

1

Abstract

Balancing small objects such as a normal pencil on its

tip requires rapid feedback control with latencies on the

order of milliseconds. Here we describe how a pair of

spike-based silicon retina dynamic vision sensors (DVS) is

used to provide fast visual feedback for controlling an

actuated table to balance an ordinary pencil on its tip. Two

DVSs view the pencil from right angles. Movements of the

pencil cause spike address-events (AEs) to be emitted from

the DVSs. These AEs are processed by a 32-bit fixed-point

ARM7 microcontroller (64 MHz, 200mW) on the back side

of each embedded DVS board (eDVS). Each eDVS updates

its estimate of the pencil’s location and angle in 2d space

for each received spike (typically at a rate of 100 kHz) by

applying a continuous tracking method based on spike-

driven fitting to a model of the vertical rod-like shape of the

pencil. Every 2 ms, each eDVS sends the pencil’s tracked

position to a third ARM7-based controller, which computes

pencil location in 3d space and runs a linear PD-controller

to adjust X-Y-position and velocity of the table to maintain

the pencil balanced upright. The actuated table is built

using ordinary high-speed hobby servos. Our system can

balance any small, thin object such as a pencil, pen,

chop-stick, or rod for minutes, in a wide range of light

conditions.

1. Introduction

Balancing an object has been used for many years as a

demonstration of controller design. Such demonstrations in

teaching robotics and robotics contests often are limited to

a single pole rotating about one constrained axis for

simplicity, and typically use a position encoder at the

bottom of the object providing the current angle relative to

desired balanced orientation, as opposed to using purely

visual input.

Normal image sensors are hard to use for balancing small

objects because the frame rate limits the response latency,

necessitating complex nonlinear control methods that can

control despite the large signal nonlinearities that develop

with controller delay. One example available online [1]

shows a Sarcos industrial robot balancing a pole

approximately 1m long with a weighted top and two

colored markers which are used for tracking. Since the

angular acceleration by gravity is inversely proportional to

the distance of the center of mass (COM) from the base, the

weighted top shifts the center of mass away from the hand,

easing the task significantly. An unmodified rod of length L

has its COM c = ½·L from the base. The angular

acceleration ( in rad/s
2
) caused by gravity (g) for small

angle α (where sin(α) ≈ α) is given by  = (α·g)/c, repre-

senting an angle that increases by a factor of e every

sqrt(c/g) seconds. For a normal pencil of length L=20cm,

the angle increases 10% every 10ms. A simple linear

controller must react within a few ms to balance such an

object.

Here we show how the use of data-driven spike based

vision sensors with embedded microcontrollers facilitates

the application of straightforward linear control policies

with low computational requirements, that allows visually

guided balancing of normal pencils, which otherwise

represents a challenging control problem. The paper

describes the vision sensors and their spiking output data,

the embedded hardware (64MHz 32bit microcontroller) to

process such spiking events in real-time, an algorithm to

compute a pencil’s position in 3d space, the linear control

policy, the balancing robot, and issues related to the

embedded fixed-point implementation. We present and

discuss measurements from the running system, and

conclude with a comparison using conventional image

sensors. This work improves on [4] which described a

non-embedded version of the balancer which ran similar

algorithms on a host PC and used USB interfaces to the

DVS sensors and servo controller. In the present work,

CPU power consumption has been reduced by a factor of

about 100 and performance has been substantially

improved by the use of dedicated real-time hardware,

yielding the first stand-alone vision-based balancing

system for pencil-sized objects.

An Embedded AER Dynamic Vision Sensor

for Low-Latency Pole Balancing

Jorg Conradt, Raphael Berner, Matthew Cook, Tobi Delbruck

Institute of Neuroinformatics, UZH and ETH-Zürich

Winterthurerstr. 190, CH-8057 Zürich
{conradt, raphael, cook, tobi}@ini.uzh.ch

http://www.ini.uzh.ch/~conradt/projects/PencilBalancer

2

2. Robotic Hardware

This section describes the vision sensor, embedded

processing hardware, and robotic setup.

2.1. Dynamic Vision Sensor

The dynamic vision sensor (DVS) [2][3] used as a pair in

this project is an address-event silicon retina that responds

to temporal contrast (Fig 1). Each output spike address

represents a quantized change of log intensity at a particular

pixel since the last event from that pixel. The address

includes a sign bit to distinguish positive from negative

changes. All 128x128 pixels operate asynchronously and

signal illumination changes within a few microseconds

after occurrence. No frames of “complete” images exist in

the system, but instead only individual events that signal

changes at a particular spatial position denoted by a

particular pixel’s address.

Figure 1: DVS pixel and camera architecture. The DVS pixel

outputs events that represent quantized log intensity changes as

shown by the simplified pixel schematic (top left). After

transmission of the pixel address (addr), the pixel is reset.

The standard DVS contains an on-board digital logic

chip with high-speed USB 2.0 interface (not shown in

Fig 1) that takes addresses and delivers time-stamped

addressevents with a resolution of 1us to a host PC for

off-line processing. The DVS specifications are

summarized in table I.

TABLE I. THE DVS’S ELECTRICAL SPECIFICATIONS

Dynamic range 120 dB

Contrast threshold mismatch 2.1%

Pixel array size 128x128 pixels of (40u)2

Photoreceptor bandwidth >= 3 kHz

Event saturation rate 1 M-event per second

Power consumption 23 mW

2.2. The Embedded DVS Board

For small embedded DVS applications, such as found in

mobile robotics, a USB communication channel to report

raw events is not necessary. We developed a small

embedded DVS system (eDVS, Fig 2) composed of a DVS

chip directly connected to a 64MHz 32bit microcontroller

(NXP LPC2106/01) with 256kbyte on-board program flash

memory and 64kbyte on-board RAM. This processer

initializes the DVS chip and captures events for immediate

processing, following a simple handshaking protocol: Each

occurring event from the DVS is transmitted as a 15-bit

address (7 bits x-position, 7 bits y-position and 1 bit

polarity), together with a request signal. The LPC2106

reads the address and acknowledges reception of that event,

after which the DVS removes the request signal.

The LPC2106/01 microcontroller offers several

communication ports, of which we provide connections to a

simple two-wire-interface (TWI, ≤400kbaud), a universal

asynchronous receiver/transmitter (UART, ≤4Mbaud), and

a four-wire serial peripheral interface (SPI, ≤32Mbaud).

The TWI allows chaining a large number of eDVS boards,

e.g. on a mobile robot that requires 360-deg field-of-view.

The UART port facilitates connections to a PC for setup,

debug output, and reprogramming. The SPI provides an

option for high speed data transfer, or to record incoming

events directly on a compact flash memory card. In this

project we connect the SPI to a liquid crystal display (LCD)

with a resolution of 128x128 pixels, to display the sensors’

events and line-tracking information.

The eDVS contains separate on-board voltage regulators

(1.8V and 2x3.3V) for the microcontroller and the DVS

sensor to reduce sensor noise. A similar eDVS board

optimized for small size and weight uses a single voltage

regulator with only marginal performance penalty. The

DVS board running at full 64MHz processing power draws

less than 200mW, and can get easily powered from a single

LiPo cell, or – if desired – over a USB connection.

Reducing the LPC2106/01’s system clock significantly

reduces the eDVS’s power consumption, down to about

50mW for power sensitive applications.

The eDVSs’ lenses in this project are taken from a tiny

off-the-shelf video camera with a diagonal field of view of

40°. The embedded board measures 52x23mm, with a

height of 6mm (30mm with lens) at a weight of 5g (12g

with lens).

Figure 2: Embedded-DVS board showing functional elements.

DVS sensor chip
(lens removed)Lens

Capacitors for
Bias setup

Microcontroller
and system clock

UART, TWI, and
SPI connectors

Power Management

23mm

5
2

m
m

3

After programming, the eDVS board can run

applications that process the sensor events in real time.

Sensor maintenance (such as adjusting bias values or

acknowledging events) causes only marginal overhead.

However, the microcontroller can adjust sensor settings

during operation, e.g. to limit the event rate by dynamic

control of the pixel contrast threshold. In this project the

eDVS performs the line tracking task described in Sec. 3.1.

2.3. Balancer Hardware

The balancer hardware (Fig. 3) consists of a custom-built

table capable of moving its hand cup within a range of

100x100mm. This hand cup is a 1cm radius conical

depression formed from hard rubber which was machined

while frozen with liquid nitrogen. A standard milling bit

was used to machine the cup. The rubber provides

sufficient friction to be able to rapidly accelerate the tip of

the pencil without slippage, but does not otherwise support

it.

The table is actuated by two independent servo motors.

Both rotary heads of these servos connect via independent

passive 2-segment arms of length 2x100mm to the hand

cup. The angular positions of both servo-heads together

define a unique position of the hand on the table. The

lengths of both arms and the type of servos (Futaba

BLS451, brushless coreless digital, maximum 500Hz pulse

rate) have been selected to yield sufficient torque and fast

response times, thus maximizing the speed of motion. The

servos have internal feedback to autonomously reach a

desired rotation angle. A 32-bit microcontroller (NXP

LPC2106/01, same type as on each of the eDVS boards)

running at 64 MHz computes PWM servos commands to

reach a desired hand cup position in x-y-space on the table.

The servos receive such updated control input at a

frequency of 500 Hz, and measurements show that changes

in PWM width cause movement of the hand in less than

12ms.

The microcontroller communicates with two indepen-

dent eDVS boards, which each track the pencil to be

balanced in 2d at right angles to each other (Fig 3). The

microcontroller for servo control thus receives two

independent 2d-tracking estimates, combines both into a

3d-position, and computes motion commands for balancing

(refer to Sec. 3.1 for details). Additionally, the servo

microcontroller can be interfaced to a host PC, allowing the

PC to specify desired hand positions for testing purposes

and to update the microcontroller’s program.

The robot is powered either from a standard laptop

power supply or from a LiPo battery pack. A LiPo pack of

7.2V and 6Ah can run the robot for several hours.

The cost of assembling the entire table was about

US$1500 and was strongly dominated by the custom

machining cost for the servo arms, which are aluminum that

is milled out for low moment of inertia.

Figure 3: Photo of balancer hardware: 2 DVS (right top and bottom left),

the motion table (top left) actuated by two servos (center)

3. Algorithms

This section describes the event-driven pencil tracking

algorithm, the control system, and their implementation on

the embedded processors.

3.1. Pencil Tracking Algorithm

The algorithm we use to track the pencil proceeds in two

stages [4]. The first stage, done independently for each

vision sensor on its eDVS processor, uses each incoming

event to efficiently update an estimate of the line where the

pencil appears to be from that vision sensor's point of view.

The second stage, done on the servo controller, combines

the two line estimates from the two vision sensors, taking

perspective into account, to generate a 3d estimate of the

line containing the pencil.

The goal of the first stage is to identify the line cor-

responding to where the pencil is in vision sensor

coordinates from the sensor's point of view. Every event

that arrives is treated individually to update the estimate of

this line. The estimate of the line is maintained as a

Gaussian in the "Hough space" of possible lines. Since the

log of the Gaussian is a quadratic, our estimate of the line is

stored as just the 5 coefficients of the quadratic (not

including the constant term). This allows our estimate to be

stored very compactly, with no discretization.

The equation for the line, x=m·y+b, describes a line in m

and b (the two dimensions of the Hough space) when x and

y are given by the event. To update the quadratic for a

newly arrived event, we simply decay the old quadratic

slightly, replacing the decayed portion with the information

from the new event. Since the new event corresponds to a

line in the Hough space, it contributes a quadratic which

has its minimum on this line, and grows parabolically away

4

from the line. This quadratic has coefficients A=y
2
, B=2·y,

C=1, D=-2·x·y, and E=-2·x, given an event from pixel (x,y).

When we need to produce an estimate of the slope and

x-intercept of the pencil, we report the lowest point of the

quadratic, which is given by (b,m) = (D·B - 2·A·E, B·E -

2·C·D)/q, where q=4·A·C-B·B.

The second stage combines the two lines from the first

stage into a single line in 3d space. If the true position of the

pencil is given by (x,y,z)=(X+t·αX,Y+t·αY,t), then the

sensors at (0,-yr,0) and (xr,0,0) will see the line as:

(x,z) = ((X+t·αX)/(Y+t·αY+yr), t/(Y+t·αY+yr))

(y,z) = ((Y+t·αY)/(xr-X-t·αX), t/(xr-X-t·αX)).

We receive these as a base and slope for each sensor:

 b1 = (X/(Y+yr), 0) s1 = dx/dz = αX-X·αY/(Y+yr)

 b2 = (Y/(xr-X), 0) s2 = dy/dz = αY+Y·αX/(xr-X).

We can solve these for X,αX,Y,αY in terms of b1,s1,b2,s2:

 X = (b1·yr + b1·b2·xr) / (b1·b2+1)

 αX = (s1 + b1·s2) / (b1·b2+1)

 Y = (b2·xr - b1·b2·yr) / (b1·b2+1)

 αY = (s2 - b2·s1) / (b1·b2+1) [1]

This yields the position (X,Y) of the pencil at the height of

the cameras, as well as the slope of the pencil (αX,αY).

3.2. Control System

The pencil tracking algorithm reports its estimate of the
pencil’s position in 3d space, represented as a pair of
position coordinates (X,Y), and corresponding slopes in x
and y directions (αX,αY). A PD-controller running in the
microcontroller for servo control generates desired hand
positions (Xdes,Ydes) based on these four inputs and the

position time derivatives (,X Y ). In our system all final

desired target values (positions, slopes, and velocities) are
zero to keep the pencil upright in the center of the table.
Xdes,Ydes are computed as follows:

Here gP, gα, and gD denote the gain parameters for base
position, slope, and base velocity, respectively. Selecting
gP = 1 (with gα, gD = 0) moves the hand exactly underneath
the current center of the pencil; whereas values of gp slightly
larger than 1 move the hand further outside, helping the
pencil to tilt backwards towards the center of the table.
Intuitively, the middle term has a similar effect based on the
pencil’s current slope: for larger gains gα, the current tilt of
the pencil more strongly influences the future position of the
hand. The last term counteracts recent drift of the pencil.

We found a large range of gain settings for which the
system exhibits consistent performance. Typical settings
are:

gP ≈ 1.3±0.2 gα ≈ 250±100 gD ≈ 70±20

3.3. Embedded Implementation

The algorithms described in the previous sections run on

three fixed point 32-bit microcontrollers at relatively low

clock frequencies of 64 MHz. These controllers offer

limited on-board memory (64Kbytes). They do provide a

single-cycle fixed point hardware multiplier with 64-bit

result, but no floating point hardware.

The motion control algorithm of Sec. 3.2 running on the

servo controller computes an update of the pencil’s

3d-position and new motor commands every 2 ms in

floating point; this update rate is slow enough to allow us to

use floating point emulation.

By contrast, the pencil tracking eDVS microcontrollers

receive new spike event addresses at rates of up to 200 kHz

and therefore need to process each new event in less than

5 us. To keep the computation fast and efficient, all

parameters of the above equations are maintained as

integers that are left-shifted by the largest power of 2 such

that they do not exceed the 32-bit limit imposed by the

microcontroller. This scaling is statically determined for

each variable independently to achieve the highest

precision possible. All results are rescaled by right-shifting

to their original base before being used for further

computations.

The Sec. 3.1 line tracking algorithm runs in a loop that

reacts on new events, and requires one division to compute

a new estimate of current base (X,Y) and slope (αX,αY). The

formulas for these four values (Eqs. 1) all use the same

denominator, so it is sufficient to compute the expression

den=1/(b1·b2+1) once and do single cycle multiplications

with den for each of the four formulas.

The computation 1/(b1·b2+1) cannot be performed

within the available time window of <5 us. Hence, we only

update the polynomial’s coefficients A-E for every new

event. The computational steps of the reciprocal are spread

over up to 80 events. Hence the software only gets a new

division result roughly every 80 events, which is

sufficiently fast for new base and slope estimates to be

requested by the motion controller every millisecond.

4. Results

Our system normally can balance an object for several

minutes. We have not systematically investigated the

causes for eventual failure because performance has been

more than sufficient for demonstrations.

Events are processed in the eDVS microcontroller at up

to around 500k events per second; the highest observed

event rate during operation is below 200k events/second for

5

each sensor.

We used a variety of illumination sources ranging from

uneven (shadowed) sunlight through the windows to

fluorescent lighting of 300 lux to incandescent lighting

from a table lamp. Low illumination degraded performance

slightly by increasing DVS noise and decreasing pixel

bandwidth, but generally the balancer is tolerant to a wide

range of illumination conditions as long as it is relatively

steady. We have demonstrated the balancer at several

public exhibitions and during several seminars in a variety

of lecture halls.

The following data is representative of the performance

of the embedded balancer and is presented here for

completeness with the permission of the authors of [4].

Fig. 4 shows events emitted from one of the two eDVS

due to pencil motion along the blue time axis. The solid

black axes represent the field-of-view in sensor space: an

event’s position on the vertical axis corresponds to its

height along the pencil; its position on the horizontal axis

shows its displacement with respect to the center of the

setup. Each black dot denotes a reported event at a given

position in sensor space and time. The red pencil at

t = 640ms shows the current estimate of pencil base and

slope. This space-time plot shows oscillations of pencil

position and tilt within the 640ms time window.

0 DVS pixel hor. 127

0

 D

V
S

 p
ix

e
l
ve

r.

 1

2
7

tim
e

Figure 4: Space-time plot of 54k events (dots) reported from one eDVS
sensor during balancing in a time window of 640ms. The pencil’s base

over time and the last tracked position are shown in blue and red. The

lower density of events close to the top reflects lower contrast of the
pencil’s rubber holder in silver-metallic. From [4].

Fig. 5 shows recorded control data from our system

during 2 seconds of operation. For clarity, we display data

of a single dimension only. The top panel shows raw

unfiltered data whereas the bottom panel shows the same

data processed by a low-pass filter for clarity. The blue

trace shows the estimated position of the pencil (X) over

time; the red trace a 100-fold amplification of the pencil’s

slope (αX). Both these signals are obtained based on spiking

visual input only. The green trace shows the desired

position of the cart, as computed in Sec. 3.2. The blue

position trace follows the green desired position trace with

an average delay of about 50 ms. This delay is probably

dominant in limiting the possible object length that can be

balanced.

Figure 5: Recorded traces of position, slope and desired position during a

2s time window. Upper graph: raw data; lower graph: same data filtered in
3rd order Butterworth filter (-3dB cutoff frequency set to 30Hz) for clarity.

From [4].

Fig. 6 is a histogram of X, Y-positions visited by the
table during balancing. The plot clearly shows that the cart
typically stays close to the center of the table, but
occasionally needs much of the available motion space. The
center of balancing is shifted relative to the table’s origin,
indicating an offset between the centers of the two DVS and
the center of the table. In fact, we never properly calibrated
the visual system with the actuated table.

Figure 6: Histogram of relative occurrances of true table positions, red

denoting areas often visited. From [4].

5. Conclusions

This paper describes a balancer demonstration that uses

embedded spike-based vision sensors. The low latency and

sparse output of the sensors enable a straightforward

-60

-40

-20

0

20

40

0 500 1000 1500 2000
-60

-40

-20

0

20

40

Po
si

ti
o

n
/s

lo
p

e
in

 m
m

lo
w

-p
as

s
fi

lt
er

ed
p

o
si

ti
o

n
/s

lo
p

e
in

 m
m

time in ms

position

100x slope

des. position

-50 +500
X position of table in mm

-5
0

+5
0

0
Y

p
o

si
ti

o
n

 o
f

ta
b

le
 in

 m
m

6

solution to this balancing problem, which challenges

conventional imaging based systems. A solution to

balancing small objects using standard image sensors

requires running at greater than 1 kHz frame rate. Even at

the relatively low spatial resolution of

128x128 = 16 k-pixels of the DVS sensors, image analysis

requires processing pixels at a rate of 2·16k·1k=32M

pixels/second for data acquisition, which would saturate a

USB2.0 hub. Log conversion for temporal contrast

extraction and subtraction against stored values to obtain

event-like equivalents to the DVS output would require

several hundred MIPs of processing before the remaining

processing described here. Quantization noise at the low

end of the conversion scale would limit low light

performance severely, as would the 1 ms exposure times,

necessitating bright and uniform lighting. The use of

embedded AER sensors and event-driven methods for

computation has simplified and reduced the cost of

implementing this demonstration, and has shown the

advantages of the event-driven style of computation used in

brains.

References

[1] Available:
http://www.youtube.com/watch?v=lwvTyC7m4LQ

[2] A 128×128 120dB 15us Latency Asynchronous Temporal
Contrast Vision Sensor, (2007) Lichtsteiner, P., C. Posch and
T. Delbruck. IEEE Journal of Solid State Circuits, Feb. 2008,
43(2) 566-576.

[3] Available: http://siliconretina.ini.uzh.ch

[4] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, RJ. Douglas,
T. Delbruck, "A Pencil Balancing Robot using a Pair of AER
Dynamic Vision Sensors" 2009 IEEE International
Symposium on Circuits and Systems (ISCAS), 2009,
781-785.

