination.

Once the desired trajectory is converted to joint
space, it is tracked by an inverse dynamics con-
troller using a learned inverse dynamics model [19].

3 Interaction Issues

Several issues of our visual attention system require
special consideration. First, there is the problem
of maintaining a frame of reference for the saliency
map. When the robot makes an overt shift of at-
tention, the camera coordinates are changed and
the locations of the current stimulus and activation
dynamics need be to updated accordingly. In our
current implementation, we use a camera-centric
frame of reference and shift all the stimulus and ac-
tivation patterns relative to the center of the visual
�eld. Locations that fall out of the saliency map
are discarded. Obviously, such a remapping strat-
egy cannot guarantee accurate re-mapping over a
chain of movements. However, this inaccuracy are
negliable on the time scale of the dynamics of the
stimulus and saliency map dynamics.

Another important problem is to stabilize the im-
age on the cameras when the body of the robot
moves or there are external perturbations. In [18],
we demonstrated how image stabilization can be
achieved with learning approaches and we will in-
tegrate this strategy in our attentional system. As
a result, re-mapping of the saliency map and stim-
ulus dynamics will not be necessary when the robot
head moves involuntarily.

A rather diÆcult issue for attention arises from
the need to neglect self-motion stimuli, i.e., visual

ow that is caused either by the motion of the ocu-
lomotor system or by body parts of the robot that
are in the view of the camera eyes. Currently, we
circumvent this problem by discarding stimuli dur-
ing the time the robot moves its eyes and head. In
future work, we will address to predict optical 
ow
from self-motion and actively suppress such false
stimuli.
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Figure 3: (a) The 30 DOF Humanoid robot used as a testbed for implementation (b) The experimental
setup of the humanoid vision-head system

4 The experimental setup

Fig. 3(a) shows the 30 degree-of-freedom(DOF) hu-
manoid robot that we use as our testbed. Each
DOF of the robot is actuated hydraulically out of
a torque control loop. Concentrating on the oculo-
motor speci�cations: each eye of the robot's oculo-
motor system consists of two cameras, a wide angle
(100 degrees view-angle horizontally) color camera
for peripheral vision, and a second camera for foveal
vision, providing a narrow-viewed (24 degrees view-
angle horizontally) color image. This setup mimics
the foveated retinal structure of primates, and it is
also essential for an arti�cial vision system in order
to obtain high resolution vision of objects of inter-
est while still being able to perceive events in the
peripheral environment. Each eye has two indepen-
dent degrees of freedom, a pan and a tilt motion.

Fig. 3(b) shows the oculomotor system in de-
tail. Two subsystems, a control (and learning) sub-
system and a vision subsystem, are setup in each
VME rack and carry out all necessary computa-
tions out of the real-time operating system Vx-
Works. Three CPU boards (Motorola MVME2700)
are used for the movement control and the sensory

processing subsystem, and two CPU boards (Mo-
torola MVME2604) are dedicated to the vision sub-
system. In the movement control/sensory process-
ing subsystem, CPU boards are used, respectively,
for: i) sensory processing and saccade target gener-
ation ii) dynamics learning and task execution (be-
haviors like overt shifts of attention), and iii) low
level motor control of head, eye and other body
joints of our robot (compute torque mode). All
communication between the CPU boards is carried
out through the VME shared memory communica-
tion which, since it is implemented in hardware, is
very fast.

In the vision subsystem, each CPU board con-
trols one Fujitsu tracking vision board in order to
calculate the visual 
ow. We use optical 
ow cal-
culations based on the block-matching method [8]
which is performed by the Fujitsu Tracking Vision
board in real-time. For our experiments, the vi-
sual 
ow is computed on a grid of 25x25 nodes
spread evenly over the entire peripheral visual �eld.
This resolution was decided based on real time data
transmission and computation bounds of our cur-
rent setup, although scaling it up would just require
a faster processor and faster data transmission. At



each of the 
ow computation nodes, an 8x8 pixel
window is compared for the best �t at surround-
ing neighbouring locations in the next video frame,
and the vision tracking hardware gives us an opti-
cal 
ow vector (direction and magnitude) based on
the best �t and also a matrix of con�dence bounds
distributions. Con�dence information helps us get-
ting rid of noise and ambiguities arising from plain
non-textured background.
NTSC video signals from the binocular cameras

are synchronized to ensure simultaneous process-
ing of both eyes' vision data. Raw extracted vision
data (in our case, the optical 
ow) are sent via a
serial port (115200 bps) to the control (and learn-
ing) module. This is where the sensory processing,
described in detail in Section 2.1 take place. For
the experimental demonstrations of this paper, the
image from only one peripheral camera is processed
for visual 
ow computations and the motion of the
two eyes are coupled together in both its horizontal
(pan) and vertical (tilt) degrees-of-freedom. Mul-
tiple degrees of freedom per camera, and multiple
eyes just require a duplication of our circuits and
a correction for vergence under small focal length.
In order to mimic the semicircular canal of biolog-
ical systems, we attached a three-axis gyro-sensor
circuit to the head (Murata Manufacturing). From
the sensors of this circuit, the head angular velocity
signal is acquired through a 12 bit A/D board such
that active image stabilization can be performed
when the head is perturbed. The oculomotor and
head control loop runs at 480 Hz, while the vision
control loop runs at 30 Hz.

5 Results and Discussion

We implemented the visual attention system on
our humanoid robot. The stimulus dynamics and
saliency map had 44x44 nodes, i.e., twice the length
and width of the 22x22 nodes of the visual 
ow grid
of the peripheral vision. This extended size assured
that after a saccade, the remapping of the saliency
map and stimulus dynamics could maintain stimuli
outside of the peripheral vision for some time. The
Jacobian needed for the inverse kinematics com-
putation was estimated with linear regression from
data collected from moving the head-eye system on
randomized periodic trajectories for a few minutes.
Due to the limited range of motion of the eye and
head DOFs, the Jacobian could be assumed to be
constant throughout the entire range of motion of
head-eye system, which was con�rmed by the ex-
cellent coeÆcient of determination of the regression
of the Jacobian. In an alterntive approach, we also

Figure 4: Snap shots of the robot's pe-
ripheral view before, during, and after an
attentional head-eye saccade, taken at 30
Hz sampling rate. Superimposed on the
images is the visual 
ow �eld.

directly learned the inverse kinematics as described
in D'Souza et al. [7], which yielded equally good
results as the analytical method using the regressed
Jacobian. The saliency map was able to determine
winning targets at about 10Hz, which is compa-
rable to the capabilities of the human attentional
system.

An illustration of the working of the attentional
system is provided in Fig. 4. The top image shows
the robot's right eye peripheral view of the lab,
focussing on the person in the middle of the im-
age. At the bottom left part of the image, another
person was waving a racket to attract the robot's
attention. This motion elicited a saccade, recogniz-
able from the middle image of Fig. 4 which shows



the visual blur that the robot experienced during
the movement. The bottom image of Fig. 4 demon-
strates that after the saccade, the robot was cor-
rectly focusing on the new target. Note that the
three images were sampled at 30Hz, indicating that
the robot performed a very fast head-eye saccade
of about 60ms duration, which is again compara-
ble to human performance. Our future work will
augment the attentional system with more sensory
modalities, including the learning of weighting of
sensory modalities for di�erent tasks.
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